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Abstract: Experimental results have revealed the sophisticated Achilles tendon (AT) structure, in-
cluding its material properties and complex geometry. The latter incorporates a twisted design and
composite construction consisting of three subtendons. Each of them has a nonstandard cross-section.
All these factors make the AT deformation analysis computationally demanding. Generally, 3D finite
solid elements are used to develop models for AT because they can discretize almost any shape,
providing reliable results. However, they also require dense discretization in all three dimensions,
leading to a high computational cost. One way to reduce degrees of freedom is the utilization of finite
beam elements, requiring only line discretization over the length of subtendons. However, using the
material models known from continuum mechanics is challenging because these elements do not
usually have 3D elasticity in their descriptions. Furthermore, the contact is defined at the beam axis
instead of using a more general surface-to-surface formulation. This work studies the continuum
beam elements based on the absolute nodal coordinate formulation (ANCF) for AT modeling. ANCF
beam elements require discretization only in one direction, making the model less computationally
expensive. Recent work demonstrates that these elements can describe various cross-sections and
materials models, thus allowing the approximation of AT complexity. In this study, the tendon model
is reproduced by the ANCF continuum beam elements using the isotropic incompressible model to
present material features.

Keywords: biomechanics; Achilles tendon; beam-to-beam contact; arbitrary cross-section; ANCF;
elasticity

1. Introduction

The Achilles tendon (AT) is the strongest tendon in the body and serves an important
function during locomotion. It can reach loads up to four times the body weight while
walking and approximately 10 times while running, with the upper border as much as
9 kN [1]. At the same time, it is vulnerable to traumatic injuries due to chronic or acute
overloading [2], with the determinants of good recovery not well understood. The AT
possesses a complex structure whereby three subtendons, having subject-specific cross-
sections, arise from the soleus and the lateral and medial heads of the gastrocnemius
muscles. The three heads twist around each other, counterclockwise in the right AT and
clockwise in the left. With the complex structure comes functional consequences. Studies
have revealed nonuniform displacements within healthy AT [3], whereas the displacement
can be more uniform in an injured tendon [4]. Furthermore, loading from the three different
muscles causes nonhomogeneous longitudinal strains, compression, and transverse strains
in the AT [5]. Longitudinal and transverse strains have also been reported in human
studies [6,7]. These nonhomogeneous strains are likely linked to the architectural structure
of the tendon [8]. The AT can endure the large forces transmitted axially, and they are most
often studied, whereas less attention is placed on shear forces. Because of its significant role
in the human musculoskeletal system, a better understanding of AT can provide valuable
information for diagnosis and treatment.
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What is the significance of the complex geometry and twist of AT? Previous research
has shown that region-specific susceptibility to strain injury changes with the amount of
tendon twist [9] and that the changes in AT stress are more sensitive to volumetric tendon
shape rather than material properties [10]. The appropriate model can help study stress
and strain distributions within the AT and improve understanding of tendon function in
health, disease, and rehabilitation.

One of the most popular methods in modern biomechanical research for studying
tendons is the finite element method (FEM). Using finite solid elements in a framework of
the nonlinear FEM helps to comprehend the tendon’s complex geometry and materiality.
However, AT modeling with the solid finite elements leads to a significant number of
degrees of freedom (DOFs) [11–13], which results in a long computation time to obtain a
solution. Solid elements can approximate almost any shape and provide reliable results,
but require dense discretization in all three dimensions. Therefore, other types of finite
elements are necessary to decrease the computational cost.

This research introduces a new approach to the deformation analysis of the Achilles
subtendons and their interactions. The main idea is to use one-dimensional finite element
discretization over the subtendon’s length (in the longitudinal direction) to decrease com-
putational costs. It can be achieved by considering the tendon as a beam-like structure
using ANCF-based continuum beam elements with specific descriptions for geometrically
complicated deformable cross-sections. This approach leads to the finite element discretiza-
tion over the subtendon’s length and makes it possible to consider material laws based
on the continuum mechanics. Recent studies [14–17] show that this transition is possible
without significant losses in the quality of the results within the ANCF framework. For
example, the work [16] considers the deformations of the beam-like structures described
with the ANCF continuum beam elements and from the various soft material models.
In [17], the approximation of the rat Achilles tendon experiment with the ANCF elements is
given and verified against experimental results. Ref. [15] provides the approximation way
for arbitrary cross-sections, which is suitable for the continuum-based ANCF beams. For
example, the provided technique approximates one of the Achilles subtendons. In the case
of multibeam construction, the question of mutual interaction between beams arises, i.e.,
the so-called contact problem. In the work [14], the methods for solving contact problems
between beams with arbitrary cross-sections are presented.

In this study, we explored the method given in [15] and modeled the whole AT with
the ANCF continuum beam elements. The subtendons’ cross-sections are obtained with
the integration scheme proposed in [15]. Then, the obtained beams are pretwisted, one
around the other. In this study, the neo-Hookean material model describes the soft tissue
response [10,18]. There are also possibilities to use others’ material models in a way given
in [16]. However, Annaidh et al. [19] demonstrated that using anisotropic material models
within FEM can have inconsistencies. The possible contact between subtendons can be
described via the surface-to-surface procedure, thus, taking into account the complicated
border interactions between two bodies.

2. ANCF Beam Element

This section provides the geometrical setup for the continuum-based ANCF beam
element. The idea behind this element type is to use the slope vectors for defining the
cross-section orientation and deformation. The advantages of these finite elements are
discussed in [20–22].

There are various types of ANCF elements, and one can divide them into several
groups and subgroups; for more details, the reader is referred to Nachbagauer et al. [23],
Obrezkov et al. [24], Patel and Shabana [25]. Here, the higher-order three-nodded element
with the second-order interpolation in longitudinal and thickness directions denoted 3363
is used. It does not require any modifications to demonstrate good performance even for
complicated loading cases [26] and allows the use of all material laws based on the 3D
elasticity.
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2.1. Kinematics of the ANCF Continuum Beam Elements

Let r = r(x, y, z) ∈ R3 be the position vector field of any particle in the current
configuration. The position in the initial configuration is denoted as r [15], see Figure 1.
The connection between the two vectors is

r = r + uh, (1)

where uh is a displacement vector. Hence, the body motion is

r(x, y, z, t) = Nm(x, y, z)q(t), (2)

where Nm is a shape function matrix and q is a vector of nodal coordinates. q contains
the position of the nodes as well as their derivatives. Therefore, we accept the following
notation for ith node:

ri
,x =

∂ri

∂x
, ri

,y =
∂ri

∂y
, ri

,z =
∂ri

∂z
,

ri
,yy =

∂2ri

∂y2 , ri
,yz =

∂2ri

∂yz
, ri

,zz =
∂2ri

∂z2 .

Figure 1. Illustration of a three-nodded beam element with an arbitrary particle p in current and p in
reference configurations. The three nodes are denoted by r(i) and r(i), respectively, i = 1, 2, 3 [17].

As mentioned above, in this work, we consider 3363 beam elements [26]. The vectors
of nodal coordinates related to this element are presented as follows:

qi = [ri, ri
y, ri

z, ri
yy, ri

zz, ri
yz]. (3)

Accordingly, the vector of displacements uh has the form

uh(x, y, z, t) = Nm(x, y, z)u(t), (4)

where u is a vector of nodal displacements. The element is isoparametric. Here, we intro-
duce a new local coordinate system ξ = {ξ, η, ζ} with the range for the local coordinates
[−1, 1], where ξ = 2x

lx
, η = 2y

ly
, ζ = 2z

lz
. Here, lx, ly and lz are the physical dimensions of the
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element. The substitutions are made to deal with the Gaussian integration procedure [15].
Now, we have

r(ξ, η, ζ, t) = Nm(ξ, η, ζ)q(t),
uh(ξ, η, ζ, t) = Nm(ξ, η, ζ)u(t).

(5)

Then, the form of the shape function matrix is

Nm(ξ, η, ζ) = [N1I N2I N3I ... N18I], (6)

where I is a 3× 3 identity matrix and components of Nm are

N1 =
1
2

ξ(ξ − 1) N2 =
1
4

lyξη(ξ − 1) N3 =
1
4

lzξζ(ξ − 1)

N4 =
1
8

lzlyξηζ(ξ − 1) N5 =
1

16
l2
yξη2(ξ − 1) N6 =

1
16

l2
z ξζ2(ξ − 1)

N7 = 1− ξ2 N8 =
1
2

lyη(1− ξ2) N9 =
1
2

lzζ(1− ξ2)

N10 =
1
4

lzlyηζ(1− ξ2) N11 =
1
8

l2
yη2(1− ξ2) N12 =

1
8

l2
z ζ2(1− ξ2)

N13 =
1
2

ξ(ξ + 1) N14 =
1
4

lyξη(ξ + 1) N15 =
1
4

lzξζ(ξ + 1)

N16 =
1
8

lzlyξηζ(ξ + 1) N17 =
1

16
l2
yξη2(ξ + 1) N18 =

1
16

l2
z ξζ2(ξ + 1).

For further investigation, it is necessary to define the deformation gradient F. From (1)
and (2), it can be written as

F =
∂r
∂r

=
∂r
∂ξ

(
∂r
∂ξ

)−1
= I +

∂uh
∂ξ

(
∂r
∂ξ

)−1
. (7)

The determinant of F defines the volume ratio of the element, we assume

J = det F > 0. (8)

2.2. Cross-Section Geometry Description

The standard Gaussian quadrature formula for the integration of any function f (x, y)
in the general form can be written as follows,∫

Ω
f (x, y)dΩ =

n

∑
i=1

n

∑
j=1

f
(
xi, yj

)
wiwj, (9)

where 2n− 1 is the polynomial exactness degree of function f over one of the axis lines, and
w is the weight of the point. For simple cross-sections (circular, etc.), we send our readers
to [27], where weights and points in a binormalized coordinate system can be found. Below
we present the method for more complicated domains, which can also be found in [15].

Let us consider a closed domain Ω, which has a piecewise border ∂Ω with points Vi
on it:

Vi = (αi, βi), i = 1, .., ϕ, (10)

∂Ω = [V1, V2] ∪ [V2, V3] ∪ ... ∪ [Vϕ, V1].
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The lines [Vi, Vi+1] also have several additional “control” points, such as Pi1 =

Vi, Pi2, ..., Pimi = Vi+1, or in the binormalized coordinates as Pξ
i1 = Vξ

i , ..., Pξ
imi

= Vξ
i+1.

Subsequently, the “cumulative chordal” formula parametrization is recalled:

[αξ
ij, β

ξ
ij] =

[
0,

mi−1

∑
j=1

∆tij

]
, | ∆tij |=| Pξ

ij+1 − Pξ
ij |, j = 1, ..., mi − 1.

Then, each line [Vξ
i , Vξ

i+1] is tracked by a spline curve Si(t) = (Si1(t), Si2(t)) degree of
pi, where pi ≤ mi − 1, see Figure 2.

Ξ

Y

Z

ζ

η

−1

1

1−1

a b

c

d

0

Pimi−1

Pi2 Vi+1Vi
Si(t)

Figure 2. An arbitrary domain in initial and local coordinate systems.

Then the cubature formula with the 2n− 1 polynomial exactness degree over the Ω
domain has the form

I2n−1 = ∑
λ∈Λ2n−1

f (ηλ, ζλ)wλ, (11)

where
Λ2n−1 = {λ = (i, j, k, h) : 1 6 i 6 ϕ, 1 6 j 6 mi − 1,

1 6 k 6 ni, 1 6 h 6 n},

and wλ, ηλ and ζλ are:

ηλ =
Si1(qijk)− Ξ

2
τn

h +
Si1(qijk) + Ξ

2
,

ζλ = Si2(qijk),

wλ =
∆tij

4
wni

k wn
h(Si1(qijk)− Ξ)

dSi2(t)
dt

|t=qijk ,

qijk =
∆tij

2
τ

ni
k +

tij+1 + tij

2
, ∆tij = tij+1 − tij,

ni =

{
npi + pi/2, pi is even,
npi + (pi + 1)/2, pi is odd.
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Thus, only τ
ni
k , wni

k and Ξ need to be defined. Ξ is an arbitrary straight line

Ω ⊆ R2 = [a, b]× [c, d], Ξ(η) ∈ [a, b], η ∈ [c, d].

The choice of Ξ does not have any influence. However, it is necessary to obtain the
nodes and weights. τ

ni
k , wni

k are the nodes and weights, respectively, of the Gauss–Legendre
quadrature formula of the exactness degree 2ni − 1 on [−1, 1].

3. Equilibrium Equation

Our task involves many subroutines, each of them contributing to the energy balance
and equilibrium of the whole system. The common approach for calculating is to use the
variational formulation. The variations can be grouped as inertia, external, contact, and
internal:

δΠext − δΠint + δΠinert − δΠcon = 0. (12)

δΠinert can be written as

δΠinert = q̈T
∫

V
ρNTNdV · δq, (13)

where ρ is the mass density, and V is the volume of the element in the reference config-
uration. The mass matrix is M =

∫
V ρNTNdV. In the case of the static problem, which

is the concern of this work, δΠinert = 0. The variation of Πint with respect to the nodal
coordinates is [16]

δΠint =
∫

V
S : δEdV =

∫
V

S :
∂E
∂q

dV · δq. (14)

S is the second Piola–Kirchhoff stress tensor, and its form depends on the material
model, which will be presented in Section 4. E is the Green–Lagrange strain tensor

E =
1
2

(
FT · F− I

)
. (15)

The last is the variation of the contact force work δΠcon, which will be explained.

4. Approximation of the Tendon Tissue

The elastic properties of the Achilles tendon tissue can be presented in different ways.
One can find examples in [10,12,13,28,29], where the Helmholtz free energy function Ψ
describes elastic features for such material models. In the isotropic case, Ψ depends only on
the right Cauchy–Green tensor C = FT · F, therefore, Ψ = Ψ(C). In the case of anisotropy,
the additional structural tensor A can be added to define the preferable deformation
direction Ψ = Ψ(C, A). Models describing AT are usually incompressible. The common
approach to deal with it is to split the deformation gradient F into dilational (volumetric)
and distortion (isochoric) parts. Here again, we want to send our readers to the work [19],
where the authors point out the possible problems associated with the decomposition of
the anisotropic material models. We have

F = J
1
3 F, J = det F > 0. (16)

This leads to the follow representation of the right Cauchy–Green tensor:

C = FT · F. (17)

Thus, after the decomposition, we have

Ψ = Ψvol(J) + Ψiso(C, ), (18)
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where Ψvol(J) = k(J − 1)2, k is a penalty coefficient to guarantee the incompressibility.
The part Ψiso might be reformulated in the terms of the Cauchy–Green deformation tensor
invariants,

Ψiso = Ψiso(I1, I2), (19)

where I1 and I2 have the forms

I1 = trC,
I2 = 1

2

(
tr C2

+ tr2C
)

.
(20)

The second Piola–Kirchhoff stress from (14) is formulated as follows:

S = 2
∂Ψ
∂C

= 2
∂Ψ
∂C

:
∂C
∂C

. (21)

Using (18), it can be expressed as

S = 2
∂Ψ
∂C

∂C
∂C

+ 2
∂Ψvol

∂J
∂J
∂C

= 2

(
∑
k

∂Ψ
∂Ik

∂Ik

∂C

)
∂C
∂C

+
∂Ψvol

∂J
JC−1, (22)

∂J
∂C

=
1
2

JC−1.

The corresponding volumetric part has the form

Svol = d(J − 1)JC−1. (23)

In this study, we consider one type of material model: the neo-Hookean model. The
isochoric part of the neo-Hookean model is

Ψ = c10
(

I1 − 3
)
, (24)

with the expression for the second Piola–Kirchhoff stress tensor:

S = 2c10 J−
2
3

[
I− 1

3
I1C−1

]
. (25)

5. Contact Formulation

Working with an assembled structure consisting of two or more bodies, the question
of interaction between the substructures appears. That problem requires the solution
of a contact task. In this study, we are concerned with the description of the bodies of
nonstandard forms, such as only surface-to-surface contact formulation, which can describe
this contact [14].

Let us describe the task of two contacting beams (denoted as A and B) in the terms
of the distances between the two closest position vector fields rA and rB. Then, assuming
that along the contact surface there is no penetration, the minimum distance problem in
the most general case can be formulated as follows:

d = ‖rA − rB‖. (26)

The nonpenetration condition is defined via the so-called gap function, which in this
work is given as follows,

g(ξA, ξB, ηA, ηB, ζA, ζB) = ‖rA(ξA)η,ζ=0 − rB(ξB
c )η,ζ=0‖

−
(
‖rA(ξA, ηA, ζA)− rA(ξA)η,ζ=0‖

+ ‖rB
c
(
ξB

c , ηB
c , ζB

c
)
− rB(ξB

c )η,ζ=0‖
)
,

(27)
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where g(ξ A, ξB, ηA, ηB, ζA, ζB) ≥ 0. The subscript c denotes the orthogonal projection of
the point on beam A on the beam B obtained from (27), rB(ξB

c )η,ζ=0 is the point projection
rB

c
(
ξB

c , ηB
c , ζB

c
)

on the beam centerline. In the model, we assume that two bodies are closely
placed to each other, and only sliding is allowed. Therefore, the nonpenetration condition
is g = 0. Then the variation reads as follows,

δΠcon = pn

∫
Ωc

gδg dΩ, (28)

where Ωc is the contacting surface between A and B beams, and pn is the penalty parameter.
The weak form of contact energy (28) presented in Section 3 can be expressed in the discrete
form as follows,

δΠcon = −δuT
A pn

ni

∑
i=1

nj

∑
j=1

nk

∑
k=1

g
(
ξA

i , ηA
j , ζ A

k
)

NT
Anijkwiwjwk

+ δuT
B pn

ni

∑
i=1

nj

∑
j=1

nk

∑
k=1

g
(
ξB

c , ηB
c , ζB

c
)

NT
Bnijkwiwjwk,

(29)

where
nijk = n

(
ξB

c (ξ
A
i ), ηB

c (ξ
A
i , ηA

j , ζA
k ), ηB

c (ξ
A
i , ηA

j , ζ A
k )
)
,

NT
A = NT(ξA

i , ηA
j , ζA

k )

NT
B = NT(ξB

c (ξ
A
i ), ηB

c (ξ
A
i , ηA

j , ζA
k ), ζB

c (ξ
A
i , ηA

j , ζ A
k )
)
.

In (29), ni is the amount of Gauss points in the A beam, along the ξ direction, wi are
their corresponding weight, ηk and ζk are the Gauss points coordinates along the η and ζ
directions parameters. ξB

c , ηB
c and ζB

c are the parameters of the closest projected point r(ξA
j ,

ηA
k , ζA

k ) on B, n is a normal vector from the B to A beam elements’ surfaces.

6. Numerical Examples

Previous studies found that the Achilles tendon consists of three subtendons with each
having a complicated cross-section shape [30,31]. Additionally, there are three common
types of AT with varying subtendon regions and torsion [30]. In this work, we consider the
AT of Type III due to its relatively simple cross-section form. We extracted the geometrical
description of subtendons from [30]. Although the exact geometrical data are not presented,
we use CAD software to obtain the positions of the points, as in [15]. Here, we also
considered the pretwist of the tendon about the centroidal axis (line, where all three
subtendons are connected) from 0◦ at x = 0 to ψ degrees at x = L. The centroidal axis of
the beam remains straight. See Figure 3. The representations of the Gauss points for all
three subtendons are given in Figure 4a–c.

The length of the tendon was set at L = 0.07 m [29]. The geometrical results based
on the approximation are 16.31 mm2 for the soleus subtendon, 15.98 mm2 for the medial
and 19.57 mm2 for lateral subtendons, with total area equaling to 51.86 mm2. That slightly
exceeds the average female tendon cross-section 51.2 mm2 and is smaller than the average
male cross-section 62.1 mm2 [29].



Materials 2022, 15, 8906 9 of 12

0 1 2 3 4 5 6 7

10
-3

0

0.002

0.004

0.006

0.008

0.01

0.012
Soleus

Medial

Lateral

(a) (b)

Figure 3. The Type III tendon representation . (a) The Achilles sub-tendons’ cross sections. (b) The
pretwisted underformed Achilles tendon discretized by four ANCF-based continuum beam elements
at each subtendon with ψ = 45◦.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(a) (b) (c)

Figure 4. Integration approximations of the three subtendons by the Gauss–Green cubature formula.
(a) Soleus. (b) Medial gastrocnemius. (c) Lateral gastrocnemius.

We used the neo-Hookean material model with three shear modulus equal to
c10 = 103.1 MPa for soleus, c10 = 143.2 MPa, and c10 = 226.7 MPa for medial and lat-
eral subtendons, respectively [29]. We considered three different pretwisted designs: ψ = 0,
ψ = 15, and ψ = 45. The choice is based on the work [28], where the optimal value of
twisted is found between 15 and 45 degrees. Then, the soleus subtendon was subjected
to forces along the longest direction and applied at the last node, the maximum applied
tensile load is 400 N. The applied force exceeds four times the loading conditions given
in [15,29], allowing the demonstration of the nonlinear deformations, about 10% of the
initial length. On the other edge, r = 0 from (3) is fixed at the first node, and this condition
forbids the displacement, but allows the cross-sectional contraction.

The results presented in Table 1 are consistent with the ones given in [15], where the
pretwisted subtendons show higher elongations under the same load in comparison to
straight subtendons. The elongations for other subtendons are near zero, which indicates
that there is sliding between the subtendons as in Section 5 holds. Table 2 presents the
converge tests, wherein the elongation results for a number of mesh refinements for the
straight and pretwisted soleus subtendon of Type III from the neo-Hookean material model
subjected to N = 400 N tensile force are given.
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Table 1. The elongation test results in [mm] for the straight and pretwisted soleus subtendon of Type
III tendons from the neo-Hookean material model.

Elongation [mm] of the Soleus Sub-Tendon

Applied Load Variation of ψ◦

[N] ψ = 0 ψ = 15 ψ = 45

10 0.143 0.146 0.168
20 0.286 0.289 0.313
30 0.430 0.433 0.457
40 0.574 0.578 0.602
45 0.647 0.650 0.675
60 0.864 0.868 0.893
80 1.157 1.160 1.186
90 1.304 1.307 1.333

100 1.451 1.454 1.481
150 2.197 2.201 2.228
200 2.958 2.961 2.989
300 4.524 4.527 4.557
400 6.151 6.155 6.187

Table 2. Elongation results in [mm] for several mesh refinements for the straight and pretwisted
soleus sub-tendon of Type III from the neo-Hookean material model under N = 400 N tensile force.

Elongation [mm] of the Soleus Sub-Tendon

Element Number Variation of ψ
per Sub-Tendons ψ = 0◦ ψ = 15◦ ψ = 45◦

nSol × nMG × nLG

1× 1× 1 6.051 6.055 6.123
2× 2× 2 6.089 6.093 6.123
4× 4× 4 6.151 6.155 6.187

The deformed shapes for straight pretwisted ψ = 15 the tendons are given in Figure 5a,
where the shapes are discretized by four ANCF-based continuum beam elements at each
subtendon.

Elements’ borders

Elements’ borders

(a) (b)

Figure 5. The deformed shapes of the pre-twisted Achilles tendons when the soleus is loaded and
discretized by four ANCF-based continuum beam elements at each subtendon. (a) ψ = 15◦ (b) ψ = 45◦.

7. Conclusions

This work uses the continuum-based ANCF beam element to describe the human
Achilles tendon’s deformation due to elongation. In the study, the AT is presented as a
combination of three substructures, pretwisted and sliding one around the others. The
contact between them is described with the segment-to-segment algorithm. The Gauss–
Green cubature integration formula captures the sophisticated cross-section form of each
subtendon. The neo-Hookean isotropic material model describes the pure elastic response.
The results show that the model is feasible, but more careful verification is necessary. That
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can include models built with conventional 3D solid elements and the comparison with
experimental data.

Additionally, the work possesses certain limitations. For example, the cross-sectional
area is taken to be the same for all subtendons along their longitudinal axes. That is
a substantial simplification, but there is no available geometrical data to approximate
such variation.
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