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Abstract: The development of composite materials with functional additives proved to be an effective
way to improve or supplement the required properties of polymers. Herein, mesoporous silica
(SBA-15) with different pore sizes were used as functional additives to prepare SBA-15/PF (pheno-
lic resin) nanocomposites, which were prepared by in situ polymerization and then, compression
molding. The physical properties and structural parameters of SBA-15 with different pore sizes
were characterized by N2 adsorption–desorption, X-ray diffraction (XRD), and scanning electron
microscopy (SEM). The thermal properties of the SBA-15/PF hybrid were investigated by differen-
tial scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The mechanical, friction,
and dynamic mechanical properties of SBA-15/PF nanocomposites were also studied. The results
revealed that the pore sizes of SBA-15 have a significant effect on the resulting SBA-15/PF hybrid and
SBA-15/PF nanocomposites. The thermal stability of the SBA-15/PF hybrid was dramatically
improved in comparison with pure PF. The friction and dynamic mechanical properties of the
SBA-15/PF nanocomposites were enhanced significantly. Specifically, the glass transition tempera-
ture (Tg) of the nanocomposite increased by 19.0 ◦C for the SBA-15/PF nanocomposites modified
with SBA-15-3. In addition, the nanocomposite exhibited a more stable friction coefficient and
a lower wear rate at a high temperature. The enhancement in thermal and frictional properties
for the nanocomposites is ascribed to the confinement of the PF chains or chain segments in the
mesopores channels.

Keywords: SBA-15/PF; nanocomposites; pore expanding; thermal properties; frictional properties

1. Introduction

Polymer nanocomposites have received considerable attention over the past few
decades due to their unique characteristics, such as low cost, lightness, flexibility, and
process ability, etc. In addition, polymer nanocomposites possess reinforced mechanical,
thermal, electrical, optical, magnetic properties, and fire retardancy [1–3]. The enhancement
of these properties depend on many factors, including category, structures, size, morphol-
ogy, surface treatment, and dispersion [3–7], etc. There are a few typical nanomaterials
used to reinforce polymer composites, such as SiO2 [8], layered silicate [6,9], Al2O3 [10],
carbon nanotubes [11], and graphene [12,13], etc.

Mesoporous materials have received considerable interest in various applications,
such as catalysts, adsorbents, optic optical/electronic devices, and chromatographic ma-
terials due to their diverse pore structures, tunable pore sizes, and large pore volume,
which conferred the possibility of confining various organic materials into the mesoporous
channels [14–17]. Moreover, relevant literature has indicated that the mesoporous materials,
especially mesoporous silica, could be a kind of promising novel reinforcing additive for
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polymer composites. Using suitable preparation methods, it is possible to introduce poly-
mer chains or chain segments in mesoporous channels, which make both the mesoporous
materials and polymer chains mutually interpenetrate and then, form into an “interpen-
etrating organic-inorganic network structure” [18–21]. The structure can improve the
interfacial compatibility of the polymer matrix and mesoporous materials, and confine the
movement of polymer chains in the composite system at an elevated temperature; this is
expected to enhance the integrated performance of the composite materials.

Mesoporous materials have structural advantages in contrast to conventional nanoma-
terials because of their tunable pore sizes and ordered pore structure; therefore, investiga-
tions regarding how to take advantages of most of the structural features of mesoporous
materials have been extensively sought. Typically, compatibility and interaction between
the polymer matrix and mesoporous materials are the two crucial factors in the properties
of polymer/mesoporous nanocomposites; these can be ascribed to the introduction of more
polymer chains or chain segments into the pore channels of mesoporous materials, which, in
turn, improves the mechanical and thermal properties of polymer nanocomposites [22–29].
Moreover, the introduction of polymer chains or chain segments into the pore channels
of mesoporous materials may result in a low dielectric property [30–35], a low thermal
expansion property [36–38], etc. Apparently, the pore size and pore volume of mesoporous
materials play a vital role in the process of confining polymer chains into pore channels.
Nevertheless, to the best of our knowledge, investigation of the effect of different pore
size and pore volume of mesoporous material on the properties of polymer/mesoporous
nanocomposites is still rare.

In the present study, several different pore sizes of SBA-15 were prepared by adding
pore expanding agents; for simplicity, the resultant SBA-15 are denoted as SBA-15-n, where
the n (1, 2, 3, 4, 5) represents SBA-15 with a different pore size. The effect of the change
in structure parameters of SBA-15 on the properties of the resulting SBA-15-n/PF hybrid
were systematically investigated. Mesoporous materials, SBA-15, and its pore expanding
samples, were initially prepared with the sol–gel method; the mesoporous silica were
dispersed in a mixture of formaldehyde and phenol by ultrasonic and subsequent mechani-
cal stirring. SBA-15/PF hybrids were fabricated by in situ condensation polymerization;
then, the nanocomposites that used the SBA-15/PF hybrid as a matrix were fabricated
by the compression molding method. The structure and physical properties of SBA-15
and its pore-expanding samples were characterized; and the effects of the pore sizes and
pore volumes of SBA-15 on the mechanical, thermal, dynamic mechanical, and frictional
properties of the SBA-15/PF nanocomposites were studied, respectively.

2. Materials and Methods
2.1. Materials

EO20PO70EO20 (Pluronic P123) was purchased from Sigma-Aldrich Co., Ltd. (St. Louis,
MO, USA), 1,3,5-trimethyl benzene and tetraethoxysilane (TEOS) silica sources were purchased
from Aladdin Chemistry Co., Ltd. (Shanghai, China). Hexamethylenetetramine (HMTA),
phenol, and formaldehydeand filler were obtained from Xilong Chemical Co., Ltd. (Shantou,
China). The catalytic agent oxalic acid was obtained from Shanghai Chemical Reagent Company.
All the chemicals were of reagent-grade and used without being further purified.

2.2. Synthesis of Mesoporous Silica Materials

Mesoporous silica, SBA-15 with different average pore sizes were synthesized by tem-
plating with the EO20PO70EO20 triblock copolymers and expanding with 1,3,5-trimethyl
benzene, via a sol–gel process based on a previous report [14]. In a typical SBA-1 synthesis,
2.0 g of Pluronic P123, X g 1,3,5-trimethyl benzene (X = 0, 0.5, 1.0, 1.5 and 2.0) and con-
centrated HCl solution (37 wt. %, 10 mL) were dissolved in deionized water (80 g) and
stirred at 35 ◦C for 6 h. Then, 4.2 g of TEOS was drop-wisely added into the homogenous
solution and stirred at 35 ◦C for 24 h. Thereafter, the solution was moved to an autoclave
and hydrothermally treated for 24 h in a 100 ◦C oven. The obtained particles were collected
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after filtration and washed with deionized water 3 times; then, dried at 60 ◦C in the air; the
obtained products were calcined at 550 ◦C for 6 h. These samples were denoted SBA-15,
SBA-15-1, SBA-15-2, SBA-15-3, and SBA-15-4.

2.3. Fabrication of SBA-15-n/PF Hybrid

The SBA-15/PF hybrid was prepared through in situ polymerization by adding
3.0 wt % mesoporous silica. The calculated amount of mesoporous silica (SBA-15,
SBA-15-1, SBA-15-2, SBA-15-3, or SBA-15-4), 30.0 g of phenol and 24.0 mL of formaldehyde
(in 37 wt. % water) (P:F molar ratio = 1.15:1), and oxalic acid (2 wt. % of phenol) were
added into a three-necked flask with ultrasonic agitation for 30 min. The flask with mixture
was then stirred at 85 ◦C in a water bath for 4 h. The reaction was maintained to remove
the water and free phenol at 160–180 ◦C for an extra 2 h under 0.03–0.05 MPa of pressure,
and the final yield of these hybrids was more than 85%. These hybrids were denoted
SBA-15/PF, SBA-15-1/PF, SBA-15-2/PF, SBA-15-3/PF, and SBA-15-4/PF.

2.4. Preparation of SBA-15-n/PF Nanocomposites

The SBA-15-n/PF hybrids with fillers were blended on a roll machine; the mixture was
then smashed, and SBA-15-n/PF nanocomposites were prepared by compression molding
at 165 ◦C and 15 MPa for 5 min. Afterward, the composites were postured at 140, 160, and
180 ◦C for 3 h, respectively. Figure 1 illustrates the experiment details of the fabrication
process of the SBA-15/PF hybrid and SBA-15/PF nanocomposites.
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Figure 1. Schematic illustration of fabrication process of the SBA-15/PF hybrid and
SBA-15/PF nanocomposites.

2.5. Measurements

X-ray powder diffraction (XRD) was performed on a PANalytical X’Pert PRO X-ray
diffractometer. The X-ray beam was nickel-filtered with Cu-Kα radiation (λ = 0.154 nm); the
diffraction patterns were collected in the 2θ range 0.5–8.0◦ with a scanning rate of 0.2◦/min.
N2 adsorption–desorption isotherms were accomplished at 77 K using a Quantachrome
NOVA 1200e gas-adsorption analyzer. Before the adsorption measurements, all the samples
were outgassed at 353 K in the adsorption analyzer degas port for 12 h. The average pore
radius and pore volume were determined by the BJH method. The specific surface area was
determined using the BET model. The scanning electron microscopy (SEM) measurement
was carried out with a S-4800 microscope (Hitachi, Ltd., Tokyo, Japan) operating at 5 kV.
The samples were sputter-coated with a thin gold layer under a vacuum situation.

Differential scanning calorimetry (DSC) was conducted with NETZSCH DSC 204
between 10 and 120 ◦C with a heating rate of 10 ◦C/min under a nitrogen atmosphere.
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Thermogravimetric analysis (TGA) was carried out on a NETZSCH STA 449C analyzer
operating from 50 to 800 ◦C with a heating rate of 10 ◦C/min under a nitrogen atmosphere.

The impact strength of the samples was carried out on a impactor of type JC-25,
according to the National Standard of China (GB1843-2008). The specimen was trimmed
into a dimension of 120 mm × 10 mm × 4 mm. The flexural properties of the samples were
tested on an electronic universal testing machine of type AG-20I, according to the National
Standard of China (GB/T9341-2008). The specimen was trimmed into a dimension of
120 mm × 10 mm × 4 mm.

Dynamic mechanical analysis (DMA) was conducted by using a TA Q800 dynamic
mechanical analyzer to evaluate the composites’ storage and loss moduli at a fixed fre-
quency of 1 Hz. The heating rate was set as 5 ◦C/min over the range from 50 to 300 ◦C.
The friction test performed on a constant speed (D-SM) tester; the friction disk was made
of cast iron (HT250) with a hardness of 210 HB; the tester provided a friction temperature
range of 100–300 ◦C, which was adjusted automatically; the load was set as 0.98 MPa on
each slider, and the speeds were in the interval of 480 r/min. The friction tests were carried
out at 100, 150, 200, 250, and 300 ◦C, respectively, and each test lasted 10 min.

3. Results and Discussion
3.1. Structure and Properties of Mesoporous Silica SBA-15

Five kinds of mesoporous silica, SBA-15 with different average pore sizes were synthe-
sized by templating with the EO20PO70EO20 triblock copolymers and using 1,3,5-trimethyl
benzene as a pore-expanding agent via a sol–gel process. Figure 2 shows the XRD patterns
of SBA-15 with different average pore sizes. There are three well-resolved peaks at 2θ
values between 0.5 and 2.5◦, indexed as (100), (110), and (200) Bragg reflections, which can
be observed in the X-ray diffraction patterns of SBA-15; this is consistent with a previous
report [14]. However, according to the intensity of the peaks at 2θ values less than 0.5◦,
it can be inferred that the ordering of mesoporous silica with expanded pore size was
distinctly weakened. Meanwhile, the XRD peaks of mesoporous silica were shifted to a low
angle, which can be ascribed to the increase in pore sizes of the mesoporous silica in view
of Bragg’s law about the corresponding relationship between the unit cell parameter and
position of the diffraction peak.
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The nitrogen sorption isotherms along with the distribution curves of pore size for
the calcined SBA-15 with different average pore sizes are illustrated in Figure 3. The
corresponding pore characters, including BET surface areas, total pore volume, and average
pore diameters were listed in Table 1. As can be seen from Figure 3a, it is similar to SBA-15,
with different pore sizes possessing the typical Langmuir type-IV isotherms with a H1
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hysteresis loop representing distinct capillary condensation steps, indicating relatively
narrow mesoporous size distributions. However, the isotherms of pore-expanding SBA-
15 featured capillary condensation steps at a wider pressure range (between 0.45 and
0.95) than that of SBA-15 (between 0.60 and 0.75), manifesting that the mesoporous size
distributions of the pore-expanding SBA-15 were wider than that of the original SBA-15.
The pore size distributions (PSDs) shown in Figure 3b further suggested that the pore sizes
of SBA-15 increased gradually and the pore size distributions widened with the increase
of pore-expanding agents. Meanwhile, the BET surface areas of SBA-15 had little change;
however, the average pore diameters and total pore volume significantly increased from
SBA-15 (7.31 nm and 1.03 cm3/g) to SBA-15-4 (20.29 nm and 2.34 cm3/g) in Table 1.
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Table 1. Textural parameters of SBA-15 particles with varying pore size.

Material BET Surface Area
(m2/g)

Total Pore Volume
(cm3/g)

Average Pore Diameter
(nm)

SBA-15 637 1.03 7.31
SBA-15-1 664 1.48 11.87
SBA-15-2 721 2.01 17.99
SBA-15-3 731 2.43 19.46
SBA-15-4 719 2.34 20.29

Figure 4 shows the SEM micrographs of the SBA-15 and SBA-15-3; this clearly shows
that the SBA-15 consist of many worm-like shapes with relatively uniform sizes (1–2 µm),
which are aggregated together to form clusters. The morphology of SBA-15 is notably
inconsistent with a previous report [14]. After pore expanding, SBA-15-3 showed the
agglomerated structure, which formed from irregular spherical particles morphology
with diameters of 2 µm. It is suggested that the template structure by self-assembly
was obviously changed due to adding the pore-expanding agents in the reaction system.
Therefore, in relation to its pore-expanding size, SBA-15 transforms shape from a worm-like
structure to one that is irregular and spherical.
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3.2. Thermal Properties of M-SBA-15/PF Hybrid

Figure 5 shows the DSC curves of pure PF and the SBA-15/PF hybrid. The Tg (glass-
transition temperature) of pure PF is 82.0 ◦C; obviously, the SBA-15/PF hybrid shows a
higher Tg than pure PF. In addition, the Tg values of the hybrid increased with the increase
in pore size of SBA-15. The enhancement of Tg is ascribed to the interaction between
SBA-15 with a different pore size and PF molecular chains; this indicated that the exis-
tence of SBA-15 with a different pore size may hinder the thermal motions of polymer
chains in the hybrid. Nevertheless, its Tg value declined slightly for the SBA-15-4/PF
hybrid material compared to SBA-15-3/PF; this might be because of the larger surface area
and pore volume of SBA-15-3 than SBA-15-4, as indicated in Table 1. Thus, the interac-
tion between the mesoporous silica and PF chains in SBA-15-3/PF was stronger than in
SBA-15-4/PF. The Tg for the SBA-15/PF hybrid increased only 1.4–3.9 ◦C, compared to
pure PF; the result may be attributed to the strong interaction among PF chains in pure
PF of itself; thus, it is limited to enhance the interaction among the PF chains by adding
SBA-15 of different pore size in the hybrid.
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Figure 6 shows the TGA of pure PF and the SBA-15/PF hybrid within the range of
50–800 ◦C. The thermal stabilities of the hybrid were expressed with a 10% weight loss
temperature and maximum thermal decomposing temperatures, namely Td,10 and Td,max,
respectively. As expected, the thermal stabilities of the SBA-15/PF hybrid are higher than
pure PF, as shown in Table 2; Td,10 and Td,max of all the SBA-15/PF hybrids are increased.
For instance, the Td,10 and Td,max values for the SBA-15-2/PF hybrid with the addition of
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3 wt % increased by 28.7 and 15 ◦C, respectively, in comparison to pure PF. The char yields
are increased by introducing the different pore sizes of SBA-15, which of the SBA-15-3/PF
hybrids, was the highest of all. Moreover, as can be seen from Figure 6b, the corresponding
derivative curves show the weak peak from 500 to 550 ◦C, which are more obvious for
the hybrid enhanced by the pore-expanding samples. The confinement of polymer chains
or chain segments in the mesoporous channels of mesoporous silica undoubtedly play a
major role in the improvement of thermal stability properties; and the larger pore size and
pore volume that SBA-15 possess, the more the PF chains or chain segments that may be
confined into the mesoporous channels of SBA-15 and the more possibility that the thermal
stability properties of the hybrid improve.
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Table 2. Thermal decomposition of pure PF and SBA-15/PF enhanced by SBA-15 with different size
of mesoporous.

Material Td,10,
◦C Td,max,

◦C Char Yield at 800 ◦C
(wt %)

Pure PF
SBA-15

327.0
342.2

377.0
385.0

42.1
46.5

SBA-15-1 348.9 392.5 46.9
SBA-15-2 355.7 392.0 46.6
SBA-15-3 340.4 384.0 47.0
SBA-15-4 342.1 390.0 46.8

3.3. Mechanical Analysis

PF nanocomposites were prepared by compression molding using the SBA-15/PF
hybrid as a polymer matrix. Mechanical properties of the PF nanocomposites are shown in
Figure 7a,b. The impact strength of the PF nanocomposites has obviously not enhanced with
the increasing pore size of SBA-15, which was increased for the original SBA-15; however,
it was even decreased for the pore-expanding samples. The bending strength and modulus
showed a slight enhancement by introducing SBA-15; however, it was difficult to find the
correlation between the enhancement and pore size of SBA-15. Thus, the improvement
of the mechanical properties was more obvious by introducing the original SBA-15 than
the pore-expanding samples. This might be about the shape. The original SBA-15 was
similar to fibrous; however, it changed to globular after the pore expansion, as shown in
Figure 4, and it is more beneficial to enhance the mechanical properties by introducing
fibrous additives than globular ones.
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3.4. Dynamic Mechanical Analysis

The dynamic mechanical properties of SBA-15/PF nanocomposites with different pore
sizes of SBA-15 were determined within the temperature range from 50 to 300 ◦C. As shown
in Figure 8a, the storage modulus (E′) curves showed a similar trend; firstly, the curves
decreased gently in the range of 50–200 ◦C; then, they decreased sharply between 200 ◦C
and 250 ◦C, followed by a stable change. Nonetheless, the E′ of the PF nanocomposites
was more stable than that of the pure PF composite, especially, the SBA-15-3/PF and
SBA-15-4/PF nanocomposites; the E′ values kept on a high level in the range of 250–300 ◦C.
These results could be ascribed to the existence of PF chains or chain segments within
the mesoporous channels of SBA-15, which can confine the motions of the PF chains or
chain segments; the effect may be more obvious if confined to more polymer chains or
chain segments.
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Usually, the Tg values of polymer composites can be determined by the loss modulus
(E′′) peak. Figure 8b exhibits the E′′-temperature curves for PF nanocomposites with
different pore sizes of SBA-15. It is clear that the Tg for the PF nanocomposites was higher
than for the pure PF composite. Moreover, the SBA-15-3/PF nanocomposite showed
the greatest improvement in Tg values, which was shifted from 228.0 ◦C for pure PF to
247.0 ◦C for SBA-15-3/PF nanocomposites. This result was consistent with the result of
DSC, which can demonstrate that the thermomechanical properties of PF nanocomposites
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could be obviously improved by introducing expanded pores of SBA-15, resulting from the
confinement of thermal motion for PF molecule chains.

3.5. Friction Properties

Figure 9 shows the change in the friction coefficient and wear rates of the PF nanocom-
posites with different pore sizes of SBA-15 as a function of temperature up to 350 ◦C.
As shown in Figure 9a, the variation trend of the friction coefficient was similar. With
increasing temperature, the friction coefficients first increased slowly below 200 ◦C and
then, increased rapidly in the range between 200 ◦C and 300 ◦C; finally, they decreased
slightly when the temperature went up to 350 ◦C. When the friction disc’s temperature was
raised to 300 ◦C, the friction coefficients of the PF nanocomposites reached a maximum
value and then reduced, which were called heat fades due to the decomposition of organic
ingredients in the PF nanocomposites [32]. At temperatures below 300 ◦C, the pure PF
composites showed high friction coefficients, indicating that pure PF had a higher bonding
strength than the modified SBA-15/PF nanocomposites. Nevertheless, the decline in the
friction coefficient for the pure PF composites was the most obvious from 300 ◦C to 350 ◦C,
expressing that its heat fade was the most apparent. Comparing with the pure PF compos-
ite, the SBA-15/PF nanocomposites exhibited a more stable friction coefficient, which could
be ascribed to the better thermal stability for the SBA-15/PF nanocomposites modified by
the different pore sizes of SBA-15.
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Figure 9. Friction curves of the friction coefficient (a) and volume wear rate (b) for the
SBA-15/PF nanocomposites.

The wear rates of the SBA-15/PF nanocomposites with different pore sizes of SBA-15
were measured as a function of temperature and shown in Figure 9b. The wear rates
increased gradually in the temperature range between 100 and 350 ◦C; meanwhile, the
wear rates for the SBA-15/PF nanocomposites were higher than the pure PF composite
below 200 ◦C. Their values came close to each other at 250 ◦C and the wear rates were
lower than the pure PF composite in the temperature range of 300–350 ◦C; specifically, the
wear rate was lowest for the SBA-15-3/PF nanocomposite. The results indicated that the
wear resistance for the PF nanocomposites can be improved under higher temperatures
by introducing different pore sizes of SBA-15. The reasons were the following facts: the
wear rates were mainly determined by two factors between bonding strength and thermal
stability; and the bonding strength plays a major role at low temperatures. Nevertheless,
the effect of thermal stability will be more prominent at high temperatures. Moreover, a
part of the PF chains was penetrated through the pore channels of SBA-15, which can not
only improve the thermal stability of the PF nanocomposites, but also make the exfoliation
of SBA-15 from polymer matrices difficult.
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4. Conclusions

SBA-15/PF nanocomposites with different pore sizes of mesoporous silica were pre-
pared in this study. SBA-15-n/PF hybrids were initially prepared through in situ poly-
merization, which were then used as a polymer matrix to fabricate the nanocomposites by
compression molding. The SBA-15/PF hybrid illustrated a higher thermal stability than
that of pure PF. The DMA results indicated that the E′ of the nanocomposites enhanced by
SBA-15-3 and SBA-15-4 were drastically higher than pure PF at a high temperature, and Tg
shifted to higher temperatures as the pore sizes of SBA-15 increased, reaching a maximum
value at 247 ◦C, elevated by 19 ◦C in comparison with the pure PF composite. The variation
of the friction coefficient for the SBA-15/PF nanocomposites was more stable at different
temperatures and the wear rate was also lower at a high temperature. The larger pore sizes
and pore volumes were conducive to the confinement of the PF chains or chain segments
into pore channels, which can, in turn, enhance the thermal and frictional properties of the
nanocomposites; in addition, the reinforced matrix material could be used in the fields of
heat-resistant materials and friction materials.
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