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Abstract: The ceramics industry dedicated to the manufacture of building materials is a very signifi-
cant cause of environmental pollution, and various research projects are being carried out to reduce
the associated environmental impact. One of the most important research lines is the generation and
development of new materials, from waste, through more sustainable production processes. All of
this is framed in circular mining. In this research study, geopolymers were developed with biomass
bottom ashes and brick dust in order to replace the traditional ceramics used to construct bricks. For
this, different families of test tubes were formed with different percentages of both residues, and
their physical and mechanical properties were studied. In this way, the properties of geopolymers
could be compared with traditional ceramics. In addition, in order to determine the cause–effect
relationships between physical properties and compressive strength, data were processed using fuzzy
logic and data mining techniques. The results showed the feasibility of geopolymers generation with
biomass bottom ashes and brick dust with acceptable properties to replace conventional ceramics. In
addition, the fuzzy logic analysis allowed for establishing clear and objective relationships between
the physical properties and the compressive strength of the geopolymers, with the aim of developing
the highest quality geopolymer.

Keywords: fuzzy logic; geopolymers; mining waste; circular mining; sustainability; construction
materials; compressive strength

1. Introduction

The material named geopolymer was developed by Joseph Davidotis in the 1970s [1].
This material is an inorganic polymer that comes from the alkaline activation of an alu-
minosilicate source [2]. The mixture of both components, in the presence of an aqueous
medium, develops the so-called geopolymerization reaction [3].

Therefore, the shaped material has adequate strength and properties [4] for use in
different fields of engineering [5], mainly in the construction [6] and mining [7] sectors. In
these sectors, it has been used in various studies as a substitute for cement [8], concrete [9]
and even mortar [10], thanks to its properties of fire resistance [11], stability at high
temperatures [12], compatibility with structural steel [13], etc.

In addition, most of the developed studies use residues from other activities as raw
materials [14,15] for the conformation of the geopolymer. Therefore, the environmental
impact associated with its manufacture, as well as the carbon footprint produced, is very
reduced [16,17]. There are several materials that have been used as a source of aluminosili-
cates for geopolymers, these being mainly carbon float [18], metakaolin [19], metallurgical
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slag [20] and glass [21]. However, as an alkaline activator, sodium hydroxide [22] or
potassium hydroxide [23] are usually used, both commercial products.

It is because of this that the geopolymer is currently one of the most sustainable
materials existent, with a greater impact on the future [24]; once it uses wastes as raw
materials [P], its conformation process produces low CO2 emissions [25] and, in addition,
it has similar characteristics to the conventional construction materials used [26].

However, its use, as commented above, is mainly based on substitutes of cement or
concrete, unlike this research. In this work, we proceed to the generation and testing of
the geopolymer as a substitute element for ceramic materials commonly used for bricks
and tiles since these products are produced in large quantities and have a significant
environmental impact [27]. In this way, we generated an economic asset (bricks) from an
environmental liability (waste from the quarry-ceramic industry).

The manufacture of bricks from the traditional ceramic industry extracts huge quanti-
ties of clay, with the consequent economical cost and environmental impacts producing,
in turn, greenhouse gas emissions in the sintering process that is carried out at high
temperatures, usually around 950 ◦C [28].

Therefore, the use of geopolymers with the use of waste, as presented in this research
study, would largely avoid the environmental effects caused by traditional ceramics since
the mining tasks of clay extraction would be eliminated, and more energetically optimized
manufacturing processes would be developed [29].

In addition, the use of wastes for geopolymers manufacture as substitutes for tradi-
tional ceramics prevents the deposition of these by-products in large landfills, giving them
a new useful life and, in turn, eliminating the extracting works of new raw materials [30].
It is, therefore, a clear example of the new circular mining [31], in which the wastes from
an industrial/mining activity are the raw materials for other activities, thus closing the
materials flow and avoiding unwanted landfills by transforming environmental liabilities
into new economic assets. Therefore, the use of geopolymers made from wastes as raw
materials would significantly reduce the environmental impact caused by this sector.

For the development of these substitute geopolymers of ceramic materials for construc-
tion, mainly bricks, two types of wastes were used. On the one hand, and as a source of
aluminosilicates, brick dust produced in the ceramic industry was used [32]. On the other
hand, and as an alkaline activator, opposite to other researchers who activate with potas-
sium or calcium hydroxides, biomass bottom ashes from the almond shells and alperujo
(residue from the olive oil agri-food industry) combustion was used. These ashes, produced
in electricity production plants, do not currently have use and, in most cases, are deposited
in landfills. However, their high potassium oxides content, due to their formation process,
make them an ideal element for use in geopolymers formation as an alkaline activator [33].

Therefore, in this research study, geopolymers were developed with brick dust and
biomass bottom ashes to evaluate their physical and mechanical properties, with the sole
purpose of determining their possible use as substitutes for ceramic materials of bricks in
the construction sector. For this, different families of test tubes were formed with different
percentages of both residues, and subsequently, their physical and mechanical properties
were evaluated.

The test results were initially analyzed with descriptive statistics to assess the results’
quality and, subsequently, with fuzzy logic tools.

The analysis of the data by applying a fuzzy logic and data mining tools methodology
(PreFuRGe) [34] reflected the existence cause–effect relationships [35] essential to, on the
one hand, understanding the geopolymerization process and, on the other hand, determine
which physical properties influence the geopolymer formation with the highest possible
compressive strength, which is desirable.

The results of this research study showed that it was feasible to make geopolymers
with brick dust and biomass bottom ashes, reflecting the usefulness of fuzzy logic in
establishing the relationships between the different physical and mechanical properties of
the formed geopolymers.
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Therefore, the novelty of this study derives from the fact that not only a sustainable
material substitute for traditional ceramics was developed for the construction sector, but
also the data were analyzed in depth to determine the relationships between the different
physical properties, being able to predict the structural behavior of the geopolymer based
on its basic measured properties. This fact is unusual and impossible to relate to traditional
classical statistics.

Consequently, the central objective of this work is specified in an operation model
proposal of stress–strain processes for geopolymers by applying a fuzzy logic and data
mining-based methodology, using datasets related to stresses, rupture limit and physical
properties of the geopolymer.

2. Materials and Methods

In this section, firstly, the properties and nature of the wastes used for the formation
of geopolymers were detailed, with brick dust and biomass bottom ash being the wastes
of choice. Then, the methodology for shaping the geopolymers is described, as well as
the procedure followed for the different tests to determine the physical and mechanical
properties. Finally, the statistical methods were described, on the one hand, to determine
the quality of the data obtained in the tests and, on the other hand, to evaluate, through
fuzzy logic, the different relationships between the multiple variables characterized by
the geopolymers.

2.1. Materials

The materials used in this study were industrial wastes. Therefore, usable material
for construction was created with 100% waste, with the environmental advantages that
this entails. Brick dust is the perfect source of aluminosilicates for forming geopolymers.
This brick powder was alkali-activated with biomass bottom ashes through the geopoly-
merization process. It should be noted that biomass bottom ashes are derived from the
combustion of almond shells and “alperujo” for energy production. Consequently, they
have physical and chemical properties that are constant over time, which makes them
useful to use in geopolymers, as is the case of brick dust.

2.1.1. Brick Dust

Brick dust derives from the ceramic industry located in the south of Spain, more
specifically in Linares (Andalusia). This residue is inherently obtained in the production
of bricks or tiles for the construction sector; once after the sintering process, there are
different pieces that do not have the appropriate dimensions or that break during the
process. Therefore, this material is removed and crushed to occupy as less space as possible,
used anecdotally for some low-cost functions, and its properties are not optimized for use
as raw material in higher-quality materials elaboration [36].

It should be noted that, as this brick powder is produced from already sintered ceramic
pieces, its physical and chemical properties are not at all similar to those of conventional clay.

The most notable characteristics of this waste are its density, around 2.54 t/m3, and
its particle size, which is less than 200 µm and greater than 40 µm. On the other hand, the
chemical composition of brick dust is mainly silicon, aluminum, calcium, iron, potassium
and magnesium. At the same time, it should be noted that the percentage of carbon,
nitrogen, hydrogen and sulfur is very low, something to be expected taking into account the
sintering process from which it derives and, consequently, the ignition loss of the sample
is 1.74%, which is, very low. Therefore, and due to the silicon percentage of 27.32% and
aluminum of 8.16%, it can be said that this residue has an ideal chemical composition to
form geopolymers, as well as a very suitable particle size.

2.1.2. Biomass Bottom Ashes

The biomass bottom ashes, hereinafter BBA, used for the development of geopolymers
as an alkaline activator, are also derived from the industries located in the south of Spain
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(Linares, Andalusia) for electricity generation. More specifically, these ashes come from the
combustion of almond shells and “alperujo” (a by-product obtained in the oil agri-food
industry), so their chemical composition and properties are unalterable over time [37].

These biomass bottom ashes have a very similar density to brick dust, 2.65 t/m3, so
their compatibility is ideal for the homogenization and mixing process. In addition, the
particle size is very similar, between 10 and 200 µm. The ashes’ chemical composition is
suitable for use as an alkaline activator since it has a large percentage of potassium, silicon,
calcium, phosphorus, magnesium, aluminum and iron oxides. In addition, the ignition loss
is 8.16%, showing a very low percentage of carbon and hydrogen that demonstrates the
almost inexistence of unburned organic matter [38].

2.2. Methodology

This section details the methodology followed for shaping the geopolymers and the
execution of the different tests that determine their physical and mechanical properties. At
the same time, the principles and tools used for the analysis of all the obtained data from
the characterization of geopolymers are shown.

2.2.1. Shaping and Testing of the Different Families of Geopolymer’s Test Tubes

For the geopolymer shaping process, all raw materials, brick dust and biomass bottom
ashes were dried for 24 h at 105 ± 5 ◦C. With the aforementioned residues, the manufacture
of the different test tube families with different percentages of them was performed. First,
a 100% brick dust family and, subsequently, other families with increasing percentages of
biomass bottom ashes of 10% in decreasing percentage of brick dust. The second family
was made up of 10% biomass bottom ashes and 90% brick dust, the third with 20% biomass
bottom ashes and 80% brick dust, etc., until reaching the 100% biomass bottom ashes
and 0% brick dust. It should be noted that both made up of 100% biomass bottom ashes
and the one with 100% brick dust were discarded from the statistical analysis since the
geopolymerization process did not occur because a source of aluminosilicates with an
alkaline activator did not combine. Therefore, these families were only made in order to
confirm that the geopolymerization process actually took place once the detailed families
did not have adequate physical properties or mechanical resistance. The different families
of shaped test tubes are shown in Table 1.

Table 1. Families made up of geopolymers with different percentages of brick dust and biomass
bottom ashes.

Test Tubes Families % Brick Dust % BBA

1 100 0
2 90 10
3 80 20
4 70 30
5 60 40
6 50 50
7 40 60
8 30 70
9 20 80
10 10 90
11 0 100

The shaping process of the 6 test tubes for each family was always the same to avoid
errors. First, both residues were weighed in the appropriate proportions and mixed. Then,
20% of water was added to activate the geopolymerization process, and the mixture was
homogenized again. The mixture obtained from the different families was transferred
to a metallic matrix of 60 mm × 30 mm to exert a pressure of 30 MPa. Once the test
tubes were formed, they were removed from the matrix and deposited for 24 h at room
temperature (20 ± 2 ◦C) and then at 90 ± 2 ◦C for 24 h. After this drying period, to
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facilitate geopolymerization, the test tubes of all families were measured, weighed and
immersed in a circulating water bath at a temperature of 20 ± 2 ◦C. The purposes of this
process were, on the one hand, to eliminate all those chemical compounds that have not
reacted in the primary geopolymerization process and, on the other hand, to try to react
to those compounds that demanded more water in the initial geopolymerization process.
Finally, all the specimens were dried again for 24 h at a temperature of 90 ± 2 ◦C and
were subsequently measured and weighed again to determine the mass loss and the linear
contraction that they suffered, according to the UNE-EN 772-16 standard.

Next, and once the geopolymers were dry, the water absorption by capillarity was de-
termined according to the UNE-EN 772-11 standard. This test is based on the determination
of the mass variation experienced by the geopolymer before and after its submersion for
60 ± 1 s in 5 mm of water. In this way, the capillarity of the structure could be determined.

Subsequently, the different samples of geopolymers from each family were immersed
in water at room temperature (20 ± 2 ◦C) for 24 h to evaluate the cold water absorption
according to the UNE-EN 772-21 standard. In this way, the quality of geopolymers could be
evaluated for their use in elements found outdoors once those elements are more affected
by climatic conditions.

In turn, the boiling water absorption test was carried out after the previous test,
according to the UNE-EN 772-7 standard, which allowed the structure of the geopolymer
to be appreciated. Therefore, it had a high porosity or, on the contrary, it was very compact.
This test, together with the open porosity and bulk density test (UNE-EN 772-4), was
carried out in the same way, immersing the test tubes in boiling water to later measure
their submerged mass in water and their mass with dry saturated surface.

Finally, the mechanical properties, which obviously must have a construction material
and the geopolymer under study, were evaluated through the compression test, carried
out according to the UNE-EN 772-1 standard. This test is essential, not only because
the geopolymer as a construction material must have an intrinsic resistance equal to that
of a conventional ceramic material but also because it reflects the quality of the formed
geopolymer and the feasibility of using both residues to produce geopolymers. Therefore,
this mechanical property, as it is detailed later, is the one that was taken as a consequence
of all the statistical analysis through fuzzy logic.

It should be noted that once the geopolymer formed with almond shell and biomass
bottom ashes wished to replace conventional traditional ceramic materials, different test
tubes were manufactured with red clay with the same procedure that was described for
geopolymers. This process only differed in sintering, which was carried out at 950 ± 5 ◦C
for 1 h. Therefore, in this study, it was possible to evaluate the existing differences between
the physical and mechanical properties detailed in the geopolymers with the traditional
ceramic material.

2.2.2. Statistical Summary

Once the different families of test tubes were formed, according to the procedure
detailed above, and the necessary physical and mechanical tests were carried out, the
data were analyzed using the Statgraphics Centurion XVI software version 16.2.04 from
Statgraphics Technologies, Inc. (The Plains, VA, USA).

This data analysis, based on descriptive statistics, made it possible to process and
analyze the data for subsequent treatment with fuzzy logic, determining their quality, as
well as possible errors that could have been made during the methodology following [39].
Thus, with this tool, it was possible to analyze the quality of the results through descriptive
techniques for further analysis by using fuzzy logic techniques.

Therefore, with the Statgraphics Centurion XVI software version 16.2.04 from Stat-
graphics Technologies, Inc. (The Plains, VA, USA) software, parameters of the obtained
data in the geopolymer tests were analyzed, such as the average, the standard deviation, the
minimum and the maximum, summarizing all these values in the statistical summary [40].
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In this way, it was possible to make a first approximation to the knowledge of the
physical and mechanical properties of geopolymers in comparison with traditional ceramics
once average values of these characteristics were obtained for their possible evaluation. In
addition, parameters such as standard deviation allowed knowing the suitability of the
data in order to obtain an interpretation that is as objective as possible to determine the
feasibility of manufacturing geopolymers made from brick dust and biomass bottom ashes.

2.2.3. Data Mining and Fuzzy Logic (PreFuRGe)

Fuzzy logic, unlike classical statistics, allows data to be interpreted and related to each
other through different cause-and-effect links in a much more real way. This is due to the
fact that classical statistics establish relationships that can be denominated as yes or no,
0 or 1, while fuzzy logic establishes relationships that are evaluated numerically between
0 and 1 [41].

In this way, a large data mass can be analyzed objectively and determine if the relation-
ship between the different physical and mechanical properties, as in this case, is high, low,
total or non-existent, showing a wide dependence field between variables that was totally
ignored by classical statistics. It is, therefore, a way of analyzing data developed by many
researchers that have been successfully applied in various fields [42,43] since it allows
analyzing a large data mass objectively, quickly, intuitively and obtaining relationships
between numerically detailed variables similar to the appreciation that a human expert
would do. Moreover, in [44,45], it was observed that other fuzzy logic methodologies had
been used successfully in similar problems, with satisfactory results.

In addition, this type of statistics, based on heuristic rules, allows defining an an-
tecedent to further determine a consequent. In this way, both are related since if the
antecedent increases, the consequent will act according to the established relationship and
vice versa.

All this can be easily explained to the reader in the following example of a fuzzy rule
shown in Figure 1.
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The interpretation in the natural language of the fuzzy rule represented in Figure 1
is: IF P1 is bigger than small and lower than average, and if P2 is big, then S is small.
These assessments could not be made with classical statistics since here the field that can
be covered by the antecedents P1, P2 and the consequent S is detailed; that is, the answer is
not unique as in classical statistics Yes or No, 0 or 1.

PreFuRGe Methodology (Predictive Fuzzy Rules Generator)

PreFuRGe [34] is a soft computing tool based on fuzzy logic addressed with the
methodology proposed by Sugeno in [46] and based on the FCM (fuzzy C-means) al-
gorithm [47], designed to work with quantitative datasets with the objective of gener-
ating fuzzy systems made up of a set of IF-THEN fuzzy rules as follows: IF v1 ∈ C1
AND v2 ∈ C2 . . . THEN s ∈ CS2, where x = (v1, v2, . . . , vn) ∈ Rn are input variables (an-
tecedents), C1, C2, . . . Cn are n fuzzy sets, s ∈ < is the output variable (consequent) and
CS2 is a fuzzy set for this variable.
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The main steps of the PreFurGe methodology, once the datasets to analyses have been
pre-processed to filter outliers, noise, etc., are:

(1) The expert has to decide the goal parameters to study (consequents) to discover their
relationship with the rest of the variables (antecedents).

(2) The datasets are processed, starting with the classification of the goal variables (con-
sequents) in an appropriate set of fuzzy clusters [37,46,48]. The optimum number of
fuzzy clusters obtained will determine the number of fuzzy rules that conform to the
final fuzzy system.

(3) Each fuzzy cluster of the previous step is projected onto the space of the antecedents [46]
so that a fuzzy set is calculated for each antecedent variable in each fuzzy cluster.

(4) The obtained fuzzy rules are determined with numerical precision and also provide a
graphical way (Figure 1) that it is possible to interpret in natural language, where:

- The fuzzy set calculated for each variable (antecedent or consequent) is approxi-
mated by a trapezium (to facilitate the interpretation);

- The values of each variable are represented in the x-axis;
- The membership grade to each cluster is represented in the y-axis.

The obtained fuzzy rules in the generated fuzzy system perfectly could be used as
a fuzzy inference system to predict the expected value of the consequent from a set of
antecedent values. However, the main goal of this study is to obtain a qualitative model that
describes the relation of the variable “compressive strength” with the rest of the parameters
(Section 3.2) and not to predict values. Therefore, in this work, it was not necessary to
define a defuzzification method or the type of aggregation of rules.

It should be noted that, as can be seen in the previous example, the results of the
statistical analysis through fuzzy logic are represented in graphs (fuzzy rules). These
fuzzy rules reflect the antecedents and consequents in a clear and simple way, as well as
numerically. In this way, after analyzing all the data, it is possible to obtain this type of
graph that greatly simplifies the work of the reader; with a simple glance, it is possible to
know the cause–effect relationships that take place between the different variables.

In this study, the different variables related to the physical properties defined in
the methodology were those that were taken as antecedents, just being the compressive
strength the consequent. This analysis hypothesis was based on a fundamental principle, the
resistance of the formed geopolymer. For this reason, resistance was taken as a consequence
since it was desired to obtain a resistant material to be a substitute for ceramic materials
for construction. In this way, it was possible to evaluate what variation in the physical
properties occurred with the increase or decrease in the resistance, as well as how these
physical properties should be to obtain the greatest geopolymer resistance.

This study was carried out by applying fuzzy logic and data mining techniques
(PreFuRGe) [34]. This methodology was already used for data analysis in different fields
and with a multitude of consequent and antecedent variables, thus allowing for determining
the cause–effect relationships occurring between various variables in a simple, graphic and
fast way. Obviously, all these qualitative and quantitative relationships derived from the
analysis through fuzzy logic and data mining (PreFuRGe) are graphically represented as
a set of fuzzy rules and are studied in this work. Thus, it was possible to define which
physical properties should increase or decrease to achieve a greater resistance in the formed
brick dust and biomass bottom ashes geopolymers and vice versa.

3. Results and Discussion

The results of the tests, as well as their discussion, appear in this section in the same
order in which they have been presented in the methodology. These results from the
different conformed geopolymer samples (Figure 2) allow us to obtain a series of partial
conclusions that lead to the final conclusion, which is the evaluation of the viability of the
manufacture of geopolymers with brick dust and biomass bottom ash as substitutes for
traditional ceramic materials. The image of the different families of specimens is shown in
Figure 2.
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3.1. Statistical Summary

The statistical summary of the different data analyzed through descriptive statistics
with the Statgraphics Centurion XVI software version 16.2.04 from Statgraphics Technolo-
gies, Inc. (Virginia, USA) allows a first approximation of the information carried by the
variables, as well as knowing the quality of the results and the average values of the differ-
ent physical and mechanical properties. Therefore, these results are essential for a better
further interpretation of the fuzzy logic analysis and, in turn, essential to determine the
similarity or difference of the geopolymers formed with biomass bottom ashes and brick
dust with traditional ceramics. The statistical summary is shown in Table 2.

Table 2. Statistical summary of the data obtained from the tests to determine the physical and
mechanical properties of geopolymers.

Variables Average Standard Deviation % Variance Minimum Maximum

Weight loss, % 6.415 3.062 47.725 2.696 12.313
Linear shrinkage, % 0.157 0.131 83.683 −0.063 0.462

Capillary water absorption,
(g/m2min) 2966.169 1128.330 38.033 1636.612 4903.865

Cold water absorption, % 18.336 5.996 32.699 10.210 26.749
Boiling water absorption, % 19.152 4.033 21.057 13.931 25.986

Open porosity, % 29.828 8.640 28.967 17.468 42.458
Bulk density, g/cm3 1.648 0.072 4.374 1.524 1.776

Compressive strength, MPa 33.501 17.996 53.719 7.429 59.738

As detailed in Table 2, the first of the physical properties analyzed was weight loss.
The statistical summary shows that the data show discrete values with the exception of
the variance % for the linear shrinkage and the compressive strength, phenomena that are
explained by the fuzzy rules of this work and are the response of the geopolymer. The
average value of the weight loss in the formed geopolymers was 6.415%. Due to the fact
that the minimum and maximum weight loss of the geopolymers after the detailed geopoly-
merization process is 2.696% and 12.313%, it can be stated that this physical property is
very similar in traditional ceramics made with clay since these obtain a 9.536% weight loss
after the sintering process.

On the other hand, the linear shrinkage of the geopolymer families developed under
the described conditions shows a 0.157% average linear shrinkage. This value is much
lower than that obtained in traditional ceramics with clay (2.714%). However, it clearly
represents that the sintering process of ceramics creates a much more closed structure
since it is carried out at high temperatures. This fact obviously determines the subsequent
properties of the geopolymer.

In turn, the water absorption by capillarity had an average value of 2967 g/m2min
in the families of geopolymers formed with brick dust and biomass bottom ashes. On
the other hand, the water absorption by capillarity of the ceramics formed with the same
methodology described above has a water absorption by capillarity of 1700 g/m2min,
which shows that the geopolymer has a more open and interconnected pore structure that
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is capable of absorbing a higher percentage of water. However, the average values of water
absorption by capillarity are acceptable according to European regulations for ceramic
materials used in construction.

The cold water absorption tests, directly related to the boiling water absorption, re-
flected average values of both properties of 18.336% and 19.152%, respectively. For once,
a cold water absorption of 12.348% and a boiling water absorption of 13.574% existed for
traditional ceramics made with clay. Therefore, these results, together with the previous
property of water absorption by capillarity, demonstrate that the formed geopolymers
have a more open structure and a greater number of interconnected pores. This property
of geopolymers, even though it negatively affects the mechanical resistance of the mate-
rial, provides very interesting properties for the material, such as thermal and acoustic
isolation [49].

In turn, the average values of open porosity and bulk density for the formed geopoly-
mers were 29.828% and 1.648 t/m3, respectively. Values, as expected from what was
detailed above, are lower than those obtained in traditional ceramics. The ceramics made
with red clay obtained an average open porosity of 24.893% and an apparent density of
1.987 t/m3. Therefore, it can be confirmed that traditional clay-formed ceramics have a
much more compact structure, with less porosity, higher density and less capacity for water
absorption than geopolymers formed with brick dust and biomass bottom ashes. However,
these characteristics of the formed geopolymers can become interesting as long as their
mechanical resistance requirements are accomplished; therefore, the compression test was
carried out.

Finally, the geopolymer compression test reflected an average value of 33.501 MPa,
lower than that obtained for traditional ceramics made with the same process of 42.361 MPa,
but higher than the minimum limit set (10 MPa) by the regulations for this type of material.
Therefore, it can be concluded that the results obtained from the physical and mechanical
properties test of geopolymers are acceptable according to the regulations of ceramics
for construction.

It is worth noting that the maximum and minimum values of the different properties,
as well as the averages and the standard deviation, are acceptable according to the method-
ology followed to obtain the different families of geopolymers and for their further analysis
with fuzzy logic.

3.2. Qualitative Results: Fuzzy Rule-Based Systems

The biomass bottom ashes and brick dust formed geopolymer will serve as ceramic
material; therefore, it is necessary that this mechanical property be evaluated, as well as
the interdependence of other physical properties with the resistance. The results for the
different families of geopolymers formed with brick dust and biomass bottom ash are
represented in Figure 3.

According to the results obtained from the statistical summary of variables and for a
better understanding of the processes and results, the same datasets have been processed
by using the proposed fuzzy logic methodology [34], which allowed for establishing the
potential cause–effect relationships between the different variables under study, taking
compressive strength as a consequent and the rest of the variables as antecedents in the
obtained fuzzy rules (Figure 3).

In the first rule (upper row) of the obtained fuzzy rules (Figure 2), when compressive
strength takes extremely high values, it can be seen how the bulk density shows high to
extremely high values. At the same time, for the same compression value, the open porosity,
cold water absorption and boiling water absorption should present low to extremely low
values, identical behavior for these three variables. In turn, the absorption of water by
capillarity takes very concentrated values in the extremely low range, at the same time that
the mass loss and the linear contraction take concentrated values in medium ranges.
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The fact stated in the previous paragraph can be validated if the mechanical behavior
of the geopolymer is known, which means a higher apparent density will condition, under
equal conditions, a geopolymer that is more resistant to compression, which, in turn,
will have a lower porosity. Therefore, if the geopolymer has a lower open porosity, the
absorption of water by capillarity, cold water absorption and boiling water absorption
must also be lower due to the concept of porosity relative to the volume of holes compared
to the total volume of the sample in the study. In addition, and due to the fact that the
geopolymer was manufactured with waste, a greater weight loss implies the disappearance
of residual substances present in the spaces of the structure, obtaining a greater resistance
to compression. It should be noted that the linear contraction of the geopolymer during
the geopolymerization process also implies a higher apparent density once its volume is
reduced for the same mass and, consequently, a higher compressive strength.

This phenomenon, although evident, is validated by the numerical relationships
collected in the data mass that shape the matrix from which the set of fuzzy rules in
Figure 3 is obtained. Otherwise, it would have been difficult to establish the cause–effect
relationships that occur between physical properties and compressive strength in the
forming process.

Consequently, and as is evident in Figure 3, it can be stated that an increase in weight
loss during the geopolymerization process develops a geopolymer with greater mechanical
resistance since, as mentioned, residual compounds of the geopolymer are eliminated,
which impairs the geopolymerization process.

In turn, a higher linear shrinkage directly causes a higher bulk density, so the compres-
sive strength of the geopolymer increases. This fact is easily visible in Figure 3; note how as
one variable increases from rule to rule (row to row), so does the other and vice versa.

On the other hand, it must be stated that a greater porosity conditioned by greater
absorption of water by capillarity, cold water absorption and boiling water absorption
determines a lower resistance to compression. This fact is obvious once a higher pore
index is capable of absorbing a higher water percentage and, in turn, lowering the apparent
density that determines the compressive strength.

If Figure 3 is simplified to observe the trends of each variable based on the section
imposed by the consequent in 4 values from extremely low to extremely high, Figure 4
is obtained.
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Figure 4 globally represents the global behavior of the different variables or physical
properties based on the consequent compressive strength. This figure was designed taking
into account the antecedent’s variations as a function of the resistance, simplifying Figure 3
and directly showing the relationships occurring between the antecedents and the conse-
quent in a global way for all the variables as a whole, which allows us to “bird’s-eye view”
to check the proportionality, direct or inverse of some variables with respect to others.

Essentially, Figure 4 allows for immediately observing how the different variables in-
crease or decrease as the consequent does for the four sections imposed by the compressive
strength itself.

Therefore, it can be seen that weight loss, linear shrinkage and apparent density are
directly proportional to the increase in compressive strength, something that was expected
if the geopolymerization process and the characteristics of the mining waste used are taken
into account.

On the other hand, the open porosity, the absorption of water by capillarity, the
cold water absorption and the boiling water absorption are inversely proportional to
the compressive strength of the geopolymer; that is, if the variables mentioned decrease,
a higher compressive strength geopolymer is developed. Obviously, this relationship
between variables has an explanation since if there is a greater open porosity, there is also a
greater water absorption, demonstrating that the geopolymer has a more open and less
compact structure that makes it less resistant.

However, it should be noted that maximum resistance is not always necessary in the
construction sector, but other properties, such as thermal or acoustic isolation, are also
attractive, directly conditioned by a greater porosity and a lower apparent density. For
this reason, complying with the resistance limit established by the regulations for ceramic
construction materials of 10 MPa, various geopolymers can be obtained with specific
characteristics of acoustic isolation, resistance, exposure to the elements, etc., with only the
combination of various percentages of brick dust and biomass bottom ashes. In this way,
it is achieved with both waste materials and various specific characteristics for different
functions that are going to develop in their useful life.

Consequently, the novelty of the application of fuzzy logic techniques for the charac-
terization tests of geopolymer material allows the percentages of waste contributions to
be calibrated in order to achieve a balance between resistance, porosity, capillarity, acous-
tic isolation, etc., to cover the different market needs, always within limits imposed by
the regulations.

4. Conclusions

Based on the results obtained after the tests and the data treatment of the variables
that characterize the different families of geopolymers, made up of biomass bottom ashes
and brick dust, the following partial conclusions could be formulated, which, in turn, leads
to the definition of the final conclusion, covering the central objective of this work:
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• The statistical summary of variables showed the possibility of making geopolymers
with brick dust and biomass bottom ashes that have acceptable physical and mechani-
cal properties for their use as traditional ceramics since the results of the tests carried
out are similar to those of ceramics and respect the current regulations.

• Statistical analysis showed that the conformed geopolymers had a weight loss similar
to traditional ceramics. However, capillary water absorption, cold water absorption,
boiling water absorption and open porosity were higher in geopolymers than in
traditional ceramics, obtaining, in turn, a lower linear contraction, a lower density and,
consequently, a lower compressive strength of the geopolymers.

• The use of fuzzy-logic techniques and data mining was a pioneer in this work for the
characterization of geopolymers, revealing that it is an effective and highly defining
tool of cause–effect relationships in the search for a system functioning model subjected
to the different scenarios imposed by the variables.

• The data treatment with fuzzy logic techniques allowed the observation of how a
greater open porosity of the formed geopolymers implied a greater water absorption
by capillarity, a greater absorption of cold water and a greater absorption of boiling
water, producing, consequently, lower resistance to compression. In addition, the
increase in linear shrinkage produced an increase in the apparent density, which
obviously leads to a higher compressive strength.

• On the other hand, the analysis with fuzzy logic showed that the decrease in mass loss
was directly related to the decrease in the compressive strength of the geopolymer once
a greater mass loss is due to the elimination during the geopolymerization process
of all those superfluous chemical compounds that do not help to the geopolymer
formation process.

Finally, and based on the partial conclusions detailed above, it can be concluded that
it was possible to form geopolymers with brick dust and biomass bottom ashes from the
combustion of almond shells and “alperujo”, as substitutes for ceramics usually used as
construction materials, once these geopolymers have acceptable physical and mechanical
properties according to the regulations. On the other hand, it should be noted that the
analysis of the results of the different geopolymer tests through data mining and fuzzy-
logic techniques made it possible to clearly establish the relationships between the various
physical properties and compressive strength in a clear and objective way, allowing to
obtain a wide range of materials with specific properties with just a combination of different
percentages of both residues.
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