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Abstract: Additive manufacturing (AM), also known as 3D printing, was introduced to design
complicated structures/geometries that overcome the manufacturability limitations of traditional
manufacturing processes. However, like any other manufacturing technique, AM also has its lim-
itations, such as the need of support structures for overhangs, long build time etc. To overcome
these limitations of 3D printing, 4D printing was introduced, which utilizes smart materials and
processes to create shapeshifting structures with the external stimuli, such as temperature, humid-
ity, magnetism, etc. The state-of-the-art 4D printing technology focuses on the “form” of the 4D
prints through the multi-material variability. However, the quantitative morphing analysis is largely
absent in the existing literature on 4D printing. In this research, the inherited material anisotropic
behaviors from the AM processes are utilized to drive the morphing behaviors. In addition, the
quantitative morphing analysis is performed for designing and controlling the shapeshifting. A
material-process—performance 4D printing prediction framework has been developed through a
novel dual-way multi-dimensional machine learning model. The morphing evaluation metrics, bend-
ing angle and curvature, are obtained and archived at 99% and 93.5% R?, respectively. Based on the
proposed method, the material and production time consumption can be reduced by around 65-90%,
which justifies that the proposed method can re-imagine the digital-physical production cycle.

Keywords: self-morphing; quantitative morphing analysis; thermos-responsive; autonomous design

1. Introduction

Additive manufacturing (AM) is an easy-to-use technique that deposits materials
layer-by-layer to create three-dimensional objects [1-3]. Compared with the traditional
subtractive manufacturing processes, additive manufacturing provides more flexibility
in the design, so that it can be widely used in the aerospace and automotive industries.
However, in the digital-physical production cycle (shown in Figure 1), the as-built geometry
always requires the use of support structures for the overhanging features. The final as-built
3D model in Figure 1 contains the model and the support volumes which need to be further
post-processed. As a result, regardless of the benefits, such a layer-by-layer deposition
method also requires additional post-processing steps, long building time, and poor surface
finishes, specifically for the freeform surfaces.

To extend the use of 3D-printed objects, a fourth temporal dimension is added to 3D
printing called 4D printing. With the additional dimension of time, 3D-printed objects are
exposed to certain environmental stimulants, such as temperature, light, humidity, pH, and
magnetism [4], to achieve the shape-morphing behavior. Due to its dynamic nature, 4D
printing can be used in self-deployable systems, soft robotics, biomedical applications, etc.

Based on the variety of end-use applications, various smart materials [5], such as
SMPs (Shape Memory Polymers), Hydrogels, and Magnetic nanoparticles, can be deployed
on fused filament fabrication (FFF), stereolithography (SLA), and material jetting AM
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processes. The 3D-printed shapes are normally flat and simple, while they can be deformed
to certain complex geometries due to the material behavior under different environmental
stimuli. However, certain issues still hinder the major adoption of this technology: (1) lack
of robustness in production; (2) the self-morphing process cannot be simulated and is un-
predictable; and (3) only monolith shapeshifting is presented on whole 3D-printed objects.
This paper investigates thermos-responsive self-morphing designs and performance using
a novel machine learning model to measure the deformation quantitatively.

BUILD PLATFORM

Pre-Processing Printable File AM Process As-Print Model
Software

Figure 1. Traditional AM, 3D printing, workflow—from digital to physical.

Smart materials that respond to external stimuli by changing shapes and sizes are
among the most popular 4D printing applications. Among these smart materials, SMPs are
the most widely used and easy to work with, as they can trigger shape change through heat
or solvent stimuli. One of the examples is the water-responsive SMPs-hydrogels, which
have been used as 4D printing materials when exposed to water. The other type of SMPs is
thermo-responsive and can deform through heat/temperature. Besides the smart materials,
the other widely used 4D technologies rely on multi-material printing by utilizing the
different thermos-mechanical behaviors to achieve shapeshifting. In contrast, some other
researchers [6] programmed the manufacturing patterns on a single material to achieve the
anisotropic behavior for morphing. However, these 4D printing production approaches are
based on a random design using trial and error methods, which lack robustness control.
Furthermore, to analyze the deformation due to the various sources of the environmental
simulants, some finite element analysis (FEA) [7] uses the material distribution per layer,
but this process is costly and needs huge computational power and lacks control over the
shape-change. Therefore, a deep understanding of the intersection of the process and the
resultant performance for the self-morphing behavior is urgently needed. The developed
process—performance framework can provide dual-way informing and guiding of the 3D
print shapes and their associated deformation. A comprehensive digital-to-product 4D
printing manufacturing process is presented in Figure 1.

Figure 2 first presents a production workflow from a three-dimensional digital design
to the physical 3D product through the traditional material deposition process. Specifically,
the inherited anisotropic behavior of 3D-printed parts is utilized to achieve shape-morphing
behaviors since the various printing patterns develop different strains on distinctive layers.
The cross-layer strain variation ultimately causes the thermos-mechanical morphing mat-
ters. In this process, the critical aspects from the AM process parameters that will produce
the structural anisotropic behaviors will reflect on the cross-layer strain level, which is
the major driving factor of the morphing performance. Thus, a computational knowledge
system that quantitatively measures the shape-morphing performance from the various
process parameters is proposed in this paper.

3D Digital Object = AM Process =y As-built === External Stimuli == After-Morph

Print Pattern - o
Layer Thickness :é Activation

Temperature X =)l Temperature

Speed...

Figure 2. Thermo-responsive Self-morphing Design-Product Overall Workflow.
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Previous studies [8] have discovered that there exists a cause—effect relationship
between the orientations of the AM hatch lines and the thermo-mechanical strain. In
addition, the inverse-proportional qualitative study between the layer thickness and the
strain has been investigated. In this research, a machine learning process—performance
model has been developed to serve as a surrogate model to: (1) forwardly predict the
freeform deformation from the defined process controlling variables and (2) backwardly
guide the AM-ed three-dimensional digital model based on the desired after-morphing
shapes. The overall insight into the proposed method is shown in Figure 3.

Pre-Morph l

Print Pattern | Layer Thickness | Print Speed | Bending Angle | Curvature
X1,i X2, X3, Vi Y2,
X1,j X2,j X3,j Y1,j Ya,j
X1,k X2,k X3,k Y1,k Y2,k

Figure 3. Overview of the proposed process—performance model.

2. State-of-the-Art Review

There are various approaches used to achieve 4D printing. This section narrates the current
thermos-responsive 4D printing mechanism and the anticipated morphing behaviors.

Zhang et al. [9] used thin, printed composite sheets made of paper and PLA, triggering
shape transformation due to a difference in the coefficient of thermal expansion. They used
a trial-and-error method for determining the self-morphing shapes. Kacergis et al. [10] con-
structed a composite bilayer structure consisting of PLA and TPU to achieve a self-bending
hinge. It has been discovered that the printing speed is directly proportional to the strain de-
veloped, thus there is more deformation with an increase in printing speed. Tomec et al. [11]
used wood-PLA (made by mixing different amounts of wood particles and PLA) with
regular PLA to generate moisture-induced shape morphing. Using multi-material 3D
printing technology, these composite structures can achieve a multistage deformation based
on the combinations of two or three materials. Hence, a lower cost and robust real-life
alternative is a challenge for this technology. Van Manen et al. [12] first presented a tech-
nique that used multiple design strategies to achieve complex 3D shapes, and varying
thicknesses were integrated with the porosity of the constructs to program adjustable time
delays for sequential shapeshifting. This simple and versatile method was able to deform
the structures into the desired shape under stimuli. With a similar idea, Zheng et al. [13]
used a hydrogel-based layered structure and designed a four-arm griper with considerable
holding force. The printing direction was used to control the swelling direction of the
hydrogel. Considering the influence of printing parameters, several FE methods were de-
veloped to control the deformation of the bilayer structure. Bodaghi et al. [14] investigated
directly engineering the performance-driven functionality into materials with the help of
printing parameters for 4D printing that affect the layer-by-layer programming process
and shape-change, such as printing speed and liquefier temperature. They then used finite
element (FE) formulation to generate functionally graded polymer beam strips that show
self-coiling behavior in a controllable manner. Again, in 2019, Bodaghi et al. [15] used
FDM printers to fabricate adaptive composite structures to achieve self-foldable structures
using their thermomechanical properties and printing parameters. They investigated only
the printing speed in detail, used the FE method to simulate the results, and created a
self-coiling flower shape. Wang et al. [16] used FE analysis to predict the deformations
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of a monolayered SMP using the FE governing equations. They were able to preprogram
self-folding origami structures using their simulation method. However, this method
used monolayered structures and cannot be used to explain the effect of multiple layered
prints with varying print parameters. Bouaziz et al. [17] conducted experimental tests to
establish a constitutive Finite Element model to describe the thermomechanical cycle of
a semi-crystalline shape memory polyurethane (SMPU) that can recover its shape after
applying large strain during a shape memory cycle. The model was good at explaining
hyper-elastic and time-dependent responses of both semi-crystalline and amorphous SMPs.
However, due to material properties, the FE method can only be reliable for deformations.
Various similar research was conducted for better-controlled deformation using FE models
considering the influence of printing parameters, such as plate thickness [18], printing
speed [19], and the printing direction [20]. These studies mostly focused on the effect
of a single printing parameter to achieve shape morphing properties. A huge amount
of computational power is needed for multiple variations of printing parameters, which
is computationally inefficient. Zeng et al. [21] provided a method for programming the
deformation of a bilayer structure with temperature as the actuating factor by studying
three types of deformation behavior and creating a constitutive model using five printing
parameters, namely, the print height, the print temperature, the filled form, and the stim-
ulation temperature. Choi et al. [22] used dual layer SMPs to achieve 4D printing using
materials that exhibit different expansion and found a method to achieve a perfect cylinder
using a composite bilayer beam by ethanol absorption as a stimulant. Wang et al. [23]
investigated the effect of nozzle temperature, filling angle, and geometric thickness on
the shape memory properties of PLA. They found out that nozzle temperature and filling
angle apparently affected shape recovery time and shape recovery force, respectively, while
geometric thickness affected both recovery time and force simultaneously. Saad Y. et al. [24]
found out that different bending deformations can be generated using patterns with shapes
(circles, squares, hexagons, rhombuses, and triangles) of different sizes. These patterns
of variable stiffness can be used in the actuators to control their degree of bending. They
tested a total of five bio-inspired shapes. Rajkumar et al. [25] worked on quantifying and
understanding the Fused Filament Fabrication (FFF) process parameters, mainly print-
ing speed, print path, and infill density for three different printing materials, PLA, ABS,
and HIPS. Bona Goo et al. [26] developed a 4D printing method using the anisotropic
deformation of 3D-printed parts with thermal stimuli. A single thermoplastic filament
(ABS) and a ME-type 3D printer were used. Transverse and longitudinal printing paths
were used to program thermal anisotropy in a bidirectional manner to achieve 4D printing.
Nezhad et al. [27] created a model to predict the morphing shape using a semi-empirical
approach. They utilized printing speed, layer thickness, nozzle temperature, and raster
angle as their process parameters. They only tested a few combinations of raster angles, and
their proposed model is noncomprehensive in explaining the effect of raster angles on the
deformation parameters. Song et al. [28] used the difference between the thermal expansion
of bilayer structures that are mismatched due to the nature of the printing process and
the print angles as the printing parameters. This mismatch in the coefficient of thermal
expansion was then used to create a reduced bilayer plate model based on the coefficient
of thermal expansion. This method could not fully explain more complex situations and
could not relate simulation parameters with printing parameters. Other researchers have
found that the process variant affects the as-built qualities [29-39]; they have indicated that
the process plays a significant role in determining the anisotropic mechanical behaviors.
However, there still lacks a linkage between such effects and morphing behaviors.

A multitude of research has been conducted on utilizing the printing parameters as
the control factors for 4D prints. However, a review of the previous literature suggests that
extensive research in constructing a simple constitutive model to explain the deformation
behavior of a 3D-printed bilayer structure utilizing multiple printing parameters seems to
be lacking.
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3. Experimental Setup

The samples were 3D printed using a fused filament fabrication (FFF) process (Dremel
3D45; Dremel Manufacturing Co., USA), and Eco-ABS (Acrylonitrile Butadiene Styrene)
filaments (Diameter = 1.75 mm) were adopted as the printing filament. The mechanical
and thermal properties of Eco-ABS are shown in Table 1.

Table 1. Material Properties of Eco-ABS.

Properties Values
Density 125 g/cm3
Thermal Expansion Coefficient 68 um/m-K
Ultimate Tensile Strength 58 MPa
Glass Transition Temperature 78 °C

Having an enclosed printing chamber with a constant temperature, the bed temper-
ature and nozzle temperature of the 3D printer were set to 60 and 230 °C, respectively.
Generally, for extrusion-based printers, the raster angles are set to 45° or 135° for achieving
a high-strength polymer AM-ed component. This research focuses on exploring the inher-
ited anisotropic behaviors; thus, a combination of raster angles was chosen for a bilayer
rectangular sheet of size 25 x 50 mm. In addition, the layer thickness and printing speed
were designed at different levels for analyzing the intercorrelated morphing effects. The
varied AM-ed processing variables are shown in Table 2.

Table 2. AM-ed Processing Variables for Designing the Morphing Samples.

Parameters Range
Path-layering Orientation (0, 15, 30, 45, 60, 75, 90)
Layer Thickness (0.1,0.2,0.3,0.4)
Speed (20, 25, 30, 40)

Temperature was used as the stimulation method for this project. Bilayer-printed struc-
tures were immersed in hot water of 80 °C after printing, and the hot water was left to cool
down to room temperature so that the after-morphed shape could be maintained. After the
water cooled down to room temperature, the samples were removed from the water bath.
The deformed bilayer structures were then measured for Bending Angles and Curvatures
which are the two indicators for the morphing performances. As a measure of curvature,
the curvature normal was obtained from the surface topology that is perpendicular to the
axis of bending. Bending Angle describes the axis of inclination of the bending.

Morphing Performance Measurements

The deformed bilayer structures were laid flat, Bending Angles were measured based
on the contacting points of the freeform structures and the flat surface. The inclination
angle (x) was recorded as the first morphing indicator. These angles for each sample were
measured in a counterclockwise direction, as shown in the figure below. Curvature normal
were obtained from the pictures of the deformed bilayer structures. The pictures were cap-
tured at an angle that was perpendicular to the bending orientation. The obtained shapes
were then processed for the curvature normal. The curvature indicator was obtained from
the consecutive curvature normal. These curvature indicators were then used to develop a
machine learning model that can quantitatively predict the morphing responses when the
AM-ed parameters are taken as inputs. The curvature indicators’ measurement process is
shown in Figure 4.
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Figure 4. Bending Angle Measuring and Curvature Measurement Workflow.

4. Methodology

The collected data which represent the outputs, Bending Angle (y,), and curvature
normal (1) were then analyzed using regression analysis and artificial neural network
model, respectively. The Gaussian process regression model was first adopted to describe
the intercorrelated relationship between the morphing prediction controllers (thickness,
printing pattern, and speed) and the Bending Angle. Gaussian process regression (GPR)
can model a nonlinear relationship between variables. It is a type of Bayesian regression
that uses a Gaussian distribution to model the uncertainty of the predicted values. GPR is
well-suited for problems where the data are too small to fit a traditional linear model, or
where the relationships between the variables are too complex to be captured by a linear
model. Additionally, GPR provides a measure of uncertainty for the predicted values,
which is important for making informed decisions. The regression function modeled by a
multivariate gaussian is given as:

P(fIX) = N (f|nK)

where X = [x;,x, ..., %), f = (f(x1), ... f(xn));u = [m(xy, ..., m(x,))] and
Kij = k(x;, ;). X are the observed datapoints, 7 represents the mean function, and
k represents a positive definite kernel function. With null observations, the mean function
is defaulted to be m (X) = 0, provided the data are often normalized to a zero mean. The
Gaussian process model is a distribution over functions whose shape (smoothness) is
defined by K.

The predictive equations for GPR can be described as: fi|X,y, X, ~ N (ﬁ, cov( f*))

where , 2 E{E‘X, v, X} =K' [K+021] 'y, coo(f.) = Kew — KT [K+021] K.

It can be noted that in the variance function cov(f.) does not depend on the observed
output y but only on the inputs X and X, [40]. The basic Gaussian distribution functions
are usually chosen to be orthogonal, so that the model can be efficiently computed. The
parameters of the Gaussian process are the mean and covariance of the basic functions.

A Levenberg-Marquardt training algorithm [41] was applied to the neural network
model with 15 hidden layers for predicting the quantitative morphing degrees—curvature.
A total of 15% of the data were set for validation and 15% of the data were used for testing,
the remaining data were used for training. The Levenberg—-Marquardt algorithm blends
the steepest descent method and the Gauss—Newton algorithm. It performed well in this
proposed research, since it can converge well even if the error surface is much more complex
than the quadratic situation. Sum square error (SSE) is defined as E(x, w) = % Y Zep,mz

p m

to evaluate the training process, x and w represents the input and weight vectors, ey
indicates the training error which can be defined as epm = dp,m — 0p,m- d and o are the
desired and actual output vector—curvature.

5. Results

Several bilayer structures with two layers in different printing directions, print speed,
and layer thickness were fabricated, keeping other parameters constant, and the same shape-
morphing stimulant temperature was applied. Based on the Bending Angle prediction
model, the experimental validation is presented in Figure 5. The printing parameters for
the test samples are shown in Table 3. The corresponding samples were tested under the
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same conditions as the training samples. The dark line represents the experimental results,
and the blue line represents the result from our prediction model.

Minimum

Bending Angles

Maximum

1 2 3 4 S 6 7 8 9 10 11
Test Sample Number
== Experimental Predicted

Figure 5. Morphing Bending Angle Prediction and Experimental Deviation.

Table 3. Experimental Validation Samples Parameters.

Sample Number 1 2 3 4 5 6 7 8 9 10 11
Thickness (t;) 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.3 0.4 0.3 0.3

Layer 1 Print Angle (61) 45 0 10 65 35 80 25 25 10 35 5
Print Speed (s1) 25 25 25 25 25 25 25 25 25 25 25

Thickness (tp) 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2

Layer 2 Print Angle (6) 10 45 65 85 50 35 40 70 65 60 40

Print Speed (sp) 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5

In Figure 5, the minimum and maximum prediction errors are indicated on the graph.
The bending angle prediction model based on the three controlling factors (layer thickness,
printing pattern, and speed) also presented a R* = 0.9987 which verifies the effectiveness
and accuracy of the model.

Curvature, the other indicator of the self-morphing performance, has been predicted
using the artificial neural network model, and the R? are presented in Figure 6 based on
the training, validation, and the test data. The neural network framework is defined by the
training data. The number of layers and neurons are determined by the number of data
points in the training set. The input layer will be connected to the output layer, and the
hidden layers will be connected to the input layer and the output layer. The neurons in
the hidden layers will be connected to each other. The weights of the connections will be
determined by the training data. The overall R? = 0.93 which also shows that the neural
network model provides the sounding results.

The curvature analysis is also verified through the experimental validation, the com-
parison between the prediction and the experimental are shown in Table 4.
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Training: R = 0.95589 Validation: R =0.8806

= O Data fe) 12 O Data

Fit

4
4 6 8 10 12
Target
Test: R =0.92862 All: R =0.93553
10 O Data (()) o s O Data fe)
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4 o

4 6 8 10 4 6 8 10 12 14

Target Target

Figure 6. Neural Network Model R? values for test, training, validation, and all data.

Table 4. Curvature comparison based on the prediction model and the experimental analysis.

Sample Number 1 2 3 4 5
Layer 1 Thickness 0.4 04 0.3 0.3 0.3
Print Angle 25 10 25 35 5
Print Speed 25 25 25 25 25
Layer 2 Layer Thickness 0.2 0.2 0.2 0.2 0.2
Print Angle 40 65 70 60 40
Print Speed 27.5 27.5 27.5 27.5 27.5
Measured Curvature 6.91 12.97 6.82 6.74 5.35
Predicted Curvature 7.35 11.81 6.81 5.96 5.71
Deviation % 6.32 8.94 0.15 11.61 6.8

As we can see, the predicted values for curvature are consistent with the corresponding
experiments, proving the validity of the NN model.

With the proposed 4D-printing strategy, various complex shapes can be created
through the self-morphing production cycle based on simple AM-ed geometries. These
4D-printed shapes can reduce material usage, specifically on the support materials, and
the production time. Based on the two prediction models, we can control the specific
morphing shapes and also guide the initial AM-ed flat structure designs. In addition,
the “flat structure” after the stimulation condition can also be introduced through the
anisotropic-canceling behavior at the bi-layer model, as shown in the last column of Table 5.
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Other as-desired complex three-dimensional surface models are provided in the first row
in the table, and the associated 3D prints are shown in the second row. All blue-colored
volumes are the supports, which need to be removed later. The specific design of the AM-ed
flat model and the processing conditions are presented in the table. The after-morphing
performance of these designs are presented in the last row.

Table 5. AM-ed Structures for Self-morphing Applications in comparison to Traditional 3D Prints.

Single-Fold Petals

Two-Fold Petals Twisted Flower

Double-Sided Fold

Flat Structure

Desired shape

3D Printable Data
(Blue — Supports;
Red - 3D Model)

4D Print Design

4D Print Process

EIE]
TICEIC

After-Morphed

\JA

SNG4

For the structures shown in the table above, the production time, volume, and material
usage can be significantly reduced, and the quantitative reduction analysis are presented

in Table 6.

Table 6. Production time, volume, material usage reduction from the presented 4D-printing method.

Print Time (min)

Volume (mm?)

Material Usage (g)

3D 44.00 28,514.40 3.00

Two-Fold Petals 4D 10.00 6000.00 1.00
%Red —77.27% —78.96% —66.67%

3D 77.00 37,135.60 6.00

Double Sided Fold 4D 8.00 1200.00 1.00
Y%Red —89.61% —96.77% —83.33%

3D 73.00 27,922.50 6.00

Single Fold Petals 4D 10.00 4399.44 1.00
%Red —86.30% —84.24% —83.33%

3D 57.00 70,599.29 4.00

Twisted Flower 4D 10.00 4399.44 1.00
%Red —82.46% —93.77% —75.00%

From our obtained results, the key distinctions between the proposed method [40] and
the existing literatures are:

1.  Integrate the morphing physics with the performance quantitatively;
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1) As-print through
programmed structure
& process

2. Multi-functional/degrees of morphing demeanor can be performed through single-
material FDM process;

3. Reverse design of the 3D-printed structure and appropriate process condition can be
obtained when the desired after-morphing complex shapes are provided.

The programmed electronics are presented as a further application to present the
capability of the proposed 4D-printing process. Current circuit printers are known to
deposit conductive inks on a flat/planar surface. This hinders the design complexity of
electronic devices. However, the conductive ink can be deposited to the pre-morphed
shapes and activated through the environment to ultimately achieve complex geometries.
Figure 7 presents a box-like circuit structure through the proposed methodology.

e ————)

2) Conductive Ink Deposition 3) After-morphed 4) Box-like Circuit

Figure 7. Box-like Circuit Design through the proposed programmable self-morphing method.

6. Conclusions and Discussion

Anisotropic behavior is exhibited when a material responds differently to stress de-
pending on the direction of the applied force [5,9]. In the case of 3D printing, this can
be seen when printing objects with a deposited path. When the filaments that are not
aligned colinearly cross different layers, the object will have nonuniform properties. The 4D
printing takes this a step further by using the anisotropic material behaviors that respond
to environmental stimuli, such as heat or light [12,42,43]. This allows for objects that can
change shape or even self-assemble based on the conditions around them.

Based on the proposed self-morphing method, the 4D printing performance can be
predicted quantitatively by understanding the relationship between the printing parameters
and the printing geometry. By adjusting the printing speed, layer thickness, and print
pattern, the morphing behaviors of the printed object can be controlled. With these factors
accounted for, the AM-ed flat structures and the associated processing conditions can be
determined based on a set of given as-desired freeform surface models. Bending angle and
curvature are selected as the morphing performance indicators, the R? achieves 99% and
93.5%, respectively. This hence justifies that the proposed 4D printing technique has a high
repeatability and reproducibility to achieve the complex freeform geometries in a timely
and robust manner.
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