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Abstract: Fully bio-based adhesives are beneficial to reduce the dependence of the wood adhesive
industry on synthetic resins based on petrochemical resources and enhance the market competitive-
ness of adhesives. A fully bio-based wood adhesive composed of tannin and sucrose was developed
and successfully used in the preparation of plywood. Effects of the preparation technology on
the bonding strength and water resistance of plywood were investigated, and the properties of
the adhesive were analyzed by Fourier transform infrared spectroscopy (FT-IR), thermogravimetry
(TG) and X-ray diffraction (XRD) in this study. The results showed that: (1) Compared with other
biomass adhesives, tannin–sucrose adhesive had the characteristics of high-solid content and low
viscosity, which had the potential to prepare particleboard and fiberboard. (2) A proper mass ratio
of tannin to sucrose was key to obtaining a tannin–sucrose adhesive with better properties. (3) The
optimum preparation process of tannin–sucrose adhesive for plywood was as follows: hot-pressing
temperature of 210 ◦C, hot-pressing time of 1.2 min/mm, m(tannin):m(sucrose) of 60:40 and adhesive
loading of 160 g/m2. Under these conditions, the water-resistant bonding strength of the plywood
was 0.89 MPa, which met the strength requirements of the Type II standard of plywood in GB/T
17657-2013. (4) The hot-pressing temperature played a decisive role in the tannin–sucrose adhesive,
and the good performance of the plywood was maintained when the temperature was 210 ◦C or
above. Thus, the prepared tannin–sucrose adhesive had high-bonding strength, good water resistance
and thermal stability.

Keywords: green manufacturing for plywood; tannin; sucrose; fully bio-based wood adhesive

1. Introduction

The adhesives used in the wood-based panel industry are predominantly formaldehyde-
based adhesives, with the usage amount accounting for 60–70% or higher of the total
adhesive usage [1–4]. Formaldehyde-based adhesives have a very prominent social and en-
vironmental disadvantage, namely, formaldehyde is released during adhesive preparation
and use as well as the preparation of wood-based panels made with such adhesives, thus
endangering the environment and human health [5–7]. With the continuously rising price of
petrochemical products and the increasing enhancement in people’s environmental aware-
ness, the development and application of bio-based adhesives have aroused increasing
attention and related research reports into tannin-based adhesives [8,9], soy protein-based
adhesives [10–14], lignin-based adhesives [15–18], etc. In early works, plywood produced
using bio-adhesives had problems of low-bonding strength and poor water resistance.
Subsequently, formaldehyde-based resins were used for modification. However, the intro-
duction of formaldehyde, a toxic substance in formaldehyde-based resins, greatly reduced
the environmental protection characteristics of biomass adhesives, at the cost of sacrificing
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its own environmental advantages, the pursuit of superior performance [19–21]. Therein,
tannin-based adhesives have been most successfully investigated and applied and have
slowly been applied in industrial production in some countries. According to chemical
composition, tannin can be divided into hydrolysable tannin and condensed tannin, where
the former is characterized by low yield and reactivity with formaldehyde and non-high
polymer structures. Condensed tannin is the current focus of tannin utilization and one of
the main materials studied for wood adhesives. Condensed tannin is mainly formed by
polymerizing flavonoids in different bonding forms, such as C4-C8, C4-C6 and C2-O-C7.
The B ring generally does not participate in reactions [22–25], so the reactivity of condensed
tannins is mainly attributed by the reactivity of the A ring (Figure 1). According to the
presence/absence of C5 site of the A ring, the structural units of condensed tannins can be
divided into resorcinol-A ring type and phloroglucinol-A ring type.
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With a polyphenolic structure similar to phenol, tannins can substitute partial or
all phenols in phenol–formaldehyde resin adhesives and react with formaldehyde to act
upon wood adhesives. Rightly based on this account, tannin-based adhesives constitute
another application field of tannins in addition to the leather-making industry and have
been successful applied to industrialized production in countries rich in tannin resources,
such as South Africa.

Common tannin-based adhesives can be prepared very simply, only needing to add
formaldehyde in the tannin solution before hot-pressing, but the prepared adhesives face
various problems such as a low degree of crosslinking, low-bonding strength, and poor
moisture resistance, which are mainly ascribed to their large molecular weight, specifically,
the viscosity significantly increases and fluidity is lost if a there is a low polycondensation
degree in the tannin–formaldehyde reactions, and consequently, distant reactive sites
remaining in tannin molecules from each other, thus failing to form methylene bonds. To
prepare environmentally friendly tannin-based adhesives, the environmental protection
property of bond bridge growth catalysts is of great importance, mainly concentrating on
epoxy resins, polyamides, isocyanates, etc. [26–29]. Although the mechanical properties
and water resistance of modified tannin-based adhesives are considerably improved, these
modifying agents are still based on petrochemical products, and if introduced in sufficient
quantity, the original intention of the research on tannin-based adhesives is obviously violated,
so they cannot be called pure-biomass environmentally friendly tannin-based adhesives.

Zhao reported a tannin–sucrose adhesive used to prepare particleboard [30–32]. One
of the important processes for biomass transformation and the utilization of glucose lies in
the sucrose-catalyzed conversion and synthesis of furan aldehydes, such as hydroxymethyl
furfurals. Accordingly, it was thought that the successful preparation of tannin–sucrose
adhesives could be derived from the reaction between tannin and hydroxymethyl furfurals.
Tannins can be divided into hydrolysable tannins and condensed tannins, where the former
is rich in polyphenolic acids, which are natural acids capable of forming H+ through
ionization in aqueous solution. The main components of condensed tannins are flavanols
and their derivatives, the former of which contain polyphenolic structures similar to
phenols with more phenolic hydroxyl groups. Moreover, they can form H+ through
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ionization in aqueous solution so as to form relatively stable quinone structures, thus
presenting acidic properties [33–35]. Hence, H+ ionized by tannins provides a certain
acidic environment for the adhesive system, which contributes to the crosslinking reaction
with sucrose. Although Zhao’s study fully indicated that tannin–sucrose adhesives could
successfully prepare particleboard, plywood and particleboard were not totally the same in
terms of the requirements for adhesives, including molecular weight, polycondensation
degree, crosslinking density, adhesive loading, etc. On this basis, plywood was prepared
using tannin–sucrose adhesives, and the feasibility of preparing the plywood with tannin–
sucrose composite adhesive and the preparation technology were studied in this paper. In
this study, the emphasis was to explore the effect of the tannin–sucrose mass ratio on the
performances of tannin–sucrose adhesive, as well as an appropriate preparation technology
for plywood, aiming to lay the foundations for the research and development of fully
biomass-based wood adhesives.

2. Materials and Methods
2.1. Materials

Waxberry tannin (160 meshes, industrial grade) was obtained from Guangxi Wuming
Tannin Extract Plant Co., Ltd. (Nanning, China) Sucrose (99.0%, analytically pure) was
obtained from Chengdu Jinshan Chemical Reagents Co., Ltd. (Chengdu, China). Dode-
cylbenzene sulfonic acid (SDBS, >90.0%, analytically pure) was purchased from Tianjin
Fengchuan Chemical Reagent Co., Ltd (Tianjin, China). Distilled water was made in the
laboratory. Poplar veneer (moisture content of 8–10%), which was bought from Shuyang,
Jiangsu, with a length × width of 400 mm × 400 mm and thickness of 1.5 mm.

2.2. Preparation of the Tannin–Sucrose Adhesives and Plywood and the Test of the
Bonding Strength

At room temperature, distilled water, tannin and sucrose were added into a round-
bottom three-mouth flask equipped with a mechanical stirring rod, a thermometer and a
condenser pipe, and was stirred evenly. Subsequently, 0.3 g of SDBS was added and stirred
for 5 min. The formulations are listed in Table 1. The solid content, viscosity, and pH of the
adhesives was determined with reference to the GB/T 14074-2017.

Table 1. The formulation of tannin–sucrose adhesives.

Samples Tannin/g Sucrose/g Water/g

100:0 50 0 33.3
80:20 40 10 33.3
60:40 30 20 33.3
50:50 25 25 33.3
40:60 20 30 33.3
20:80 10 40 33.3
0:100 0 50 33.3

The three-layer poplar plywood made in the laboratory had the dimensions of
400 mm × 400 mm. After adhesive loading (single-sided adhesive consumption: 220 g/m2),
the plywood was assembled and cold-pressed for 10 min, placed in a drying oven at 80 ◦C
for 1 h, and then rapidly taken out for hot-pressing at 220 ◦C, a pressure of 1.2 MPa, and
a time of 1 min/mm. The prepared plywood was cut into 100 mm × 25 mm samples.
Three plywood samples were used in each experiment. In accordance with the national
standard of GB/T 17657-2013, the dry and wet bonding strengths (testing method for type
II plywood) were tested, and the final strength was calculated from the average value of
24 specimens.
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2.3. Orthogonal Experiment

Given that the bonding performance of the plywood was closely related to the
hot-pressing processing parameters, the temperature, time, adhesive loading, and
m(tannin):m(sucrose) were taken as four test factors and the wet bonding strength as
the measurement index to design the experiment according to an orthogonal table L16(44)
(Table 2).

Table 2. The orthogonal experiment design.

Levels
Factors

Hot-Pressing
Temperature/◦C

Hot-Pressing
Time/(min/mm)

Adhesive Loading
/(g/m2) m(Tannin):m(Sucrose)

1 200 1.0 140 60:40
2 210 1.2 160 50:50
3 220 1.4 180 40:60
4 230 1.6 200 30:70

2.4. Insoluble Substances Rate in Cured Adhesives

The adhesives were placed in tin foil and dried in a thermostatic ventilation oven at
60~70 ◦C [36]. Then, the adhesive was taken out, ground and passed through a 200-mesh
sieve to obtain the adhesive powders (also used to test the curing performance of the
tannin–sucrose composite adhesives). 2.0 g of the adhesive powders were taken, dried
in a thermostatic ventilation drying oven at 220 ◦C for 12 min, and then taken out and
ground into powders (also used to test the chemical structure, crystallization properties
and thermal performance of the tannin–sucrose composite adhesives). m0 of the sample
powders were wrapped using filter paper, soaked in water at 63 ◦C for 6 h, and dried in a
thermostatic drying oven at 120 ◦C. The masses of the obtained powders were calculated
as m1. Finally, the insoluble content of the adhesive curing products was calculated from
the average value of 8–10 samples.

2.5. Fourier Transform-Infrared (FT-IR) Spectrometry

The test was performed using a Varian 1000 (Varian, Palo Alto, CA, USA) IR spectrom-
eter, in transmittance test mode with a wavenumber range of 400~4000 cm−1, resolution
of 4 cm−1, scanning time of 32, indoor temperature of 22~25 ◦C, and a relative humidity
of ≤60%.

2.6. Thermogravimetric (TG) Analysis

The TG 209 F3 thermogravimeter produced by German NETZSCH was used for
TG analysis under a N2 atmosphere at a heating rate of 10 ◦C/min within the range of
30–700 ◦C.

2.7. X-ray Diffraction (XRD) Analysis

The tests were carried out using a TTR XRD (Tokyo, Japan) with a Cu target (λ= 0.154060 nm),
a 2θ scanning interval of 5–80◦, a step size of 0.02◦, a scanning rate of 5◦/min, a tube current
of 120 mA, and a tube voltage of 40 kV.

3. Results and Discussion
3.1. The Effect of Pre-Drying before Hot-Pressing on the Bonding Performance of Plywood

Figure 2 shows the effect of different pre-drying times in the oven at 80 ◦C before
hot-pressing on the bonding performance of the plywood. The dry bonding strength and
wet bonding strength of plywood without the heat treatment were 2.08 and 0.98 MPa,
respectively. As the heat treatment time increased, the dry and wet bonding strengths
presented an increasing trend, reaching the maximum values of 2.42 and 1.09 MPa, at
3 h with an increase of 16% and 11%, respectively. The moisture content of the plywood
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increased after adhesive loading. The initial moisture content was high in the plywood,
which, on the other hand, led to excessive permeation of the adhesives into the wood
tissues and reduced the bonding strength. On the other hand, the crosslinking degree of
the adhesives was reduced when the moisture diffused outwardly during the hot-pressing,
which resulted in the failure of the surface bonding interface, thus affecting the bonding
performance. The bonding strength, and especially the water resistance, of the plywood
was significantly improved by the heat treatments before the hot-pressing. Because wood
has a porous structure, resin canals and gum canals form from the heat treatment, thus
the permeability is enhanced so the adhesives can easily permeate into the wood’s surface,
thus increasing the glue nails between the wood. Furthermore, the mechanical interlocking
action on the wood’s surface was strengthened, thus improving its bonding strength [30].
However, the wood’s surface can be passivated with long heat-treatment times, which
reduced the reactivity with the adhesives. Therefore, the heat treatment at 80 ◦C for 2 h
was adopted for plywood preparation with tannin–sucrose adhesives in this experiment.
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3.2. The Effect of Solid Content of Tannin–Sucrose Adhesives on the Bonding Performance
of Plywood

Figure 3 exhibits the results of the bonding performance of the plywood when the solid
content of tannin–sucrose adhesives was within 40–70%. Solid content, one of the important
physical properties of adhesives, affects the adhesive distribution and the formation of
adhesive layers during hot-pressing, thus playing a very significant role in the bonding
performance of adhesives [1,5]. In the case of a low-solid content, continuous adhesive
layers were not formed, and lost adhesion easily, thus leading to unstable bonding. In
addition, a low-solid content also meant that more moisture needed to be removed during
the hot-pressing, which posed an internal stress on the plywood and reduced its water
resistance. Good bonding performance can be generally achieved only when the solid
content of the adhesive reaches above 35% [37,38], but the solid content of most bio-
adhesives cannot be too high due to their high viscosity. The effect of solid content on the
bonding performance of the plywood was less than experimental error. However, the solid
content of tannin–sucrose adhesives reached as high as 70% while not hindering adhesive
application, another significant advantage of tannin–sucrose adhesives compared with soy
protein-based adhesives.
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3.3. The Effect of Mass Ratio of the Tannin to Sucrose on the Performances of
Tannin–Sucrose Adhesives

Based on Sections 3.1 and 3.2, the effects of tannin–sucrose mass ratio on the pH and
viscosity of the adhesives, the water resistance of the curing products, and the bonding
performance of the prepared plywood were explored under the solid content of 60%. The
effects of the tannin–sucrose mass ratio on the viscosity, pH value and bonding performance
of the adhesives is displayed in Figures 4 and 5. Tannin, a complex mixture, has large in
molecular weight with electrostatic and hydrogen bonding with resins and polysaccha-
rides [34,35], so the viscosity of the tannin solution was large (951.1 mPa·s). Therefore,
excessive viscosity was an unavoidable problem during the preparation of the wood adhe-
sives using tannins. High viscosity resulted in poor fluidity of the adhesives, hindering
adhesive application and adhesive distribution during hot-pressing and degrading the
bonding performance of the prepared plywood [5,39]. Sucrose molecules are rich in hy-
droxyl radicals with a strong affinity for water molecules and are far smaller molecules
than tannins, so the viscosity of pure sucrose solution was very small, only 55.3 mPa·s.
When the m(tannin):m(sucrose) was 80:20 or 60:40, the viscosities of the tannin–sucrose
adhesives were 948.9 mPa·s and 919.2 mPa·s, respectively, and this declined slowly with the
increase in sucrose. When the m(tannin):m(sucrose) was 50:50, 40:60 or 20:80, the viscosities
dropped sharply to 363.8 mPa·s, 257.2 mPa·s and 139.6 mPa·s, respectively, indicating
that the viscosity of the tannin–sucrose adhesive system was significantly reduced by the
addition of sucrose, and this was the reason for the high-solid content of the tannin–sucrose
adhesives. Due to the high-solid content and low viscosity, the tannin–sucrose adhesives
could meet the requirements for adhesive spraying viscosity during the preparation of
particleboard and fiberboard.
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Given the large molecular weight and low-crosslinking degree of the tannins, the
dry bonding strength of the plywood prepared using the pure tannin adhesives was only
0.23 MPa, without water resistance. The dry bonding strength of the plywood prepared
using the pure sucrose adhesive was 1.12 MPa, and the wet bonding strength was 0.43 MPa.
Partial sucrose may be converted into 5-hydroxymethyl furfural (5-HMF) during hot-
pressing [30–32], which exerted a certain crosslinking effect, but with a relatively low
molecular weight. If 5-HMF alone participated in the bonding, the cohesive strength and
crosslinking density of the formed adhesive layer would be low. In addition, the adhesive
pH also had an important effect on the conversion efficiency of sucrose into 5-HMF, and
acidic condition was more conducive to the formation of 5-HMF. There are many highly
electronegative oxygen-containing groups in sucrose molecules, which can easily adsorb
H+ in aqueous solution such that sucrose solution is slightly alkaline with a pH = 8.4, with
a low sucrose conversion rate.

When the m(tannin):m(sucrose) was 80:20, the wet bonding strength was only 0.47 MPa,
which was evidently an improvement compared with that of the pure tannin adhesives.
This was because the amount of sucrose was relatively small in this case, and the 5-HMF
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that could be formed by the adhesive system was limited, leading to the limited improve-
ment in the crosslinking degree and cohesive strength of the finally cured adhesive. H+

ionized by tannins provided a certain acidic environment for the adhesive system. When
the m(tannin):m(sucrose) was 60:40, 50:50 or 40:60, the pH values of the adhesive system
were 5.7, 5.7, and 5.8, respectively, and an acidic environment could facilitate the formation
of 5-HMF. In this case, the dry bonding strength of plywood was 1.83, 2.43, and 2.45 MPa,
and the wet bonding strength reached 1.25, 1.25, and 1.34 MPa, respectively, so both the
dry and wet bonding strengths were much higher than 0.70 MPa (strength requirements
for Type II standard of plywood in GB/T 17657-2013). This result revealed that when
the additive amount of sucrose was sufficient, the tannin–sucrose adhesive system gener-
ated enough 5-HMF to crosslink with tannin during hot-pressing, and the cured adhesive
showed a high-crosslinking degree and high cohesive strength, which was macroscopically
manifested by a high bonding strength and water resistance.

When the m(tannin):m(sucrose) was 20:80, the dry and wet bonding strengths of the
plywood were 1.94 and 1.00 MPa, respectively, both of which dropped to some extent, for
the following reasons: (1) The pH value of the adhesive system started rising (pH = 6.1),
and the conversion rate of 5-HMF declined; (2) the additive amount of tannin was limited,
while that of sucrose was excessive, the generated 5-HMF possibly failed to completely
participate in the crosslinking reaction of tannins, and the small molecular 5-HMF was
dispersed in the adhesive system, thus influencing the curing of the adhesive; (3) the
excessive addition of sucrose seriously reduced the system’s viscosity (139.6 mPa·s), and
the permeability of the adhesive on the wood’s surface was strong, leading to a lack of
adhesive on the surface and degrading the bonding performance.

Figure 6 shows the results of the insoluble substance content in the cured adhesives
under different tannin–sucrose mass ratios. The insoluble substance content was below 6%
under both independent addition of tannin and sucrose, but when the tannin–sucrose mass
ratio was 80:20 to 20:80, the insoluble substance content ranged from 62.4% to 76.9%. The
insoluble substance content in the curing products of the tannin–sucrose composite adhe-
sives significantly increased, proving the crosslinking reaction of tannin and sucrose [36].
Under the different mass ratios, the crosslinking degree and intensity of the cured adhesives
were varied. To sum up, the influence of the tannin–sucrose mass ratio on the insoluble
substance content was consistent with that on the bonding performances of plywood.
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3.4. Results of Orthogonal Experiments and Analysis

Tables 3 and 4 display the wet bonding strength of the plywood and its range and
variance analysis results under different plywood preparation process conditions.

Table 3. The results and range analysis of orthogonal experiments.

NO. Hot-Pressing
Temperature/◦C

Hot-Pressing
Time/(min/mm)

Adhesive
Loading/(g/m2) m(Tannin):m(Sucrose) Wet Bonding

Strength/MPa

1 200 1.0 140 60:40 0.38 ± 0.07
2 200 1.2 160 50:50 0.53 ± 0.02
3 200 1.4 180 40:60 0.33 ± 0.06
4 200 1.6 200 30:70 0.43 ± 0.03
5 210 1.0 160 40:60 1.25 ± 0.18
6 210 1.2 140 30:70 1.11 ± 0.15
7 210 1.4 200 60:40 1.21 ± 0.14
8 210 1.6 180 50:50 0.99 ± 0.10
9 220 1.0 180 30:70 1.36 ± 0.11

10 220 1.2 200 40:60 1.48 ± 0.11
11 220 1.4 140 50:50 1.49 ± 0.16
12 220 1.6 160 60:40 1.44 ± 0.10
13 230 1.0 200 50:50 1.57 ± 0.12
14 230 1.2 180 60:40 1.74 ± 0.15
15 230 1.4 160 30:70 1.43 ± 0.06
16 230 1.6 140 40:60 1.59 ± 0.15

K1 0.42 1.14 1.14 1.19 —
K2 1.14 1.22 1.16 1.15 —
K3 1.44 1.12 1.11 1.16 —
K4 1.58 1.11 1.17 1.08 —
R 1.17 0.10 0.07 0.11 —

Table 4. The variance analysis of orthogonal experiments on wet bonding strength.

Factors Sum of Squares of
Deviations (DEVSQ)

Degree of Freedom
(DOF)

Mean Square Error
(MSER) Significance

Hot-pressing temperature 3.237 3 294.273 *
Hot-pressing time 0.028 3 2.545
Adhesive loading 0.011 3 1.000

m(tannin):m(sucrose) 0.026 3 2.364
Error 0.012 3

Note: * Means significance in 0.05 level.

Figure 7 presents each factor of the orthogonal tests on the wet bonding strength
of the plywood. Combining Figure 7a, and Tables 3 and 4 demonstrates that the hot-
pressing temperature exerted significant influence on the wet bonding strength of the
plywood. This was because the key role for the tannin–sucrose adhesive to generate a good
bonding performance lies in the indirect crosslinking action of sucrose, namely, sucrose
crosslinks with tannins after being converted into 5-HMF. An acidic environment and high
temperatures were two key factors influencing sucrose conversion into 5-HMF, especially,
the latter was critical for the formation of 5-HMF [30–32,40]. The bonding strength was
only 0.42 MPa at a hot-pressing temperature of 200 ◦C, but it increased to 1.14, 1.44, and
1.58 MPa (satisfying the strength requirements for Type II plywood in GB/T 17657-2013)
when the hot-pressing temperatures were 210 ◦C, 220 ◦C and 230 ◦C, with increases of 171%,
243%, and 276%, respectively. Therefore, the hot-pressing temperature played a decisive
role in the strength performance of the tannin–sucrose adhesives. Ideal bonding strength
was only obtained when the hot-pressing temperature was above 210 ◦C. Even though
the bonding strength was higher at 220 ◦C and 230 ◦C, but a hot-pressing temperature
too high easily led to plywood deformation and color change [41,42], accompanied by a
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greater energy consumption. Therefore, 210 ◦C was considered a relatively appropriate
hot-pressing temperature.
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Figure 7b shows the effect of hot-pressing time on the wet bonding strength of ply-
wood. It can be seen that the bonding strength reached a maximum at a hot-pressing
time of 1.2 min/mm, but declined if the hot-pressing time was continuously lengthened,
demonstrating that the curing and crosslinking reactions of the tannin–sucrose adhesives
was basically completed within 1.2 min/mm. Therefore, 1.2 min/mm was considered the
relatively appropriate hot-pressing time of the tannin–sucrose adhesives.

Figure 7c displays the influence of adhesive loading on the wet bonding strength
of the plywood. It can be seen that when the adhesive loading was 140~200 g/m2, the
bonding strength was 1.11~1.17 MPa, so the bonding strength was influenced little by
adhesive loading. The adhesive loading of 140 g/m2 could also meet the requirements
of this experiment. However, in the process of the experiment it was found that uneven
adhesive loading was occasionally caused by rapid water penetration of the adhesive.
Therefore, given that adhesives should be applied to the plywood as evenly as possible, the
adhesive loading of 160 g/m2 was deemed appropriate.

Figure 7d displays the influencing analysis of the tannin–sucrose mass ratio on the
wet bonding strength of the plywood. It can be observed from Figure 7d that the bonding
strength was at a maximum when the m(tannin):m(sucrose) was 60:40, slightly decreased at
50:50 and 40:60, and started dropping at 30:70. In general, the mass ratio exerted an insignif-
icant effect on the bonding strength. Given the viscosity reduction effect of an increasing
amount of sucrose, m(tannin):m (sucrose) of 60:40 was considered an appropriate.

The effects of the orthogonal test factors on the wet bonding strength of the plywood
were in order of hot-pressing temperature > tannin–sucrose mass ratio > hot-pressing time
> adhesive loading, among which the hot-pressing temperature had the most significant
influence, while the influence of hot-pressing time, m(tannin):m(sucrose), and adhesive
loading were insignificant. Plywood was prepared by the optimal process parameters,
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namely, hot-pressing temperature of 210 ◦C, time of 1.2 min/mm, m(tannin):m(sucrose)
of 60:40, and adhesive loading of 160 g/m2. The wet bonding strength of the plywood
prepared under these process parameters was 0.89 MPa, meeting the strength requirements
for a Type II standard of plywood specified in GB/T 17657-2013. It even had certain wet
bonding strength in boiling water (0.42 MPa), with the potential of meeting the strength
requirements for a Type I standard of plywood in GB/T 17657-2013.

3.5. FT-IR Analysis

Figure 8 displays the FT-IR results before and after adhesive curing under different
tannin–sucrose mass ratios. The tannin–sucrose adhesives (a, b and c) were in a mixed
state before curing, the wavenumbers 1547.1 cm−1, 1515.8 cm−1, and 1452.9 cm−1 were
the skeleton carbon absorption peaks on the tannin benzene ring, and the C-H bending
vibration absorption peak of the tannin aromatic ring appeared at 843.3 cm−1. The ether
bond absorption peak from the sucrose appeared at 1045.5 cm−1, and the hydroxymethyl
absorption peaks of sucrose appeared at 987.4 cm−1 and 929.9 cm−1 [30–32]. The absorption
peaks of the curing products of the tannin–sucrose adhesives (a’, b’, c’) at 1045.5 cm−1,
987.4 cm−1 and 929.9 cm−1 disappeared, indicating the depolymerization of sucrose hex-
atomic ring. The absorption peak at 843.3 cm−1 disappeared, revealing that the active
hydrogen of the tannin phenol ring experienced a substitution reaction. A new C=O ab-
sorption peak was generated at 1706.1 cm−1, which was attributed to sucrose conversion
into 5-HMF [43,44]. The C-O ether bond absorption peak at 1033.0 cm−1 was attributed to
the product formed from the polycondensation products of 5-HMF and tannin, proving
that under high-temperature conditions, sucrose was pyrolyzed and converted to form
active 5-HMF to participate in the crosslinking reaction of sucrose with tannin.
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Figure 8. FT-IR curves of tannin–sucrose adhesives before and after curing. Note: a mass ratio of
tannin to sucrose (60:40) without heat treatment, a’ mass ratio of tannin to sucrose (60:40) with heat
treatment, b mass ratio of tannin to sucrose (50:50) without heat treatment, b’ mass ratio of tannin to
sucrose (50:50) with heat treatment, c mass ratio of tannin to sucrose (40:60) without heat treatment,
c’ mass ratio of tannin to sucrose (40:60) with heat treatment.

Under different tannin–sucrose mass ratios, the absorption peaks of the curing products
at 1706.1 cm−1 and 1033.0 cm−1 differed little in peak intensity, demonstrating that the 5-HMF
formed by the adhesive system at a mass ratio of 60:40 was enough, and the yield rate of
5-HMF was not affected if the additive amount of sucrose was continuously increased.

3.6. XRD Analysis

Figure 9 exhibits the diffractograms of the adhesives under different tannin–sucrose
mass ratios. Tannins had a large wide peak at 22.1◦, indicating that it was amorphous [22,23].



Materials 2022, 15, 8725 12 of 17

The tannin–sucrose adhesive showed an evident crystallization peak at 19.1◦ [31,32]. The
degree of crystallinity reflects the ordered molecular arrangement degree. The degree
of crystallinity was elevated after the tannin–sucrose crosslinking reaction, indicating a
high degree of crosslinking reactions. According to MDI Jade 6 analysis, the degree of
crystallinity was at a maximum at a mass ratio of 60:40, but showed a declining trend
with the increase in the additive amount of sucrose. Combining the previous conclusions,
5-HMF conversion was influenced by temperature and pH of the acidic system. At a fixed
temperature, the acidity was mainly derived from the tannins. With an increase in sucrose
and a reduction in tannins, the weakening acidity reduced the conversion to 5-HMF. In
addition, the crosslinking reaction of the adhesive system was also affected by the excessive
introduction of micromolecular sucrose.
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3.7. TG-DTG Analysis

Figures 10 and 11 display the thermal properties (thermogravimetry, TG; differential
thermal gravity, DTG) of the cured adhesives under different tannin–sucrose mass ratios.
The mass loss of the five samples was all within 10% at 30–150 ◦C, and in this stage, the
loss was mainly attributed to the evaporation of water absorbed from the air by the cured
adhesives. The pure tannin adhesives from 200 ◦C and the tannin–sucrose adhesives from
about 300 ◦C, experienced large weight losses, and all the residual weights were basically
unchanged up to 600 ◦C. Within 200–600 ◦C, the maximum weight loss peak of the pure
tannin and pure sucrose adhesives was edged, indicating their rapid weight loss and poor
thermal stability, which was mainly ascribed to the low-crosslinking degree and relatively
the loose structure of the pure tannin and pure sucrose adhesives. At 600 ◦C, the residual
weight of the pure tannin and pure sucrose adhesives was 39.0% and 16.8%, respectively.
This was because the molecular weight of tannin is higher than that of sucrose, so is
the corresponding thermal stability. The pure sucrose adhesive had a small thermolysis
peak at 240 ◦C, which was caused by caramel formation due to sucrose dehydration and
condensation, but this peak did not last long. As the temperature rose to 290 ◦C, a large
and edged peak appeared again, which was mainly ascribed to further carbonization
and polymerization after the complete caramelization of sucrose; meanwhile, gaseous
products, such as CO2, CO, acetic acids, and acetone as well as furfural compounds, were
generated [45,46].
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The TGA variation trends of the tannin–sucrose composite adhesives differed a lot
from those of the pure tannin and pure sucrose adhesives, which were mainly embodied in
the high thermolysis temperature, small and wide thermolysis peaks, and high residual
weight, demonstrating the high thermal stability of the composite adhesives. All the TG
curves of the tannin–sucrose composite adhesives showed consistent variation trends,
demonstrating their similar thermal analysis courses. When the tannin–sucrose mass ratio
was 60:40, 50:50 or 40:60, the maximum weight loss was at 305 ◦C, 312 ◦C, and 295 ◦C,
respectively, all of which were higher than that of the pure sucrose adhesive at 290 ◦C,
indicating that a thermolytic peak of sucrose degradation products and tannin crosslinking
products appeared at this position, especially the crosslinking products between 5-HMF
and tannins [30–32,43]. With the increase in sucrose and the reduction in tannins, the
temperature showed a declining trend at this position, reflecting the degrading structural
stability of the crosslinked products. This was because, in addition to the temperature,
the acidity of the adhesive system was also very important for the sucrose conversion to
5-HMF. Tannins being of a certain acidity promoted the conversion of 5-HMF to some
extent. With the declining proportion of tannins to sucrose, the acidity of adhesive system
was lessened, and the conversion rate of sucrose to 5-HMF was also reduced. At 600 ◦C,
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the residual weight of the tannin–sucrose composite adhesives was 47.0~48.8%, and the
residual weights were in the order of 60:40 > 50:50 > 40:60. Nevertheless, the thermolytic
course and thermal stability of composite adhesives were influenced little by the different
tannin–sucrose mass ratios in this study.

3.8. Bonding Mechanism Analysis of the Tannin–Sucrose Adhesive

The bonding process of the adhesives is very complicated, combining adhesive flow,
wetting, diffusion, permeation, crosslinking, and curing on the wood’s surface. It could be
argued that from the above results the main factors influencing bonding quality are: (1) the
adhesives themselves, including their chemical composition, cohesive strength, viscosity, and
solid content; (2) moisture content of the plywood; (3) the bonding process, including the
hot-pressing temperature, the time, and adhesive loading. As can be seen in Figure 12, the
tannin functions in the tannin–sucrose adhesive were as follows: (1) The macromolecules of
tannin provided enough cohesive strength for the adhesive system [34,35]; (2) the acidity
of the tannin catalyzed the sucrose conversion into 5-HMF. The sucrose functions in the
tannin–sucrose adhesive were as follows: (1) A far smaller hydrophilic molecule, sucrose
exerted a viscosity reducing effect on the adhesive system and facilitated the preparation
of the tannin–sucrose adhesive with a high-solid content and low viscosity; (2) sucrose
was converted into 5-HMF [43,47–49], which reacted with the tannins to act as an indirect
crosslinker. Therefore, an appropriate tannin–sucrose mass ratio was key to obtain a tannin–
sucrose adhesive with superior performance. Even so, the key factor for deciding whether
the tannin–sucrose adhesive could achieve superior performance was the hot-pressing
temperature which promoted sucrose conversion into 5-HMF and made it possible for
tannin–sucrose crosslinking reactions.
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The temperature needed for sucrose conversion into 5-HMF was high, so the hot-
pressing temperature required by the tannin–sucrose adhesives was also high, which
promoted the formation of 5-HMF and the improvement of the bonding strength, but
resulted in the caramel color of the plywood’s surface and increased the energy consump-
tion for plywood preparation. Moreover, it also increased the compression applied to the
plywood and reduced the utilization rate of wood. Therefore, the emphasis of subsequent
research lies on how to reduce the conversion temperature of 5-HMF so as to further lower
the hot-pressing temperature.

4. Conclusions

Tannin and sucrose were mixed to form a composite adhesive and used to prepare
plywood. The results showed the following:
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(1) With a solid content of up to 70% and a low viscosity, tannin–sucrose adhesives have
the potential to prepare particleboard and fiberboard.

(2) An appropriate tannin–sucrose mass ratio was key to acquiring adhesives with supe-
rior performance. Sucrose is converted into 5-HMF, which reacts with the tannins to
exert an indirect crosslinking action, and the hydrophilia of sucrose had a viscosity
reduction effect on the adhesive system. The macromolecular structure of tannins
provided enough cohesive strength for the adhesive system, and acidic tannins could
more easily promote the crosslinking reaction between tannins and sucrose.

(3) The hot-pressing temperature played a decisive role in the performance of the tannin–
sucrose adhesives. The good performance of plywood could be guaranteed only when
the temperature was 210 ◦C or above. The optimal process of plywood preparation
based on tannin–sucrose adhesives is presented as follows: hot-pressing temperature
of 210 ◦C, time of 1.2 min/mm, m(tannin):m(sucrose) of 60:40, and adhesive loading of
160 g/m2. The wet bonding strength of the plywood prepared under such conditions was
0.89 MPa, meeting the strength requirements for Type II plywood in GB/T 17657-2013.

(4) How to achieve good bonding performances for tannin–sucrose adhesives at a low
curing temperature will be studied in subsequent research work.
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