
Citation: Samal, S.; Kopeček, J.;
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Abstract: Interfacial adhesion of thick NiTi coating on substrate stainless steel is investigated here.
NiTi coating was deposited on the substrate by using the thermal plasma spraying method. Deposi-
tion of NiTi coating was carried out by using various levels of input power under an Ar atmosphere.
Multiple coating layers were deposited on the stainless steel surface for a specific thickness. The
cross-section of the plasma-sprayed samples were prepared and characterized by using various
techniques. The hardness of the coating layers on the surface and cross-section was examined. The
thickness of the coating increased with the increase in power. No cracks were detected in the interface
for the NiTi coating deposited at 12 kW power. However minor pores were observed at some regions
along the interface at the sample prepared at 9 kW power. A good-quality coating layer was formed
at the interface of the substrate. Primary phases of austenite and martensite were confirmed from
the EBSD and XRD investigations. There was the presence of intermetallic and oxide phases in the
coating layers. A less heat-affected zone of 10 µm of along the interface was confirmed without any
diffusion of elements from the substrate to the coating layers. There was homogenous distribution
elemental composition of Ni and Ti throughout the coating layers.

Keywords: NiTi; thick layer; plasma process; stainless steel substrate

1. Introduction

The lifetime and durability of the shape memory alloy in various aggressive environ-
ments need to focus on the attention of the surface quality and its exposure to various
environmental conditions. The improved surface of the material could be achieved by
coating it in various ways. The coating protects the inner core of the material from outer
exposure, environmental conditions, and corrosion. NiTi coating is applied as an efficient
functional coating in improving the surface features. Improved surface quality is one of the
crucial parameters for materials to contribute toward lifetime uses. The thermal plasma
arc process was widely used for the surface treatment of materials [1–3]. Thermal plasma
technology is considered one of the potential ways to improve the surface properties of the
materials. The thermal plasma process provides a higher deposition rate, a faster process
with a one-step approach for coating materials. Argon gas maintains neutrality in the
plasma chamber to avoid unnecessary reactions from contaminations within the coating.
Nickel–titanium (NiTi) alloy coating is considered a functional coating with shape memory
properties that add benefits to surface properties [4,5]. NiTi alloy has several applications
from engineering to medical applications. One of the common uses of the coating on the ma-
terial against erosion and corrosion [6,7]. The performance of NiTi coating against erosion
and corrosion stands out as being more outstanding than other conventional materials used
for coating [8]. The NiTi coating could withstand high temperatures with the capability of
displaying high oxidation resistance. Simultaneously, thermo-mechanical properties of NiTi
added an advantage in increasing the wear resistance due to its pseudo-elasticity nature.
Stainless steel displays a low hardness of 129 HV that contributes towards low cavitation
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erosion resistance. The cavitation and erosion properties of stainless steel are improved by
various surface treatments such as laser processing using different materials as a coating
layer. However, this improvement was accompanied by weaker corrosion resistance in the
material. Improving overall properties such as erosion–corrosion resistance in the material
NiTi powder is considered a potential material for improved surface properties [9–11].
There are various technologies such as welding and high-temperature brazing involved
in coating filler materials on the steel substrate [12–15]. However, there are obstacles
of various heat-affected zones from the substrate to the coating layer in these processes
that modify the microstructure of the materials. These obstacles could be overcome by
plasma spraying technologies, as the process involves cooling the substrate during the
process of deposition. The subsequent cooling and deposition process occurs in phases,
and as a result, there is no change in the temperature zone occurring in the substrate.
Plasma spraying has been used in various materials for coating purposes including NiTi
powders [16–18]. Interfacial adhesion of functional coating has a significant influence on
composite behavior in various sensitive environmental applications [19]. Materials used in
various applications face the challenge of withstanding erosion and corrosion in extreme
environmental conditions. The materials with enhanced surface features could be achieved
by surface modification technique by implementing functional coating on the material
through various compositions and improved surface properties. Functional coating of
NiTi has attracted the coating fields due to the functional behavior of shape memory effect
(SME) and a superelasticity (SE) nature with good wear and excellent corrosion resistance
properties [20]. NiTi is considered a corrosion and wear-resistant coating due to its SE,
SME, and high damping capacities [21]. NiTi coating also has been proven towards the
cavitation erosion layer with high resistance. The chemical inertness of NiTi arises from
the barrier protective layer of NiTi that forms a protective oxide layer with direct contact
with the environment. Stainless steels are widely used materials in surgical tools and
medical equipment [22]. They can be rolled into sheets, plates, bars, and wires and can
be used for many purposes from engineering materials to infrastructure in aggressive
environments [23]. However, the lifetime and durability of the material are improved by
coating layers that protect against erosion and corrosion [24]. In this scenario, functional
coating materials such as NiTi coating are considered to be one of the potential materials
that could protect against corrosion and erosion to the base material.

Various surface treatment methods have emerged to improve the surface properties of
materials either by coating or surface annealing. As the thermal plasma process provides a
higher deposition rate without any contamination, as an easy, one-step, quick process, the
use of this technology is increasing faster. This process operates in a neutral environment
with a cooling effect on the substrate that may influence the heat-affected zone in the
substrate less.

NiTi powder was deposited on the surface of an austenitic stainless steel (AISI 304)
plate by using plasma spraying. The thick coatings were deposited on multiple layers using
different powers using Ar gas in the plasma chamber. The surface image of the interface
layer from coating adhesion to the substrate, phase formation, mechanical behavior, and
hardness was examined by using various characterization processes. In order to explore
the nature of the adhesion of NiTi coating with stainless steel substrate, the powders of
NiTi were chosen for coating to investigate whether the NiTi phases can occur in thermal
spray coatings. The role of intermetallic phases towards hardness was interpreted. We also
investigated the connection between the interfacial microscale reactions, splat substrate
bonding, and adhesion between interlayers throughout coating thickness.

2. Experimental Methods

The thick coating of NiTi was deposited on an austenitic stainless steel (AISI 304) plate
by using a radio frequency inductively coupled plasma (RF-ICP) facility from the Institute of
Plasma physics (IPP), Prague. The operating experimental parameters of the spraying method
are represented in Table 1. The dimensions of the substrate of 60 × 20 × 3 mm were chosen.
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The substrate was cleaned with acetone in order to remove dust and impurities before
coating. Table 1 represents the parameters for spraying NiTi powder for the preparation of
samples. Table 1 displays the chemical composition of NiTi powder and substrate.

Table 1. Parameters for sample preparation. Chemical composition of powder and substrate.

Sample Plasma Gas
(Ar + H2) Substrate Plasma Torch

Power (kW)
Feeding

Rate (g/min) Spraying Net Powder
Spray Time (s) Comment

Sample 1 10 + 2 Stainless steel with
grit blasting 12 4.2 30 × 6 180 Good

Sample 2 10 + 1 Stainless steel 9 2.1 25 × 6 150 Thin coating layer
Initial material Particle size Chemical composition, at (%)
Stainless steel - 0.11% N 17.5–19.5% Cr 8–10.5% Ni 0.05% P 0.07% C 1% Si
NiTi powder 20–60 µm 50 50

The plasma source was used in the RF-ICP chamber as the heat source for melting
NiTi particles and impact on the substrate for deposition. The impact of powder particles
through the plasma arc that leads to the deposition on the stainless steel substrate (Italinox,
Prague, Czech Republic) is shown in the schematic diagram in Figure 1. The dimensions
of the substrate were 60.6 × 20 × 3 mm3 [11]. The powder particles were inserted into
the plasma arc by the powder feeder using various powder feed rates that allow particles
to travel through various zones of the plasma arc. The inner and outer regions of the
plasma zone distributed various temperature zones that allow for the melting of particles.
The melting particles consider a “fully melted or partially melted splat” that impacts
the substrate and forms a layer of coating. The multi-pass of the coating layers forms a
certain thickness.

The metallographic examination of a multilayer-coated surface on the substrate in-
volved preparing a sample by cutting from the bulk cross-section-wise using an Electric
Discharge machine. The samples were polished with up to 1 µm diamond paste. The
microstructural examination was carried out on the samples electrolytically etched in a
solution of (HF:HNO3:H2O) etchant. The microstructure of the NiTi powders and plasma-
sprayed samples was investigated by an optical microscope (OM) and scanning electron
microscope (SEM, Tescan FERA 3 (Tescan, Brno, Czech Republic)). The images were in-
vestigated by both modes of observation using secondary electrons and backscattered
electrons. Energy-dispersive X-ray spectroscopy (EDS) was carried out using the EDAX
system (EDAX, Ametek Inc., Mahwah, NJ, USA) with an Octane Super 60 mm2 detector
to determine the chemical composition from substrate towards coating. The phase and
grain orientation distribution analyses were performed using the electron back-scattered
diffraction method (EBSD) using the EDAX DigiView V camera and system (EDAX, Ametek
Inc., Mahwah, NJ, USA). A voltage of 20 kV, a current of 1–2 nA, and a working distance
of 15 mm were chosen for analysis. The EBSD sample followed the procedure as samples
were hot-mounted in conductive Bakelite and were metallographically prepared by the
modified procedure for nickel (ASTM C-56 recipe). The colloidal silica was used in the last
polishing step, and the surface was finished by etching in Kroll’s reagent. Grain orientation
and phase map of the sintered NiTi alloys were performed by the electron backscatter
method. The phase analysis of the coating layers was detected at room temperature with
an X’Pert PRO θ-θ powder diffractometer using Bragg–Brentano geometry at 40 mA and
35 kV with CoKα radiation (average wavelength λ = 0.1790 nm), a focus-slit distance of
100 mm, and a goniometer radius of 240 mm. The data were measured in the 2θ range
of 20–120◦, using a step size of 0.013◦, a scan step time of 1.4 s, and a fixed divergence
slit size of 0.5◦. The phase transformation temperatures of coating layers were carried out
by differential scanning calorimetry (DSC 25, TA Instruments, New Castle, DE, USA) at
a heating and cooling rate of 5 ◦C/min in the temperature range of −50 to +150 ◦C in a
nitrogen environment inside the sample chamber.

Plasma spraying has emerged as one of the potential routes to deposit thick coating
layers on the structural material. However, the suitability of reliable methodology could be
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more widely accepted by assessing the shape memory properties still maintained by coating
layers. These properties could only be tested by standalone samples and samples with
0.1 mm of substrate attached. Thermo-mechanical analysis was carried out on the sample
in bending mode with a static load of 100 mN from −50 to +150 ◦C in the temperature
cycle. The microhardness of the coating on the surface and cross-section was investigated
by a Vickers hardness tester for a force of 1.961 N for a duration of 10 s.
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Figure 1. Impact of melting particles on the substrate through the plasma arc created a multi-coating
layer’s structure.

3. Results and Discussion
3.1. Surface Features of NiTi Powders, Coating Surface by OM and SEM

Figure 2 represents the Ti50Ni50 powder particle (purity: 99.5%) that is considered
for the thick multilayer coatings on stainless steel. The gas-atomized NiTi powders were
purchased from American Elements (AE), MERELEX CORPORATION, LOS ANGELES,
CA 90024, USA. The elemental composition of the Ni:Ti powders was 50:50 (atom %).
NiTi particles are spherical in shape and size (Figure 2a,b). The average particle size of
NiTi powder (Avg) was 50 µm. The sizes of the largest particles were in the range of
30–40 µm. EDX analysis revealed the chemical composition of NiTi powders, as shown in
Figure 2c. The cross-section of the coating layer with the substrate was initially examined
by an optical microscope. Figure 3a,b shows the multiple layers of NiTi coatings by plasma
spraying samples 1 and 2 on the top of the substrate. The samples were cut from the
substrate with a remaining thickness of 0.1 mm substrate. The samples were mounted
in conductive Bakelite through the thickness. Both samples showed the multi-layers of
coating on the substrate. The interface between steel and the coating layer showed better
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adhesion without any porosity. Various coating layers with adjoining areas are marked as
dark regions (Figure 3a,b). Sample 2 also showed good adhesion of substrate steel with
coating layers. However, there were some impurities observed in sample 1 that arose from
the contamination from sample preparation.
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To examine the interface and the coating layers, samples were investigated using both
SE and BSE modes in SEM. Figure 4a–d represents the SE and BSE mode of images of
samples 1 and 2 with the substrate stainless steel. In SE mode, the interface joining of the
substrate stainless steel and coating layers showed good joining areas; however, BSE mode
revealed more clarity in the interface zone. Sample 1 revealed slight porosity in certain
areas; however, there was more porosity in the interface regions of sample 2. In this case,
sample 1 showed a better structure of samples within interlayers of the coating region.
The joining between coating layers and the substrate showed better adhesion in sample 1
(Figure 4c); however, sample 2 showed internal porosity in various regions of multilayers
of coating areas (Figure 4d).
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An electron back-scattered diffraction (EBSD) investigation was carried out on sample 1
at the interface of the region. Phases of NiTi and Fe were revealed as the austenite and ferrite
shown in the color code map. Figure 5a–d represents the EBSD maps of samples 1 and 2.
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Figure 5. (a,b) EBSD image pattern of the interface region. (a) An orientation map of the inverse pole
figure (IPF) map overlayed on a greyscale confidence index (CI). Colorized legend of phases is given
below—the scale was the same for all presented phases. (b) The phase composition overlayed on a
greyscale confidence index again. The fraction of phases is given below the map with the color code
(sample 1). (c,d) EBSD image of sample 2 showing the IPF figure and phase composition.
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The heat-affected zone on the substrate of the samples along the cross-section of the
coating from the substrate surface was examined by EBSD analysis. It was observed that
ferrite appeared in the heat-affected zone, with non-uniform regions with smaller grains
formed along the interface in the substrate with a maximum of 10 µm thickness. The region
of the heat-affected zone in both samples is shown in Figure 6a,b.
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Figure 6. (a,b) The interface region for samples 1 and 2. A very minor region of Fe, alpha, and ferrite
was located along the interface. (a) Sample 1, alpha, ferrite, total fraction, 0.063; (b) sample 2, alpha,
ferrite 0.004 from the total fraction. Only points with CI > 0.1 are presented.

The microstructural changes along the heat-affected zone were examined by the line
scan analysis. To understand the phase changes that led to the diffusion of elemental
composition, phase change, and microstructural investigation, line analysis is presented
in Figure 7a,d. The results of line analysis show that there was no diffusion of elements
from the substrate to the coating region. The spectra from the Fe lines reached a minimum
value in the coating region; however, the lines of Ni and Ti achieved maximum values. This
confirms that there was no diffusion of elements from the substrate to the coating layers for
both samples. There was a homogenous distribution of elemental composition in the NiTi
coating layers (provided as Supplementary Files).
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3.2. Thermal Characterization of Plasma-Sprayed NiTi Samples

Thermal characterization of plasma-sprayed samples 1 and 2 is represented in
Figure 8a,b. The transformation temperature of samples was observed in cooling and
heating cycles. Sample 1 showed the transformation temperature of phases at the start
of the R-phase temperature at 71 ◦C, with R-phase finish temperature at 59 ◦C, and with
R phase peak at 62 ◦C. The second peak of the martensite phase started at 59 ◦C, with the
martensite peak at 55 ◦C, with a finish temperature of 33 ◦C in cooling mode. The heating
cycle showed the transformation of martensite to austenite phases. Austenite started at a
temperature of 64 ◦C, followed by an austenite peak of 88 ◦C, and ended at an austenite
finish temperature of 101 ◦C. Sample 2 shows the transformation of austenite to martensite
phase from the cooling cycles and back to the austenite phase during the heating cycle.
The transformation temperature peak of martensite started at a temperature at 69 ◦C with
a peak temperature of 57 ◦C and a finish temperature of 38 ◦C. The transformation of
austenite started at a temperature of 62 ◦C with a peak temperature of 93 ◦C and with
a finish temperature of 103 ◦C. The measurement was conducted at least twice for both
samples, with it observed that both peaks coincided. The initial NiTi powder used for
spraying showed the phases of the austenite phase (start: 43 ◦C, peak: 52 ◦C, finish: 62 ◦C)
and martensite phase (start: −23 ◦C, peak: −33 ◦C, finish: −43 ◦C) during thermal cycles.
The transformation temperatures of the plasma-sprayed samples shifted towards a higher
value than feedstock powder that may arise from various melting zones from the plasma arc
chamber, varying chemical composition, the presence of intermetallic phases, the internal
porosity region, or accumulated residual stress in the samples.



Materials 2022, 15, 8598 10 of 16

Materials 2022, 15, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 8. (a,b) DSC images of samples 1 and 2 showing transformation temperature during cooling 
and thermal cycles for samples 1 and 2. Sample 1 shows austenite transformation from R-phase to 
the martensite phase; however, R-phase was absent in sample 2. 

3.3. Phases Analysis of Plasma-Sprayed Samples 
Figure 9a,b represents the XRD peaks of sample 1, sample 2, and two more samples 

from the interface and with the substrate of sample 1. Both samples show the presence of 
various phases of the Ni-Ti system such as the austenite cubic phase, martensite, mono-
clinic, and R-phase (pre-martensite phase) with a hexagonal structure, intermetallic, met-
astable phase of Ti3Ni4, and oxide phases of Ti4Ni2O. Table 2 represents the quantitative 
volume fraction of various phases for standalone plasma-sprayed samples 1 and 2 sepa-
rated from the substrate, then the additional sample 1 considered with the substrate as a 
base (both the upper coating and lower side steel). Sample 1 contained the austenite phase 
of 48.0 wt %, martensite of 39.9 wt %, R-phase (pre-martensite or austenite phase) of 8.8%, 
and a minor amount of oxide phase Ti4Ni2O of 3.2 wt % (Figure 7a). However, sample 2 
contained phases of austenite of 43.2 wt % and martensite of 25.8 wt %, with some inter-
metallic phases of Ti3Ni4 of 30.6 wt %, without R and oxide phases (Figure 7b). Sample 1 
with substrate steel (0.1 mm) was investigated on the upper and lower sides for accurate 
analysis of interface phases. Sample 1 with the interface from the upper surface from the 
coating layer showed the presence of stainless steel as a base with a phase composition of 
austenite of 37.5 wt %, martensite of 24.3 wt %, R-phase of 18.9 wt %, intermetallic phase 
of Ti3Ni4 of 6.5 wt %, and TiFe2 of 12.9 wt % (Figure 9c). Sample 1 with lower surface steel 
showed the presence of TiFe2 as a major phase with some amounts of austenite, marten-
site, and intermetallic phases (Figure 9d). The quantitative volume fraction of phases is 
estimated in Table 2. The interface contained less diffusion of stainless steel, and more on 
NiTi phases from plasma coating sides. However, the sample with steel as substrate 
showed major phases of steel with minor phases of NiTi diffusion from coating to base.  

Figure 8. (a,b) DSC images of samples 1 and 2 showing transformation temperature during cooling
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the martensite phase; however, R-phase was absent in sample 2.

3.3. Phases Analysis of Plasma-Sprayed Samples

Figure 9a,b represents the XRD peaks of sample 1, sample 2, and two more samples
from the interface and with the substrate of sample 1. Both samples show the presence of
various phases of the Ni-Ti system such as the austenite cubic phase, martensite, monoclinic,
and R-phase (pre-martensite phase) with a hexagonal structure, intermetallic, metastable
phase of Ti3Ni4, and oxide phases of Ti4Ni2O. Table 2 represents the quantitative volume
fraction of various phases for standalone plasma-sprayed samples 1 and 2 separated from
the substrate, then the additional sample 1 considered with the substrate as a base (both the
upper coating and lower side steel). Sample 1 contained the austenite phase of 48.0 wt %,
martensite of 39.9 wt %, R-phase (pre-martensite or austenite phase) of 8.8%, and a minor
amount of oxide phase Ti4Ni2O of 3.2 wt % (Figure 7a). However, sample 2 contained
phases of austenite of 43.2 wt % and martensite of 25.8 wt %, with some intermetallic
phases of Ti3Ni4 of 30.6 wt %, without R and oxide phases (Figure 7b). Sample 1 with
substrate steel (0.1 mm) was investigated on the upper and lower sides for accurate analysis
of interface phases. Sample 1 with the interface from the upper surface from the coating
layer showed the presence of stainless steel as a base with a phase composition of austenite
of 37.5 wt %, martensite of 24.3 wt %, R-phase of 18.9 wt %, intermetallic phase of Ti3Ni4
of 6.5 wt %, and TiFe2 of 12.9 wt % (Figure 9c). Sample 1 with lower surface steel showed
the presence of TiFe2 as a major phase with some amounts of austenite, martensite, and
intermetallic phases (Figure 9d). The quantitative volume fraction of phases is estimated in
Table 2. The interface contained less diffusion of stainless steel, and more on NiTi phases
from plasma coating sides. However, the sample with steel as substrate showed major
phases of steel with minor phases of NiTi diffusion from coating to base.
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sample 1 and sample 1 with stainless steel as substrate (c,d).

Table 2. Various phases of the Ni-Ti system in plasma-sprayed samples 1 and 2.

Phases Crystal System
Sample 1

Semi-Quant%
(w/w)

Sample 2 Sample 1 with
Interface

Sample 1
(Lower

Surface) Steel

Austenite Cubic—Pm-3m
(01-076-3614) 48 43.2 37.5 6.0

Martensite Monoclinic, P21/m
(01-078-2550) 39.9 25.8 24.3 22.7

R-phase
Hexagonal, P-3
(01-075-0878)
(01-078-4620)

-
8.8

-
-

5.6
13.3

8.1
7.0

Intermetallic
Ti3Ni4

Rhombohedral, R-3
(04-001-1903) - 30.6 6.5 23.2

TiFe2

Hexagonal,
P63/mmc

(04-004-6664)
- - 12.9 33.1

Ti4Ni2O Cubic, Fd-3m
(04-011-8824) 3.2 - - -

3.4. Thermo-Mechanical Characterization of Plasma-Sprayed Coatings

Figure 10a,b represents the thermo-mechanical behavior of samples 1 and 2 in the
presence of a static load of 100 mN under thermal cycles. The results indicate the deforma-
tion of samples as the function of temperature from −50 ◦C to 150 ◦C. The multiple cycles
were carried out on the samples, with 15 cycles for both samples. It was observed that
during each cycle there was residual strain accumulated in the sample. Finally, the sample
returned to the position from the initial position with a displacement of −7.5 µm for sample
1 and −2 µm for sample 2. However, the hysteresis of sample 2 showed irregular behavior
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compared to sample 1 with two conjugated areas of cycles. This may have been due to
inhomogeneities of elemental composition along the coating layers, or the distribution
of irregular internal stress developed in the samples during thermal cycles. Figure 10c,d
plots the sample displacement’s behavior as the temperature and time function. It was
observed that sample 1 showed a subsequent increase in displacement as the function
of time with a fixed temperature cycle from the cooling to the heating range. However,
in sample 2, the displacement was not so prominent compared to sample 1. The sample
returned to its original position after heating from bending deformation. Sample 2 had
better recovery of the displacement to the original position after heating with a change in
position of −2 µm from the original position. Figure 11a–d shows sample 1 with substrate
steel (0.1 mm as the base) under a thermo-mechanical cycle. The sample contained two
layers of composition with upper NiTi as the coating layer deposited by plasma spraying
and lower stainless steel as the substrate. The sample showed a significant reduction in
displacement position with an accumulation of internal residual stress from the two layers’
deformation during thermal cycles. The plastic strain deposited in the sample showed a
reduction in the displacement of −90 µm from the original position (Figure 11a). The two
samples were compared without substrate and with the substrate for sample 1 under static
load as the function of the thermal cycle. The change in displacement was significantly large
for sample 1 with the substrate. Figure 11c,d shows the graph that represents displacement
versus time. The sample with substrate accumulates residual stress in the sample with
each cycle. There was a significant change in the sample’s behavior that may arise from the
interface joining of the elastic–plastic region of material from steel and NiTi.
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3.5. Hardness of the Plasma-Sprayed Sample

Figure 12a–d displays the hardness evaluation along the cross-section of the sample.
At least five points were considered for the average values of the hardness test [25,26].
The load of 1.961 N was used for 10 s to measure the indent points on the surface and
cross-section of the sample. The image of indent points along the cross-section and surface
of the sample is shown in Figure 12a,b. Table 3 represents the hardness of both samples on
the surface and cross-section. There was a slight difference in the values of hardness at the
surface and the cross-section. The microhardness results show from coating to substrate.
Increased hardness was shown at the surface compared to the cross-section region for NiTi
coating samples with lower hardness for the substrate [27,28].

Table 3. The hardness of the plasma-sprayed sample at the surface and cross-section from center and
edge regions.

Sample
(Force (N): 1.961,

Time: 10 s)
Surface (HV) Cross-Section (HV)

Sample 1
At center At edge 238.6 ± 18.6 264 231.0 ± 15.9 -

Sample 2
At center At edge 277.0 ± 19.4 274 259.8 -

Steel (substrate) 129 129



Materials 2022, 15, 8598 14 of 16
Materials 2022, 15, x FOR PEER REVIEW 16 of 18 
 

 

 
Figure 12. (a) indent points along the cross-section; and (b) indent points on the surface of the 
plasma-sprayed coatings. 

Table 3. The hardness of the plasma-sprayed sample at the surface and cross-section from center 
and edge regions. 

Sample 
(Force (N): 1.961,  

Time: 10 s) 
Surface (HV) Cross-Section (HV) 

Sample 1  
At center  At edge  238.6 ± 18.6 264 231.0 ± 15.9  - 

Sample 2  
At center At edge 277.0 ± 19.4 274  259.8 - 

Steel (substrate)  129  129  

The value of 230–277 HV corresponded to the hardness of NiTi prepared by plasma 
spraying. The values matched well with other researchers’ findings for NiTi SMA alloy 
prepared by plasma spraying [29]. The lower value of hardness 231–234 HV corresponded 
to the B19 martensite phase of NiTi, whereas the higher value corresponded to the aus-
tenite phase of the NiTi coating structure [30]. Similarly, the hardness of the stainless steel 
matched well with the austenite phase values of 129 HV. As the ferrite phase formed in a 
minor amount near the interface in the heat-affected zone, it was hardly able to contribute 
towards the hardness of the core substrate.  

4. Conclusions 
The NiTi shape memory alloy formed a thick coating layer on the stainless steel by 

the plasma spraying method. The effective coating layer of 500 µm was obtained at 12 kW 
power with a feed rate of 4.2 g·min−1. The better interfacial adhesion of the coating layer 
with the substrate stainless steel was observed without any porosity. The plasma-sprayed 
sample showed austenite and martensite, as well as a minor oxide compound. The grain 
size distribution along the interface showed the distribution of phases that belong to the 
NiTi austenite phase and substrate stainless phases of Fe and austenite. The hysteresis 
effect of the standalone sample showed the behavior of the shape memory effect. There 
was a larger hysteresis effect in the shape memory effect with samples with coating and 
substrate as material. However, there was a large accumulation of plastic strain in the 
material with multiple cycles. The change in displacement was more prominent in the 
composite material compared to NiTi coating. The hardness of the NiTi coating and the 
substrate confirmed the intermetallic alloy and substrate.  

Figure 12. (a) indent points along the cross-section; and (b) indent points on the surface of the
plasma-sprayed coatings.

The value of 230–277 HV corresponded to the hardness of NiTi prepared by plasma
spraying. The values matched well with other researchers’ findings for NiTi SMA alloy
prepared by plasma spraying [29]. The lower value of hardness 231–234 HV corresponded
to the B19 martensite phase of NiTi, whereas the higher value corresponded to the austenite
phase of the NiTi coating structure [30]. Similarly, the hardness of the stainless steel matched
well with the austenite phase values of 129 HV. As the ferrite phase formed in a minor
amount near the interface in the heat-affected zone, it was hardly able to contribute towards
the hardness of the core substrate.

4. Conclusions

The NiTi shape memory alloy formed a thick coating layer on the stainless steel by
the plasma spraying method. The effective coating layer of 500 µm was obtained at 12 kW
power with a feed rate of 4.2 g·min−1. The better interfacial adhesion of the coating layer
with the substrate stainless steel was observed without any porosity. The plasma-sprayed
sample showed austenite and martensite, as well as a minor oxide compound. The grain
size distribution along the interface showed the distribution of phases that belong to the
NiTi austenite phase and substrate stainless phases of Fe and austenite. The hysteresis
effect of the standalone sample showed the behavior of the shape memory effect. There
was a larger hysteresis effect in the shape memory effect with samples with coating and
substrate as material. However, there was a large accumulation of plastic strain in the
material with multiple cycles. The change in displacement was more prominent in the
composite material compared to NiTi coating. The hardness of the NiTi coating and the
substrate confirmed the intermetallic alloy and substrate.
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