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Abstract: Organic semiconductors have gained substantial interest as active materials in electronic
devices due to their advantages over conventional semiconductors. We first designed four Schiff
base compounds, then the effect of electron donor/acceptor groups (methyl/nitro) was studied on
the compounds’ electronic and transport nature. The absorption spectra (λabs) were computed by
time-dependent DFT at TD-B3LYP/6-31+G** level. The effect of different solvents (ethanol, DMF,
DMSO, and acetone) was investigated on the λabs. The substitution of the -NO2 group to the furan
moiety at the 5th position in Compound 3 leads to a red-shift in the absorption spectrum. A smaller
hole reorganization energy value in Compound 3 would be beneficial to get the hole’s intrinsic
mobility. In contrast, a reduced-electron reorganization energy value of Compound 4 than hole may
result in enhanced electron charge transfer capabilities. The reorganization energies of compounds
1 and 2 exposed balanced hole/electron transport probability. The optical, electronic, and charge
transport properties at the molecular level indicate that Compound 3 is suitable for organic electronic
device applications.

Keywords: organic field-effect transistors; schiff base compounds; density functional theory;
optoelectronic properties; charge transport

1. Introduction

Organic semiconductor materials (OSMs) have become very important due to their
flexible, cheap, lightweight, and environmentally friendly nature [1–3]. Small OSMs are
attracting interest because of their ease of synthesis, light weight, and inexpensive cost.
The ability to interact with solvents and associated molecules for various modes of charge
transport makes them beneficial for promising optoelectronic applications [4].

Developments in OSMs in organic field-effect transistors (OFETs), organic light-
emitting diodes (OLEDs), photodiodes, and photovoltaics have persuaded the researchers
to develop them into functional materials [5–7]. The OFETs with better performance may
be achieved by the development of device fabrication approaches as well as by new mate-
rials [8]. Tuning excellent charge-transport properties in molecular systems is feasible by
enhancing intermolecular interactions, resulting in rearranged optical and electronic struc-
tures. Thus, developing intermolecular interactions can be an efficient approach to enhance
OFETs performance. To improve the intermolecular interactions of OSMs, heteroatoms like
O, S, N and C=C or C≡C were substituted in the π-conjugated backbone. The existence of
π-conjugation leads to the delocalization of electrons adjacent to the core and the prospect
of superior charge carrier mobility [9–12]. OSMs are amalgamated by weak intermolecular
interactions, like van der Waals, π-π, S–S, and C–H [13].

The OSM versatility delivers numerous exciting characteristics to be tuned. Since
organic materials such as Schiff derivatives have potential in semiconductors, they have
attracted great interest. Conjugated Schiff bases have thrilling properties and were used in
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numerous electronics [14,15], OFETs [16], and electrochromic devices [17]. The significant
progress of electronic materials and devices in recent years has shown that the use of Schiff
bases as electronic materials offers significant excellent advantages, and their facile syn-
thetic process made them a potential alternative for electronic devices. The superior thermal
strength, broader absorption, smaller band gap, and great electrical conductivity also en-
sures that Schiff bases will be used as future materials for organic electronics. The Schiff base
compounds demonstrate intramolecular proton transfer and donor-acceptor combination.

Moreover, donor–π–bridge–acceptor and heteroatoms in these compounds govern
the electronic transitions to make them appealing for semiconductors [17–20]. The specific
feature of Schiff bases is their solvatochromic behavior. The π-conjugation leads to delo-
calization in these compounds resulting in superior mobility in OFETs. Moreover, donor
and acceptor groups as substituents augment the electronic, solvatochromic, and optical
properties [21].

The effect of the electron-donating group (methyl), the electron-withdrawing group
(nitro), and solvents with various polarities (ethanol, DMF, DMSO, and acetone) were
examined on the absorption spectra for designed Schiff base compounds, see Figure 1. The
donor and acceptor effect on the electronic and charge transport properties, e.g., frontier
molecular orbitals, molecular electrostatic potential (MEP), and reorganization energy, is
ascertained by DFT and time dependent DFT.
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Figure 1. The structures of Schiff base compounds. 
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2. Computational Details

Quantum chemical approaches have proven efficient at exploring the
structure–properties relationship. Computational investigations have played a substantial
role in probing the properties of OSMs [22]. Computational methods are used to analyze
materials’ properties in different fields [23]. It has been shown in previous studies that the
density functional theory (DFT) is a rational choice for investigating the charge transport
and optoelectronic properties of OSMS [24]. Moreover, quantum chemical calculations were
utilized to ascertain the properties of thiophene-base compounds [25,26]. Optimization of
Schiff base compounds in the ground state (S0) was accomplished by DFT [27–30] at the
B3LYP/6-31+G** level, as the B3LYP functional demonstrated good results compared with
reported data [31,32]. The electron affinity, ionization potential, [33] and reorganization en-
ergy (hole/electron) values were estimated at the B3LYP/6-31+G** level. Time-dependent
DFT [34] was applied to calculate the absorption (λabs) by TDDFT [35] the TD-B3LYP/6-



Materials 2022, 15, 8590 3 of 10

31+G** level in gas and solvents (acetone, ethanol, DMSO, and DMF) using the Gaussian16
package [36].

3. Results and Discussion
3.1. Electronic Properties

The LUMO (ELUMO) and HOMO (EHOMO) and their energy gaps (Egap) are essential
parameters to understand the optoelectronic and charge transport of compounds. Here, we
have tabulated the EHOMO, ELUMO, and Egap of Schiff base compounds at S0 in Table 1. The
electron-withdrawing group nitro instead of methyl was critical for adjusting the frontier
molecular orbital (FMO) energy value in Comp3. Substitution of the nitro group reduces
the EHOMO and ELUMO values of Comp3 and decreases Egap, i.e., 2.07 eV.

Table 1. The LUMO energies (ELUMO), HOMO energies (EHOMO), and energy gaps (Egap) (in eV) of
Schiff base compounds at B3LYP/6-31+G** level.

Comp. EHOMO ELUMO Eg

1 −5.65 −2.68 2.97
2 −5.62 −2.64 2.98
3 −5.88 −3.81 2.07
4 −5.55 −2.55 3.00

The charge densities distribution of FMOs are illustrated in Figure 2. The HOMO
is delocalized on aminobenzene while LUMO is localized on thiophene/furan moiety in
1/2 and 3/4. Moreover, LUMO can also be found at nitro group in 3 which is revealing an
intra-molecular charge transfer (ICT) from H→ L.
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Figure 2. The ground state contours of FMOs (HOMOs and LUMOs) of Schiff derivatives (contour
value = 0.035).

The work functions (φ) of Ag (Al) are 4.74 (4.08 eV) [37]. The electron/hole injection
energies (EIE/HIE) barrier was disclosed from Schiff base compounds to the Al/Ag elec-
trode individually, which were assessed as (ELUMO-φ) and (φ-EHOMO), respectively. The
estimated EIE barrier from Compounds 1–4 to Al are 1.40, 1.44, 0.27, and 1.53 eV, while HIE
for 1–4 is 1.57, 1.54, 1.80, and 1.47 eV, respectively. The calculated EIE from 1–4 to Ag are
2.06, 2.02, 0.93, and 2.19 eV, respectively. The HIE for 1–4 are 0.91, 0.88, 1.14, and 0.81 eV.
These findings uncovered that substituting the nitro group at the 5th position on the furan
group in 3 would be promising to improve the electron injection. In contrast, the methyl
group could complement the hole injection ability, see Table 2.
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Table 2. The hole/electron injection energy (EIE/HIE) barriers from of Schiff base compounds to
Silver (Ag)/Aluminum (Al) electrodes were assessed at B3LYP/6-31+G** level.

Comp. HIE (Ag) EIE (Ag) HIE (Al) EIE (Al)

1 0.91 2.06 1.57 1.40
2 0.88 2.02 1.54 1.44
3 1.14 0,93 1.80 0.27
4 0.81 2.19 1.47 1.53

3.2. Absorption Spectra

Absorption (λabs) and the percent contribution of the transitions and oscillator strengths
(f ) involved by FMOs of Schiff base derivatives at TD-B3LYP/6-31+G** level in the gas
phase and several solvents are tabulated in Table 3. The solvent effect has attracted much
attention because many chemical processes occur in the solution phase. To study the impact
of the solvent on absorption maxima, the gas phase studies have been made of molecules
(as a control), and then the data were compared with the λabs and computed in a solvent
such as ethanol, acetone, DMF, and DMSO.

Table 3. The absorption wavelengths (λabs, nm), oscillator strengths (f ), %Contribution (%Con), and
main transitions in the gas phase as well as in solvents (ethanol, acetone, DMF, and DMSO) of Schiff
base compounds at TD-B3LYP/6-31+G** level.

Comp. λabs f Tran %Con λabs f Tran %Con

Gas Phase In Ethanol

1
512 0.0432 H→ L 71% 477 0.0721 H→ L 71%
316 0.2682 H→ L+1 34% 334 0.4736 H→ L+1 12%

2
510 0.0439 H→ L 71% 474 0.0740 H→ L 70%
312 0.2970 H→ L+1 47% 325 0.6117 H→ L+1 60%

3
745 0.0259 H→ L 71% 680 0.0343 H→ L 70%
410 0.0518 H→ L+1 16% 334 0.5260 H→ L+2 10%

4
502 0.0507 H→ L 70% 468 0.0860 H→ L 70%

308 0.4157 H→ L+1 37% 330 0.7663 H→ L+1 12%
230 0.0632 H→ L+2 28% 240 0.0918 H→ L+1 2%

Comp. λabs f Tran %Con λabs f Tran %Con
In Acetone In DMF

1
478 0.0717 H→ L 70% 477 0.0747 H→ L 70%
334 0.4744 H→ L+1 12% 335 0.4839 H→ L+1 12%

2
474 0.0736 H→ L 70% 474 0.0769 H→ L 70%
325 0.6109 H→ L+1 60% 326 0.6271 H→ L+1 60%

3
682 0.0342 H→ L 71% 682 0.0342 H→ L 71%
334 0.4860 H→ L+2 9% 335 0.5838 H→ L+2 9%

4
468 0.0855 H→ L 70% 468 0.0893 H→ L 70%
330 0.7661 H→ L+1 13% 332 0.7773 H→ L+1 12%
240 0.0918 H→ L+1 2% 240 0.0921 H→ L+2 3%

Comp. λabs f Tran %Con
In DMSO

1
477 0.0745 H→ L 70%
335 0.4808 H→ L+1 12%

2
473 0.0766 H→ L 70%
326 0.6244 H→ L+1 60%

3
678 0.0352 H→ L 71%
335 0.5819 H→ L+2 9%

4
467 0.0891 H→ L 70%
331 0.7750 H→ L+1 12%
240 0.0926 H→ L+2 3%
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Here, we noticed that the first and second λabs peaks at 512 nm and 316 nm corre-
sponded to H→ L (S0 → S1) and H→ L+1 for 1 in the gas phase, whereas the first and
second λabs peaks were observed at 477 nm, corresponding to H→ L (S0 → S1) and 334 nm
from H→ L+1 for 1 in ethanol. The effect of ethanol solvent in 1 was observed on λabs
from the gas phase to ethanol, i.e., the first peak is 35 nm blue shifted while the second
peak is 18 nm red shifted, respectively. The solvent polarity has no significant effect on
λabs (see Table 3). In the gas phase, the substitution of the nitro group at the 5th-position of
furan in 3 leads to a red shift, i.e., 233 nm in the first band and 94 nm in the second band
as compared to 1. The significant effect on the first peak was observed in λabs from the
gas phase to ethanol in 3 which is being blue-shifted, i.e., 65 nm. The substitution of the
nitro group at 5th-position of furan in 3 leads to a blue shift in λabs from the gas phase to
acetone, DMF, and DMSO, i.e., 63, 63, and 67 nm for the first band, respectively. The effect
of electron acceptor and electron donor moiety is mainly on the first λabs band, i.e., the
substitution of the electron deactivating group (nitro) at the 5th-position of furan in 3 tune
the λabs wavelength toward a shorter wavelength.

All electronic transitions and corresponding oscillator strengths in the absorption
spectra are π to π* type. A fascinating tendency in the oscillator strength was noticed
for Schiff base compounds: the oscillator strengths for S0 → S1 are prodigiously larger in
the solvent phase as compared to the gas phase. Furthermore, λabs indicates that 3 has a
band in the visible region. According to the nature of the transition, the HOMO to LUMO
transition was observed for the first excitation. The λabs wavelengths are listed in Table 3.
All the compounds exhibit two absorption peaks related to the aminobenzene and the
charge transfer associated with the thiophene/furan substituted moiety (Figure 2). The
first bands may be attributed to a charge transfer-type transition (CT) of the π to π*, and
from the HOMO located on aminobenzene to the LUMO on the thiophene-furan part. The
lowest energy gaps are the
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* for the 3 (2.07 eV), while the other Schiff based derivatives
showed larger band gaps as established from the optical property values and the occurrence
of UV values (see Table 3). These results clearly show that the interaction between the donor
and the acceptor, either in an alternating manner or in a separate block in the molecule,
performs a significant role in controlling the planarity and the photophysical properties.

3.3. Charge Transport Properties

Charge transports are sensitive to internal traps, as well as transport within p-type
materials from low ionization potential levels, making the filling of deep traps less attractive.
Likewise, materials of n-type benefit from a larger EA, where there are also few available
traps. The hole injection from an electrode to a semiconductor HOMO is more effective
when the electrode is closer, or even greater than a semiconductor IP. Similarly, for better
electron injection, the larger EA values would be suitable. For the better stability of the
device, it is certified that its charged and neutral states do not contribute to chemical
reactions [38]. To preclude a thermodynamically efficient reaction (which contains oxygen
and water), a neutral semiconductor is expected to require IP greater than 4.9 eV [38].
The shallow HOMO may diminish ambient O2 in the H2O existence to form OH−. The
semiconductors having deep HOMO can receive holes that can oxidize the H2O in the
atmosphere. Obstacles during such an undesirable reaction by chance lead to overpotentials
that permit organic semiconductors to make redox gently so that they can unveil the
stabilities. Electron transport is most affected by the reaction with air, and it is important
to prevent the electron polaron from degrading the material. To achieve this, the LUMO
has to be low to avert excited electrons to reduce the water-soluble O2 systems to O2

− [39]
or H2O to OH−. These undesirable electrochemical processes can reduce charge transfer
and set about irreversible changes within the semiconductor. Defining the exact amount of
EA that needs to be skipped to prevent this redox reaction requires consideration of the
maximum response power and device morphology. It has been suggested that high EA can
put down oxidation reactions [40].
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The values of the ionization potential (IPs) and the electron affinity (EAs) are among
the most important factors of organic compounds for use in OFETs, xerography, and
electroluminescence. These parameters have been interconnected to the amount of energy
required to add or remove electrons and thus can be considered as molecular stability with
respect to donating or receiving electrons to create an exciton. We describe the assessed
IPs and EA for the Schiff base derivatives, see Table 4. Additionally, it entails that there
was a positive correlation between the LUMO level and EAs. The
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-conjugated organic
materials with an electronic charge motion are carried out by a hopping mechanism. The
internal reorganization energy (λint), because of its structural variation from neutral to
ionic states (cation and/or anion), is a vital parameter for the charge transfer in organic
electronic materials, as it is one of the most important factors that influence the rate of the
charge of hopping and considering the mobility of field-effect transistors. In order to have
a high degree of mobility of materials, the λint needs to be reduced. The λint is a significant
parameter for the estimation of the rate of charge transfer. Previously, it was exposed that
the DFT can be a trustworthy way to imitate the experimental data [41–44]. The λint and
external polarization (λext) are two components of total reorganization energy [45]. Here,
λint was projected for the hole (λhole) and the electron (λelec). The λhole was estimated by
Equations (1) and (2) [46]:

λ1 = E+ (B) − E+ (B+) (1)

λ2 = E (B+) − E (B) (2)

where E+ (B), E+ (B+), E (B+), and E (B) are the energies of the cation at neutral optimized ge-
ometry, neutral at the cationic optimized geometry, optimized cation, and optimized neutral
geometry, respectively. Correspondingly, λelec was estimated by Equations (3) and (4):

λ3 = E− (B) − E− (B−) (3)

λ4 = E (B−) − E (B) (4)

where E− (B), E− (B−) and E (B−) are energies of the anion at neutral optimized geometry,
neutral at anionic optimized geometry, and the anionic optimized geometry.

Table 4. Vertical/adiabatic ionization potential (IPv/IPa), electron affinity (EAv/EAa),
and hole/electron reorganization energies ( λhole /λelec ) in eV of Schiff derivatives at
B3LYP/6-31+G(d,p) level.

Comp. IPa EAa IPv EAv λhole λelec ∆λ

1 7.07 1.47 7.37 1.19 0.533 0.527 0.006
2 7.04 1.48 7.35 1.17 0.542 0.541 0.001
3 7.34 2.55 7.61 2.22 0.479 0.630 0.151
4 6.98 1.28 7.26 1.03 0.522 0.477 0.045

The vertical and adiabatic EA and IP were computed by using Equations (5) and (6).

Adiabatic
{

IPa = E
(
B+

)
− E(B)

EAa = E(B)− E
(
B−

) (5)

Vertical
{

IPv = E+(B)− E(B)
EAv = E(B)− E−(B)

(6)

The computed λhole, λelec and λint of Schiff base derivatives at the level of B3LYP/6-
31+G** are shown in Table 4. The smaller the electron reorganization energy value of the
compound exposed that it would be suitable as an n-type semiconductor, while the smaller
hole reorganization energy value of the compound uncovered that it would be appropriate
as a p-type semiconductor; details can be found in reference 43. The λhole and λelec values
for 1 and 2 reveal that these compounds might be good, having balanced hole and electron
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transfer mobility, and the ability to be used in p and n-type materials. The λhole has been
calculated to be much smaller than the λelec with the difference in the range of 0.151 eV for 3,
which reveals that this compound might be a suitable p-type contender. The λelec has been
calculated to be smaller than the λhole with the difference in the range of 0.045 eV for 4 which
shows that this compound might be suitable as n-type contender. Hitherto, it was pointed
out that lower λint values can increase the charge transfer rate [43,47–49]. The substitution
of the electron-deactivating group (nitro) at the 5th-position of the furan in 3 leads to a
decrease in the polarization of the neutral to cation state which means that there are lower
λhole values compared to other compounds, suggesting that this compound could be a
good choice for the hole transfer. It may turn out that the electron activating group (methyl)
at the 5th-position of furan in 4, leads to a decrease of the polarization of the neutral to
anion which will result in a lower λelec value in comparison with other compounds, which
suggests that this compound may be a good candidate for electron transport.

3.4. Molecular Electrostatic Potential

Earlier works reported that diffraction methods would be supportive in determining
molecular electrostatic potential (MEP) experimentally, and this can also be tested by simu-
lation. The MEP points to the widespread electronic distribution across the board, which is
a broad aspect of understanding and predicting the reactivity of different compounds. In
Figure 3, the MEP map can be seen in the color scheme. Red represents regions with a high
negative potential and blue indicates regions with high positive potential. High potential
of negative regions is ideal for electrophilic attacks, however, high potential regions of
positive prefer nucleophilic attacks. The MEP decreases with order blue > green > yellow
> orange > red; red indicates the most repulsion while blue indicates the most attractive
phase of the nucleophilic attack and vice versa.
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From Figure 3, it was revealed that keto oxygen has negative potential in all the Schiff
base compounds. The nitro group in 3 has also negative potential, while the -NH2 group
has good positive potential in all the Schiff base derivatives. In 3, the nitro group will have
a negative potential. These results clearly indicate that in the event of a nucleophilic attack,
the repulsion can be in potentially negative MEP areas. In addition, in the event of an
electrophilic attack, the attraction may be to keto oxygen and the nitro group, while the
greater the repulsion may be to the -NH2. The negative region indicates the photostability
of the compounds.

4. Conclusions

Modification of chemical structures can improve the charge transfer, optical and
electronic properties. These properties were tuned by substituting the electron donor
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and acceptor groups. These compounds were examined by B3LYP/6-31+G**, which al-
lows a reliable estimate and analysis of the electronic structures of sulfur, nitrogen, and
oxygen-containing organic molecules. The absorption wavelengths were estimated at the
TD-B3LYP/6-31+G** level. The properties of donor–π–bridge–acceptor and acceptor–π–
bridge–acceptor Schiff base compounds were explored. The substitution of -NO2 into the
furan at the 5th-position in Compound 3 leads to red shift in the absorption spectra as
compared to other molecules. The smaller hole reorganization energy value of Compound
3 would have an advantage to develop its hole intrinsic mobility. The smaller electron
reorganization energy value for Compound 4 as compared to other counterparts would
lead to better electron charge transfer ability. The results indicated that the designed Schiff
base compounds would be good for organic electronic device applications, having compe-
tence as n-type (Compound 3), p-type (Compound 4), and balanced hole as well as electron
transport materials (Compounds 1/2).
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