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Abstract: Precipitation hardening stainless steels have attracted extensive interest due to their distin-
guished mechanical properties. However, it is necessary to further uncover the internal quantitative
relationship from the traditional standpoint based on the statistical perspective. In this review, we
summarize the latest research progress on the relationships among the composition, microstructure,
and properties of precipitation hardened stainless steels. First, the influence of general chemical
composition and its fluctuation on the microstructure and properties of PHSS are elaborated. Then,
the microstructure and properties under a typical heat treatment regime are discussed, including
the precipitation of B2-NiAl particles, Cu-rich clusters, Ni3Ti precipitates, and other co-existing
precipitates in PHSS and the hierarchical microstructural features are presented. Next, the microstruc-
ture and properties after the selective laser melting fabricating process which act as an emerging
technology compared to conventional manufacturing techniques are also enlightened. Thereafter, the
development of multi-scale simulation and machine learning (ML) in material design is illustrated
with typical examples and the great concerns in PHSS research are presented, with a focus on the
precipitation techniques, effect of composition, and microstructure. Finally, promising directions for
future precipitation hardening stainless steel development combined with multi-scale simulation
and ML methods are prospected, offering extensive insight into the innovation of novel precipitation
hardening stainless steels.

Keywords: precipitation hardening stainless steel; composition-microstructure-properties relation-
ships; multi-scale simulation; machine learning; alloy design and characterization

1. Introduction

Precipitation hardening stainless steel (PHSS) has a long history and is widely em-
ployed in aerospace industries, marine environment applications, and nuclear reactor fields
due to its ultra-high strength, satisfactory ductility, and excellent anti-corrosion proper-
ties [1–5]. Mechanical properties, such as strength, ductility, toughness, and corrosion
properties, including self-corrosion potential and self-corrosion current density, are sev-
eral important descriptors of metallic structural materials. Ensuring excellent mechanical
properties and the anti-corrosion properties of the ultra-high stainless steel to the environ-
ment is a key factor for the long-term life of structural part materials in the actual service
environments [6,7]. Ultimately, PHSS can achieve all its advantages. However, with the
increasing requirements of PHSS in the harsher service environment, there is an urgent
need for alloy design to meet the iterations of advanced structural stainless steels.

The microstructure and distinguished properties of ultra-high strength stainless steels
have been characterized through experimental techniques in the past decades [8–10]. The
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composition of steel was proportioned, then the microstructure and properties were en-
hanced and the relationships among them were established through traditional exper-
imental processing; however, the rapid composition design and property optimization
cannot be achieved. Great attempts have been focused on the establishment of composition-
microstructure-properties relationships through conventional trial and error experimental
investigations, which are time- and resource-consuming. It has been proven that the
precipitated phase and reversed austenite play a key role in mechanical and corrosion
properties. The sequential formation of segregated phases in PH17-4 PHSS was observed
at two different aging temperatures [11]. The Cu-rich precipitates in the martensitic matrix
mainly determine the mechanical properties rather than the reverted austenite from the
mechanical testing results [12,13]. A. Barroux et al. have investigated that the pitting
corrosion behavior of the PH17-4 steel fabricated by laser beam melting methods is better
than the traditional PH17-4 steel [14]. Ronald Schnitzer et al. have demonstrated that the
reverted austenite in PH13-8Mo steel aged at 575 ◦C shows two types forms, and the precip-
itation of B2-NiAl precipitates and the formation of reversed austenite occur simultaneously.
Meanwhile, the enhancement of the strengthening capability of B2-NiAl precipitates is
related to the growth of B2-NiAl precipitates and the formation of B2-NiAl precipitates
alters the strain rate sensitivity [15–17]. Furthermore, it is necessary to further rapidly
model the relationship among alloy composition, process/microstructure, and properties.
Multi-scale simulation and ML techniques of materials play a vital role in the development
of novel materials. The capability of ML largely originates from its statistical analysis of big
data, which comes from experiments, first principles calculations, and molecular dynamics
(MD) simulations [18–20]. In addition, ML can not only carry out alloy design, but also
realize many important functions, such as image recognition based on pattern digitization
techniques [21–23].

Various martensite variant microstructures with significant anisotropy features were
demonstrated based on first principles calculation and phase-field simulation methods,
which is in acceptable agreement with experimental results [24,25]. The behavior and
mechanisms of hydrogen embrittlement were revealed in high Co-Ni secondary hardening
steel, which exhibited the improving accuracy of multi-scale simulation approaches [26].
Sayyed Ali Razavi et al. have carried out the predication and optimization of aging
strengthening parameters using an artificial neural network (ANN) combined with genetic
algorithm in PH17-4 steel and the consistency between the hardness experiment and the
prediction results shows that the proposed model is significantly effective [27]. Therefore,
it is imperative to design PHSS with the assistance of ML approaches.

In this review, we concentrate on recent progress in the advancement of PHSS, includ-
ing the ultra-high strength steel not limited to the precipitation hardening steel (PHS) and
PHSS, in regard to the modeling of composition-microstructure-properties relationships,
especially in the hot working process, as well as the effects of compositions on the mi-
crostructure and properties of PHSS steels. Although the PHSS has a relatively long history,
we would like to present how to establish a quantitative model of composition-structure-
property to quickly discover novel high-performance PHSS. We start by summarizing
the composition development and property features of PHSS, the microstructures and
properties under representative heat treatments, and then discussing the microstructures
and properties of the PHSS prepared by the selective laser melting (SLM) method. Finally,
the strategies of alloy design and tailored property optimization of PHSS are prospected.
This work is devoted to providing useful insight into the design strategies that are used to
develop novel high-performance PHSS, specifically for engineering applications.

2. Effects of Chemical Composition and Its Fluctuation on Microstructure and
Properties

Many investigations on PHSS have been carried out, and most of them focus on
mechanical and corrosion behavior [12,16,28–32]. Tian et al. [28] have developed a novel
stainless steel with distinguished strength and toughness balance properties and acceptable
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anti-corrosion properties. The excellent mechanical properties originate from the precipita-
tion effect, and the corrosion property is achieved by regulating the Co and Cr contents.
The aging heat treatment can clearly enhance the anti-corrosion properties of the sintered
PH17-4 PHSS in dilute sulfuric acid environment and the aging temperature of 480 ◦C can
obtain the best anti-corrosion properties [29]. The results help us in better understanding
the composition-microstructure-property relationship of various steels. Concerning re-
search directions in PHSS, we present a brief statistical overview of the annual publications
on precipitation-hardening stainless steel retrieved with keywords of “precipitation hard-
ening steel (named as PHS)”, “precipitation hardening steel and microstructure property
(designated as PHS + MP)”, “precipitation hardening stainless steel and microstructure
property (named as PHSS + MP)”, “precipitation hardening stainless steel and heat treat-
ment (named as PHSS + Heat Treatment)”, “precipitation hardening stainless steel and
preparation (named as PHSS + Preparation)”, respectively. A distribution map of the
number of annual publications on precipitation hardening steel since 2010 is illustrated in
Figure 1 (data from Web of Science until 16 September 2022). It can be observed that the
number of research papers on PHS has risen rapidly before 2019, which indicates that the
research community is more concerned about the microstructure and mechanical properties
of developed steels, and at the same time, optimizing the properties was achieved by
heat treatment technologies. The number of papers on new fabrication methods of PHSS
steel is small, indicating that the research in this field is in the initial stage. Additionally,
it is worth noting that the number of publications on PHSS has been decreasing in the
past 3 years, indicating that the potential of existing PHSS steel has reached its limit. It
is necessary to develop and research new PHSS steels, especially new PHSS steels with
ultra-high mechanical properties.
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Figure 1. Number of precipitation hardening stainless steel publications per year with microstructure-
properties, heat treatment, and preparation since 2010 (data from Web of Science database until 16
September 2022).

The first-generation precipitation hardening martensitic stainless steel was designed in
the 1840s [33]. PHSS has been widely used in aerospace, marine equipment, and other fields
by virtue of its extraordinary strength, toughness, and corrosive atmosphere resistance.
Subsequently, PH17-4 steel was developed by Armco in 1948, which is treated by an
uncomplicated heat treatment regime and possesses acceptable weldability, endowing it
largely applicated in aircraft landing frames, manufacturing fasteners, and engine parts.
Unfortunately, the limited cold working deformability hinders the development of PH17-4
steel. Furthermore, PH15-5 stainless steel was incubated by deliberately reducing the
content of Cr element and increasing the content of Ni element in PH17-4 steel, which
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is currently employed as load-bearing components in aerospace and other industrial
fields. On this basis, PH13-8Mo stainless steel with enhanced strength and anti-corrosion
properties was developed in 1968 by further regulating the concentration of Cr and Ni
elements. Ferrium S53 steel has been successfully developed based on Materials Genome
Program in recent years as shown in Table 1 [34–46], which has been successfully applied
to American A-10 fighter planes and T-38 aircraft.

Table 1. The main features of typical precipitation hardened stainless steels with developed
year [34–46].

Type Main Features Designed Year Reference

PH17-4

Simple heat treatment process;
Excellent corrosion performance;

Easy to weld;
Limited cold working capacity;

Low impact toughness.

1948 Reddy, V.V., et al., 2015.

Custom450
Good combination of strength, toughness, and

anti-corrosion properties;
Cu-rich precipitate is the main precipitated phase.

1961 Bhavsar, V., et al., 2022.

PH15-5

The Ni and Cr contents are modified based on
PH17-4 steel;

Lath martensitic microstructures;
The strength and toughness are enhanced.

1965 Fu, P., et al., 2019.

PH13-8Mo Ultra-high strength and hardness;
Excellent stress anti-corrosion properties. 1968 W.M. Garrison et al., 1991.

PH17-7
Semi-austenitic PHSS;

Surgical instruments, pressure vessels, and
aerospace parts.

1977 Ziewiec, Aneta et al., 2016.

1RK91 Strengths exceeding 3000 MPa;
Retaining superior ductility. 1991 NILSSON, J.O., et al., 1994.

Custom 465

Anti-corrosion properties have been further
improved;

Costs are greatly rising due to the high content of
alloying element.

1997 V. Prasath et al., 1991.

Custom 475
Better tensile strength, fracture toughness, and

manufacturability;
Ti-free, more Mo and Co than Custom 465 steel.

2003 Huang C., et al., 2021.

Corrax steel
Highly corrosive injection mold steel;

Simple heat treatment process;
Prepare medical devices.

- Asgari H., et al., 2018; Güldibi,
Ahmet Serdar et al., 2020.

Ferrium S53

Reduce the content of Cr and Ni;
Increase the content of C and Co;

Strengthening effect through the M2C type
nano-coherent precipitates;

Excellent strength and anti-corrosion properties.

2008
Yangpeng Zhang et al., 2018;
Pioszak, G.L. et al., 2017; Seo,

JY., et al., 2017.

PHSS is mainly strengthened by the precipitation of various nanoprecipitates during
the aging treatment [47,48], which can significantly improve mechanical properties. Differ-
ent types of nanoprecipitates tend to form via the addition of different alloying elements.
At the same time, the species and density number of precipitates have significant impacts
on the mechanical properties of PHSS. Moreover, it has been illustrated that the formation
of oxides significantly impacts the corrosion behavior of PHSS, which is determined by
the chemical composition rather than the metallurgical conditions [49]. At present, the
statistical frequency of alloying elements in general ultra-high strength stainless steels is
summarized in Figure 2 [50–58]. Meanwhile, the corresponding alloying element compo-



Materials 2022, 15, 8443 5 of 34

sitions of representative PHSS are tabulated in Table 2 [35,39,41,44–46,59–65]. Excessive
efforts have been made to endeavor the investigation of effects of alloying elements on
microstructures and properties over the years.
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Table 2. Chemical composition in representative precipitation hardening stainless steels
(wt%) [35,39,41,44–46,59–65].

Types Ni Cr Mo Si Mn Others Fe Reference

PH17-4 4.39 16.89 - 0.41 0.79 0.42 Nb
3.12 Cu Bal. Kochmański, P., et al., 2006.

Custom 450 6.58 14.79 0.77 0.23 0.78 0.41 Nb
1.54 Cu Bal. Bhavsar, V., et al., 2022.

PH15-5 4.6 15.1 - 0.6 0.69 0.25 Nb
3.3 Cu Bal. I. Zukerman et al., 2007.

PH13-8Mo 8.54 12.76 0.78 0.58 0.39 3.39 Al Bal. Schober, M., et al., 2009.

PH17-7 7 17 - 1 1 - Bal. Xu, X.L., et al., 2008.

1RK91 9 12 4 0.15 -
0.9 Ti
0.3 Al
2.0 Cu

Bal. NILSSON, J.O., et al., 1994.

Custom 465 11.07 12.1 1.07 0.1 0.02 1.83 Ti Bal. Bonora, R.G., et al., 2014; Li Wang,
et al., 2019.

Custom 475 8 11 5 0.5 0.5 8.5 Co Bal. Huang C., et al., 2021.

Corrax steel 9.2 12 1.4 0.4 0.4 1.6 Al Bal. Hadadzadeh, A., et al., 2019.

Ferrium S53 5.5 10.0 2.5 - -
14.0 Co
1.0 W
0.3 V

Bal.
Yangpeng Zhang et al., 2018;

Pi-oszak, G.L. et al., 2017; Seo, JY.,
et al., 2017.

The alloying elements in ultra-high strength stainless steel are mostly concentrated
in transition metallic elements, and the corresponding frequency of alloying elements is
displayed in Figure 2. It can be observed that the occurrence frequency of Cr and Ni
elements is up to more than 90%; namely, almost every common high-strength stainless
steel contains Cr and Ni to satisfy the requirements of high strength and anti-corrosion
properties. In addition, the occurrence frequency of Mo, Mn, Si, and other alloying elements
is more than 60 %, which shows that these elements can have a certain positive effect on the
strength of stainless steel. The general alloying strengthening elements, such as Ti, Nb, Al,
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Cu, etc., also occur frequently in high-strength stainless steel. Furthermore, V, W, and other
alloying elements have been introduced into ultra-high strength stainless steel to improve
its performance in recent years.

The corrosion properties of PHSS are inevitably associated with the chemical composi-
tion of the passive film on its surface. It is commonly deemed that the Cr concentration
should be more than the threshold concentration to ensure anti-corrosion properties in
typical PHSS according to the n/8 laws. Cr is one of the decisive alloying elements to
enhance the promising anti-corrosion properties of PHSS [66–68]. However, the precipita-
tion of intermetallic compounds will occur with the increment of Cr, which is conducive
to the embrittlement of steel [69]. The proper coordination of Cr and Ni warrants the
formation of a complete martensite microstructure after the quenching treatment. The
addition of the Cr element promotes the precipitation of the Laves phase and other phases
during the long-term aging process [70,71], which benefits the precipitation strengthening
effect. Generally, the interactions of Ni and Fe tend to form ultra-low carbon content Fe-Ni
martensitic microstructure in PHSS. The addition of Ni element will produce the important
strengthening phase, such as the NiAl and Ni3Ti phases; Ni acts as a stabilizer of the
austenitizing element, which promotes alloys with enhanced properties [72–74].

A moderate concentration of Mo is favorable for the formation of passive film on
the surface of PHSS, thus boosting the pitting resistance of the steel in the Cl-containing
solution. Mo element improves hardenability in PHSS, possessing the capability of resisting
corrosion for stainless steel [75–77]. Nanosized carbide M2C is precipitated from the
martensitic matrix in the secondary hardening steel with a balance of high strength and
toughness [78,79]. However, the excessive introduction of Mo will precipitate the Mo-rich
phase in steel [80].

Generally, Ti is regarded as a microalloying element and the content of Ti should be
controlled within 1 wt% in PHSS. Meanwhile, as a strong carbide-forming element, Ti
plays a vital role in the property regulation of steel. Therefore, it is necessary to study
the effect of Ti addition on the mechanical properties of PHSS. The microstructure of Ti-
containing PHSS is intricate and inclined to form intermetallic compounds. Strengthening
and embrittlement behavior were observed and explained through the precipitation and
evolution of precipitates [81,82].

A balanced Cu content in 304 stainless steel improves both the mechanical properties
and anti-corrosion properties. The Cu addition in PHSS is inclined to form Cu-rich clusters
distributed in the martensitic matrix uniformly. Timothy G. Lach [17] have proposed that
Cu has a strong immiscibility and a strong energy interface with Fe, which has a profound
impact on precipitation behavior. As a representative strengthening phase, the content
of Cu in PH17-4 and PH15-5 also remains between 3% and 5% [50,83–87]. The explosive
nucleation and growth of the Cu-rich phase significantly improve the strength of stainless
steel at the initial stage of aging [88,89]. Ronald Schnitzer et al. investigated that the
addition of Cu was observed to drive the precipitation of two types of precipitates. The
precipitation mechanism is to reduce the activation energy and increase the nucleation
site [90]. Moreover, Dieter Isheim [47,91,92] found that the Mn and Ni can be separated
at the interface between the Cu-rich phase and the matrix, which is characterized by
atomic probe tomography (APT) techniques. Furthermore, Kookhyun Jeong [93] and Qian
Wang [94] obtained that Si and Nb elements in stainless steel can play the role of solution
strengthening and grain refining strengthening, respectively. The Nb element will refine
the martensitic microstructure, hinder the rapid propagation of cracks, and further enhance
the stress cracking resistance of steels.

The fundamental microstructure of PHSS consists of lath-like martensitic matrix, a
proper amount of austenite phase, and nano-precipitates with specific orientation relation-
ships with the matrix, which makes the PHSS exhibit a certain balance of strength and
ductility [95]. Meanwhile, the fine nanosized intermetallic phase with uniform distributions
on the matrix plays a crucial role in strengthening precipitates. The mechanical properties
of PHSS are closely associated with the size, quantity, and distribution of its constituent
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phases. In addition, the fluctuation of alloying elements directly affects the microstructure
and properties of the steels. The alloying elements in PHSS form segregation zones and
specific constituent phases through diffusion and redistribution after aging treatment. The
formation of reverted austenite is inextricable with the diffusion of the alloying elements
in PHSS under aging treatment. Advanced analysis and measurement techniques were
performed to characterize the PHSS and substantive results.

It has been revealed that the Cu precipitates are preferentially located at the marten-
site/retained austenite interfaces or martensite lath boundaries, and then the alloying
elements are diffused toward the interface of the Cu precipitates. Finally, the reverted
austenite is formed. At the same time, it is expounded from two aspects that the compo-
sition fluctuation of the Cu element and the solute distribution on nano-scale promote
the austenite reversion transformation of martensitic stainless steel. On the one hand, Cu
is regarded as an austenite stabilizer, which increases the chemical driving force for the
austenite transformation in aging treatment. On the other hand, Cu-rich nanoprecipitates
are served as heterogeneous nucleation sites to yield beneficial conditions for the reverse
transformation of Ni-rich austenite phase. From the TEM and APT results as displayed
in Figure 3, it can be observed that the co-precipitation microstructure of the reversed
austenite phase is accompanied by Ni diffusion and Cu-rich nanoprecipitates [96].
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Figure 3. Microstructural characterization results of reverted austenite before deformation [96]:
(a) The TEM image of the Cu-containing steel in the 60 h aging treatment, (b) the SAED pattern
corresponding to the orientation relationship between the reverted austenite and matrix in (a), (c,d)
are the brightfield TEM micrograph and corresponding TEM/EDS mappings of Ni, Cu, and Mo,
respectively, and (e,f) are the microstructure and compositions of Cu-rich precipitates and reverted
austenite employed by APT. (Reprinted with permission from Ref. [96]. Copyright 2022 Elsevier).
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Chao Zhang et al. [97] have demonstrated that the Ni favors migrating into the Ni3Ti
precipitates and martensitic matrix, and the Ni3Ti precipitates impede the transformation of
reverted austenite and considerably decrease the toughness under aging treatment at 300 to
500 ◦C. The inhibition effect of Ni3Ti precipitates is weakened with the increment of aging
temperature. Moreover, harnessing the composition fluctuation and nano-segregation
from the supersaturated solution to obtain the ultra-high strength steel was achieved [98].
The mechanism of microstructure transformation including the fraction and stability of
austenite for post-heat treatment in martensitic stainless steel was illustrated, which is
mainly controlled by the diffusion behavior of the Ni element as shown in Figure 4 [4].
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3. Microstructure and Properties after Typical Heat Treatment Processing
3.1. Nanoprecipitates in PHSS

Advanced PHSS not only has a combination of ultra-high strength and acceptable
toughness, but also the steel has certain anti-corrosion properties [99,100]. Additionally,
the steels with excellent properties require the adjustment of the microstructure, especially
in the formation of nano-precipitates. It is well known that dislocations can pass through
precipitates by cutting or bypassing the mechanism, and the mechanical properties are
affected by the interaction between precipitates and dislocations, which is closely related
to the size of precipitates. Furthermore, various types of strengthening phases in the
existing representative PHSS have been investigated [101–103], such as B2-NiAl particles
in PH13-8Mo steel [104,105], the Cu-rich cluster in PH17-4 and PH15-5 steels [83,106–108],
and Ni3Ti precipitates in Custom 465 steel [64], etc. [109,110]. As shown in Figure 5, it
provides an encyclopedic understanding solution to PHSS.



Materials 2022, 15, 8443 9 of 34

Figure 5. Characteristic nanoprecipitate microstructures in various PHSS: PH13-8Mo [15]; (Reprinted
with permission from Ref. [15]. Copyright 2010 Elsevier); (a–d) PH15-5 [107] (Adapted from
Ref. [107].); PH17-4 [11] (Adapted from Ref. [11].); ((a)–(d)) Custom 465 [64]. (Reprinted with
permission from Ref. [64]. Copyright 2019 Elsevier).

PH13-8Mo stainless steel is strengthened by the B2 type NiAl intermetallic phase.
Through the three-dimensional reconstruction of the chemical composition atomic region, it
can be observed that NiAl precipitates after aging at 575 ◦C for 100 h, and NiAl precipitates
and reverts to an austenite form on the matrix at the same time [15,111]. APT inspection
found that Cu-rich precipitation and other nano precipitation (such as rich niobium and
NbN/CrN precipitation) were fully formed in PH17-4 steel after heat treatment at 590 ◦C
for 20 min, and the distribution of Cu-rich precipitation on the alloy was more uniform
than at 480 ◦C [11]. Meanwhile, the quantity density and size of Cu-rich particles and
Cr-rich precipitates were found to increase with the increasing service time, indicating
the hardening effect of PH17-4 steel under the nuclear power plant environment [112].
The Cu precipitation promotes the formation of reverted austenite via the diffusion of
elements [113]. The preferential corrosion nucleation regions with the weak passive film are
prone to form at the interface between the Ni3Ti precipitates and the matrix in Custom 465
steel [64]. The nanoprecipitates including B2-NiAl phase, R phase (Fe3Mo2), and austenite
phase in Custom 475 steel were systematically characterized and analyzed utilizing high-
resolution transmission electron microscopy [41]. Meanwhile, the maximum hardening
effect was realized via aging treatment at 520 ◦C for 4 h. Primary NiAl precipitates cause a
slow and gradual increase in the hardening effect. Among these strengthening precipitation
intermetallic phases, the strengthening effect induced by Ni3Ti is the most apparent due to
the addition of Ti alloying element, and the strengthening effect of Cu-rich precipitation is
relatively weak [114]. Furthermore, PHSS hardened by different co-existing precipitates
demonstrated that the desired properties can be integrally optimized. Multiple precipitates
of Cu precipitates, Ni3Ti precipitates, and MC carbides were observed in novel ultra-high
strength stainless steel with fully martensitic microstructures via tuning the composition
and heat treatment processing [115]. The Cu-rich precipitates, Mo-rich precipitates, and
Ni3(Ti, Al) phase are detected after heat treatment in maraging steels [64,116].
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3.2. Effect of Heat Treatment on the Microstructure and Properties in PHSS

Individual heat treatment processes can significantly modify the microstructure fea-
tures in PHSS, such as the length and width of hierarchical lath martensite, the fraction
of austenite (residual austenite and reversed austenite), and the size and distribution of
precipitated phases, which will have a considerable impact on the strength and toughness
of PHSS. At the same time, the heat treatment process will determine the segregation
and enrichment of alloying elements in steel, which will also alter the performance of
PHSS to a certain extent. It is crucial to interpret the relationship between the specific heat
treatment process and the internal microstructure and precipitated phase of PHSS. The
microstructure and properties of PHSS under different heat treatment conditions were
investigated from a large number of literatures. The heat treatment routes of several typical
PHSS are summarized in Table 3.

Table 3. Classical heat treatment regime of PHSS [35,36,38,41,43,44,62,63,100,117–121].

Types STT (◦C) STt (h) ATT (◦C) ATt (h) Reference

PH17-4

1040 1 450 4 Wang Z., et al., 2017.

1040 0.05 480 1
Hsiao C.N., et al., 2002.

1040 0.05 620 1

PH15-5
1170 1 500 2 Tao Zhou et al., 2008.

1038 - 480 - Fu, P., et al., 2019.

PH13-8Mo

850 0.5 525 3 Xu, X.L., et al., 2008.

940 2 550 4
Snir Y, et al., 2018.

940 2 600 4

PH17-7

1050 3 580 2.5
Xu, X.L., et al., 2008.

1050 3 640 2.5

760 1 510 1 Ziewiec, Aneta et al., 2016.

Custom 450
1040 1 565 2

Bhavsar, V., et al., 2022.
1040 1 565 4

Custom 465
1050 0.5 538 3

Bonora, R.G., et al., 2014.
1050 0.5 593 3

Custom 475
1100 1 480 8

Huang C., et al., 2021.
1100 1 520 4

Corrax steel

850 0.5 525 3
S. Höring et al., 2009.

850 0.5 525 12

850 0.5 400 4 Güldibi, Ahmet Serdar et al.,
2020.850 0.5 600 4

1RK91 1100 - 475 4 Stiller, K. et al., 1998.

Ferrium S53
1080 1 680 8 Yangpeng Zhang et al., 2018.

1085 1 482 12 Yangpeng Zhang et al., 2019.

The heat treatment of PHSS usually embodies the solution treatment (ST) followed by
the aging treatment (AT). Optimizing the heat treatment schedules has been demonstrated
as a powerful strategy for enhancing tailored properties. A very high or very low ST
temperature will induce the change in microstructure. In general, the solution treatment
temperature (STT) should be selected as 900–1100 ◦C, with a dwell time of 1–2 h, and then
cooled to below Ms temperature. If necessary, the cryogenic treatment should be carried
out to obtain complete martensite. At the same time, the PHSS is subjected to the aging
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treatment temperature (ATT) at 480–620 ◦C [117,118]. The aging process promotes the
precipitation of fine and dispersed nanoprecipitates; namely, the intermetallic strengthened
phase is regulated to obtain the highest strength and satisfactory comprehensive mechanical
properties. The parameters of heat treatment are usually determined according to the
targeted comprehensive mechanical properties.

In the previous investigations, the aging heat treatment of Custom 465 steel mostly
adopts the temperature of 480–648 ◦C and the aging time of 4 h [122–124]. The evolution of
Ni3Ti precipitates with a rod-like shape and reverted austenite has been a research hotspot
in PHSS. Figure 6 displays the representative hierarchical microstructures in Custom 465
steel aged at different conditions corresponding to 480–640 ◦C for 1, 4, and 8 h, respec-
tively [125]. The hierarchical microstructural features of martensitic steel consist of prior
austenite grain, martensite groups, packets, blocks, and lath with the same variant, which
can be identified clearly. Moreover, the dimension of Ni3Ti precipitates coarsened with
the aging temperature and time imply that the precipitation behavior conformed to the
thermal activation mechanism. Additional reverted austenite is obtained aging at 520 ◦C
and the presentence of reverted austenite induced the inhomogeneous distribution of Ni3Ti
particles and a broader hardness distribution. Ronald Schnitzer et al. [111] have studied
the dynamic mechanical properties of PH13-8Mo steel after solution annealing at 900 ◦C
for 1.5 h followed by the aging treatment at 575 ◦C for different times. The results show
that the reverted austenite exhibits the instability of dynamic mechanical behavior, and
the transformation of austenite into martensite is detected. Although no precipitates are
detected, the hardness of the PHSS is enhanced to a certain extent at the preliminary stage
of aging treatment [105,126,127]. At the same time, an improvement in yield strength
occurs after 10 h of aging, and the long-term aging results show that the strengthening
response is significantly faster at 400 ◦C. The spinodal decomposition of Fe-rich and Cr-rich
phases was detected at the aging time of 5000 h [127]. L.W. Tsay et al. explored the sul-
fide stress corrosion cracking behavior and mechanisms of PH13-8Mo steel after aging at
482–593 ◦C. The content of reverted austenite determines the hardness and strength value,
which indicates that the specimen after the aging treatment at 593 ◦C displays better stress
corrosion cracking resistance, although the hardness is lower than the other aged sam-
ples [128]. In addition, the fracture modes of PHSS change after hydrogen charging, and
hydrogen embrittlement is relieved after proper heat treatment techniques [129,130]. The
dissolution and transformation of Ni3Ti precipitates and the enhanced stability of reverted
austenite mainly diminish the hydrogen susceptibility after the over-aging heat treatment
at 593 ◦C [130].

M.C. Niu et al. [131] have investigated the collaborative effects of Mo, Ti, and Cr on
the precipitation behavior and mechanical properties of PHSS using experimental and
computational approaches. The precipitation sequence of Ni3Ti, Mo-rich, and Cr-rich
precipitates during aging for 0.5, 2, and 60 h at 500 ◦C were revealed. In addition, the
mean radius and volume fraction of Cr-rich particles in Ti/Mo steel is 1.8 nm and 3.1%,
respectively. Zeming Wang et al. [88] studied the evolution of multiple nanoprecipitates
and their interactive effect on the mechanical properties of PH17-4 PHSS aged at 450 ◦C for
0.5–200 h. Figure 7 shows the HRTEM micrograph and insert FFT results of precipitates.
The initial clear hardening effect is strengthened by Cu-rich clusters with a core-shell
structure. The co-existing of Ni, Mn, Si, and Nb-rich precipitates and Cu-rich clusters with
an un-twined 9R structure as the extension of aging time as well as the evolutions of Cr-rich
regions were analyzed. The diameters of Cr-rich domains and Cu-rich clusters increase as
a function of aging time up to 200 h, relatively, the density number of Cu-rich clusters is
decreased, and the strength increment of Cr-rich regions can compensate for the strength
loss due to Cu-rich clusters. Generally, the steels are subjected to the solution treatment at
1038–1040 ◦C of quenching and followed by the aging treatment at different temperatures
for different times [132,133]. The as-solutioned samples are mainly composed of lath
martensitic microstructures with a small fraction of δ-ferrite. The toughness enhanced
(from 15 to 50 ft-lb) and the strength decreased (from 1379 to 999 MPa) are observed with
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the increase in ATT from 480 to 621 ◦C [133]. The two commonly applied aging processes
are aging conditions at 482 ◦C for 1 h or aging at 593 ◦C for 4 h. PH17-4 stainless steel
with the highest strength and hardness is obtained under the condition of under-aging
treatment, and the over-aging process can guarantee the toughness and ductility of the
PH17-4 steel. The TRIP effect of the austenite phase can optimize the ductility of PHSS
when the aging temperature exceeds 580 ◦C [134]. Meanwhile, with the increase in aging
time, the strengthening effect of the Cu-rich phase will be weakened due to over-aging.
However, the contribution of Cr-rich precipitates can largely compensate for the reduction
in the hardening effect of the Cu-rich phase under the aging temperature of 480 ◦C [11].
When the temperature of solution treatment exceeds 495 ◦C, the intergranular corrosion
sensitivity of the PH17-4 specimens is significantly improved through electrochemical
measurements and evaluations [31]. The co-precipitation effect of Ni3Ti, Mo-rich, and
Cr-rich precipitates promotes the strength of the PHSS with a value of 1.8 GPa after aging
at 500 ◦C for 60 h. The corresponding precipitation and evolution mechanisms of PHSS are
presented in Figure 8 [131].
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Figure 7. HRTEM micrograph and insert FFT results of precipitates taken along [111]α−Fe during
aging: (a) Only one Cu-rich precipitate with un-twinned 9R structure after aging for 8 h; (b) three
un-twinned 9R Cu-rich precipitates treated for 32 h; (c) W-shaped twinned 9R Cu-rich precipitates
aging for 100 h; (d) precipitates co-precipitated with twinned and W-shaped twinned 9R Cu-rich
precipitates for 200 h [88]. (Reprinted with permission from Ref. [88]. Copyright 2018 Elsevier).
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Figure 8. TEM and STEM measurements of the Ti/Mo- and Mo-steels under distinct aged processes
and corresponding to the evolution mechanisms: (a) Ti/Mo-steel, 0.5 h, (b) Ti/Mo-steel, 24 h,
(c) Ti/Mo-steel, 60 h, (d) Mo-steel, 0.5 h, (e) Mo-steel, 24 h, and (f) Mo-steel, 60 h. (g) Presents an
HAADF-STEM micrograph of a ω precipitate in (e), and (h) displays the simulated atomic structure
ofω phase [131]. (Reprinted with permission from Ref. [131]. Copyright 2021 Elsevier).
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The relevant literature has demonstrated that the evolution behavior in mechanical
properties with the aging process is attributed to the balanced effect of precipitates, phase
transformation, and austenite morphology features. The study of PH13-8Mo steel results
uncover that the NiAl strengthening particles first displayed a steady growth followed by
a clear coarsening of about 9 nm at 593 ◦C for 5 h and the hardness dropped significantly,
corresponding to the over-aging state for PH13-8Mo steel [5]. The highest hardness of
39 HRC and the least toughness for Custom 450 steel were observed for 2 h at 565 ◦C
due to the possible precipitation effect. Moreover, the existence of continuous reversed
acicular-austenite promotes the higher toughness aged for 4 h, and additional globular
austenite and thickened acicular austenite decrease the toughness [35]. The transformation
products of B2-NiAl precipitates, R phase, and austenite phase in Custom 475 steel are
observed, and these precipitates contribute different strengthening effects relying on the
aging temperature. The formation of B2-NiAl precipitates (2–5 nm) acted as primary
strengthening precipitates inducing a slow incremental hardening effect at 480 ◦C. Effective
hardening was gained by aging at 520 ◦C and the peak hardness (601 HV) was obtained
when the steel was aged for 4 h along with the co-existence microstructure of fine B2
particles and medium-sized R phase (20–30 nm) [41]. The Ti-containing steel displays an
elemental substitution in the type of precipitates during aging, accelerating the growth of
particles and a significant reduction in hardness [61]. It is demonstrated that the Cu-rich
precipitates and dislocation density are two factors regulating the evolution of the yield
strength of the tempered martensite of the PH15-5 steel. The lath of martensite coarsening
occurs during the aging treatment. However, the high-angle boundaries are more important
for the strength of the martensite [110]. The as-aged martensitic microstructure has little
influence on hardness in the PH17-4 steel, and the age-hardening behavior in PH17-4 steel
is similar to the typical PHSS alloys [118].

The precipitation and evolution of reversed austenite have been investigated after
various aging heat treatment processes. During tensile deformation, metastable reversed
austenite transforms into martensite, which greatly improves plasticity and toughness.
The Cu-assisted steel containing 12.4% reversed austenite displays a good combination
of strength (yield strength of 1330 MPa), ductility (15%), and impact toughness (58 J) [96].
The volume fraction of reverted austenite is about 1–2% in Corrax PHSS alloy, which is
consistent with a predicted value of 2.5% [119]. The peak strength at 580 ◦C was obtained,
corresponding to the aging time of 0.25 h. The impact toughness showed a lower value
of 151 J at the peak-aged state and enhanced upon over-aging of the material. The effect
of inverted austenite on strength and impact toughness is weaker than the effect of Cu-
rich precipitates [12]. The granular austenite and elongated austenite are observed after
aging at 575 ◦C. As the aging time increases, the growth of reversed austenite leads to the
dissolution of the adjacent NiAl precipitates [15]. From tensile results, it can be estimated
that about 40% of the reduction in strength (from 1249 to 1000 MPa) during aging can be
originated from the existence of reversed austenite. With an increasing fraction of reverted
austenite, an increased strain-hardening exponent was analyzed, and reverted austenite is
not mechanically stable during dynamical tensile measurements [111].

Furthermore, we summarize the mechanical properties of common PHSS and several
high-strength steels. The mechanical properties of typical PHSS at ambient temperature,
such as the tensile properties, hardness, impact work, and fracture toughness, are plotted
in Figure 9 [135–138]. A novel ultra-strong maraging steel strengthened by Ni(Al,Fe) pre-
cipitates was developed based on a minimal lattice misfit strategy, achieving a strength of
2.2 GPa and uniform elongation with the value of 3.8% upon aging for 3 h at 500 ◦C [135].
Ultra-high strength/hardness and moderate toughness balance of mechanical properties
for PHSS are highly desired. The results display that the existing PHSS has sufficient
strength and ductility, but there is still room for improving the toughness. Compared with
the traditional martensitic stainless steel, future work is required to further improve the
toughness without sacrificing strength and plasticity, which is more challenging. Mean-
while, we also present the electrochemical corrosion behavior parameters of PHSS after
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different heat treatments in various corrosive mediums, and the characteristic indicators
including corrosion potential (Ecorr), corrosion current density (Icorr), pitting potential (Epit),
passivation current density (Ipass), and corrosion rate are tabulated in Table 4. The results
show that great endeavors of corrosion behavior evaluation for PHSS are focused on the
Cl-containing medium, especially in the 3.5 wt% NaCl solution. The data of the corrosion
current density show that the PH17-4 stainless steel with a lower value possesses better
electrochemical corrosion response than other PHSS as displayed in Table 5.
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Figure 9. Mechanical properties of typical precipitation hardened stainless steel [135–138]: (a) Ul-
timate tensile strength-elongation; (b) yield strength-fracture toughness; (c) hardness-elongation;
(d) impact work-hardness.
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Table 4. Corrosion properties of PHSS after various heat treatment processes [113,139–144].

Alloy ST AT Ecorr (V) Icorr (µA/cm2) Epit (V) Ipass (µA/cm2)
Corrosion Rate

(mm/yr)
Corrosive
Medium Reference

PH17-4
1038 ◦C × 1 h 480 ◦C × 1 h 0.173 0.27

3.5%
NaCl

Shoushitari
et al., 2010.

1038 ◦C × 1 h 550 ◦C × 4 h 0.205 0.18
1038 ◦C × 1 h 620 ◦C × 4 h 0.124 0.1

PH17-7
1750 F × 10 min

+
(−100) F × 8 h

950 F × 1 h −0.396 3.5%
NaCl

Repukaiti,
Reyixiati 2017.

PH15-5 1900 F × 1 h 900 F × 1 h −0.422

PH15-5 1040 ◦C × 0.5 h 1025 F × 4 h −0.275 0.126 0.398 3.5%
NaCl Qiang Guo 2015.

Direct Metal
Laser Sintering-

PH15-5

1040 ◦C × 0.5 h −0.295 21.64
3.5%
NaCl

Avula I., et al.,
2021.

1040 ◦C × 0.5 h 900 F × 4 h 0.114 0.035
1040 ◦C × 0.5 h 925 F × 4 h −0.279 3.692

16Cr-5Ni-1Mo

1050 ◦C × 1 h

400 ◦C × 4 h 0.130 1.156

6% FeCl3
R. Abdel-Karim

2004.

475 ◦C × 4 h 0.108 1.504
550 ◦C × 4 h 0.077 1.102
625 ◦C × 4 h 0.072 1.120
700 ◦C × 4 h 0.080 1.165
750 ◦C × 4 h 0.091 1.263

1050 ◦C × 1 h

625 ◦C × 1 h 0.071 1.035
625 ◦C × 6 h 0.089 1.103
625 ◦C × 8 h 0.085 1.120

625 ◦C × 16 h 0.07 1.312

13 Cr 1020 ◦C×0.5 h

−0.46 0.24 −0.051 1.54

0.1 M NaCl
Bonagani, S.K.,

et al., 2018.
300 ◦C × 2.5 h −0.557 0.38 −0.08 3.59
550 ◦C × 2.5 h −0.585 7.22 −0.585
700 ◦C × 2.5 h −0.591 8.59 −0.152 93.76

PH15-5

1038 ◦C × 0.5 h 0.403 0.06
3.56%
NaCl

Sagar Sarkar
et al., 2020.1038 ◦C × 0.5 h 482 ◦C × 1 h 0.235 0.015

1038 ◦C × 0.5 h 621 ◦C × 4 h 0.307 0.16
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Table 5. Corrosion current density of various PHSS [28].

Steels PH17-4 PH15-5 PH13-8Mo 1RK91 Custom 465 Custom 475 Ferrium S53

Icorr
(µA/cm2) 1.409 2.176 4.522 4.301 13.326 17.087 20.271

4. Effects of Different Preparation Methods on Microstructure and Properties

Different fabricating approaches will also have a non-negligible impact on mechanical
and corrosion behavior, which is not limited to the adjusting alloy composition and heat
treatment parameters. At present, many state-of-the-art manufacturing methods have been
reported in the literature, mainly focusing on AM technology [145–147]. Generally, the
methods of fabricating PHSS include casting and wrought procedures [11,122] and powder
metallurgy [148,149]. Conventional cast PHSS is processed and deformed by forging to
improve the microstructure, supplemented by the appropriate heat treatment to obtain the
desired properties. Jan Kazior et al. [147] have examined the properties of PH17-4 steel
fabricated by the powder metallurgy method, and they found that adding temperature
is a very sensitive parameter to obtain high strength with satisfactory ductility. Additive
manufacturing (AM) approaches as disruptive technology [8,32,150–154], due to their near-
net-shape feature, cost-effective, and customized flexible design for complicated parts,
are widely introduced to prepare PHSS gradually across multi-industries. The processing
methods of AM for PHSS are still in their infancy. SLM uses computer-aided design as a
digital information source and combines fine metallic powders with laser beams to fabricate
three-dimensional metal parts. The SLM method of AM approach supports the manufacture
of dense components with superior mechanical properties when the parameters are optimal.
Meanwhile, the ultra-low carbon content facilitates crack-free addictive manufacturing of
the PHSS [8,155]. Among the AM techniques, laser powder bed fusion (L-PBF) technology
with near-net-shaping dimensions has become a conventional preparation method for
geometrically complex structural parts due to its flexible geometric design and high spatial
accuracy [155,156]. On the one hand, the PHSS with fine grain microstructure, which
originated from the higher cooling rates, is obtained based on the L-PBF processing. On the
other hand, it is arduous to produce parts with tailored structures or properties employing
typical alloys [142,157]. Defects such as porosity, the loss of alloying elements, and cracking
were observed, which hinder the process of future industrial application. Meanwhile, the
heterogeneous microstructures and residual stress were retained during the cyclic heating
and cooling process in manufacturing. Therefore, it is important to better understand
the microstructure characteristics of PHSS prepared by the L-PBF method and its impact
on properties. The target samples with a special dimension were fabricated utilizing
commercial SLM apparatus (AFS-M120). The apparatus was equipped with a 500 W fiber
laser with a focal laser beam diameter of 0.075 mm and a wavelength of 1070 nm. The
argon environment was adopted to shield the processing and diminish contamination, as
schematically shown in Figure 10a. The printing path always maintained 90 degrees angle
rotation between the following layers Figure 10c [157]. A broad range of print parameters
was selected to study the print capability of the PHSS.

The optimization of melting parameters including scanning speed and energy density
are of great importance to obtaining valuable parts. S. Sabooni et al. [158] have explored the
influence of post-heat treatment on the microstructure evolution and mechanical properties
in L-PBF of PH17-4 steel from two different feedstock powders. The results displayed that
the full martensite phase and ferritic microstructure were observed in Figure 11, which
mainly depends on the chemical composition of powders. The martensitic microstructural
samples displayed accelerated age-hardening behavior compared with the samples with
ferritic, which can be elucidated by the improved diffusivity of precipitation elements
caused by the increment of grain boundaries and the lath martensitic microstructures with
higher dislocation density. The martensitic microstructure of PH17-4 steel is easy to undergo
the reversion of austenite under direct aging treatment. The reverted austenite enhances
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the ductility of heat-treated samples. The Kernel Average Misorientation (KAM) images
illustrate the higher stored energy in the martensitic microstructures, which provides the
driving force for the formation of the precipitated phase.
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microstructure [158]. (Adapted from Ref. [158]).

Mohammad Jashim Uddin et al. [159] considered the process parameters including
volumetric energy density (VED), scanning speed, and hatch distance in L-PBF approaches.
The fraction of the austenite phase is only 1.9% after low VED in the as-printed PH17-4
part according to the EBSD quantitative analysis. The substantial alterations of micro-
mechanical properties, yield, and maximum shear strength associated with the strain rates
were detected in the proton-irradiated L-PBF PH17-4 parts as displayed in Figure 12. It can
be noticed that grains become slightly finer as a result of radiation in irradiated specimens
with the same VED. Mahya Ghaffari et al. [160] studied the microstructure and mechanical
properties of PH13-8Mo steel manufactured by wire arc additive manufacture (WAAM)
approaches. The typical microstructures are composed of the vermicular and lathy remnant
δ-ferrite distributed on the fine martensitic matrix coupled with a low percentage of retained
austenite. Meanwhile, the anisotropic mechanical properties are strongly related to the
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columnar growth of δ-ferritic microstructure with a significant texture during solidification.
Furthermore, the spherical Al-rich oxide inclusion particles were characterized, which can
be ascribed to the retained oxygen in the protecting environment and possible moisture on
the raw material as shown in Figure 13.

Figure 12. EBSD micrographs of nanoindentation region (at 0.5 s−1 strain rate) of as-printed L-PBF
PH17-4 PHSS part with VED = 54.76 J/mm3 [159]: (a) IPF image in the (X–Y) plane perpendicular to
the print direction, (b) phase map, (c) texture pole figure, (d) inverse texture pole figure, and (e) IPF
color maps of phases. (Reprinted with permission from Ref. [159]. Copyright 2022 Elsevier).

Many efforts have been made to investigate the influence of printing strategy and
heat treatment schedule on the mechanical and corrosion properties of PHSS due to the
anisotropy of the microstructure and properties of the parts after AM methods. Printing
orientation has a significant effect on low-cycle fatigue and high-cycle fatigue properties.
Post-heat treatment has been proven to be an effective strategy to enhance the tensile
behavior and low-cycle fatigue property of PH17-4 steel. However, the influence of the
microstructural impurity on the low-cycle fatigue property is not conspicuous, but it is more
sensitive to the high-cycle fatigue behavior. The un-melted region is an important factor to
consider the deterioration of properties beyond the density [161]. Tzu-Hou Hsu et al. [162]
revealed the mechanism of oxide dispersion strengthening of PH17-4 steel by introducing
geometrically necessary dislocations. Meanwhile, the post-heat treatment can trigger the
martensitic microstructures to the formation of reverted austenite or the Cu-rich precipitates.
The results of mechanical properties show that the tensile properties and hardness of SLM
are better than the conventional casting and forging techniques, as shown in Figure 14.
Tao Zhou et al. regulated the formation of reverted austenite and the precipitation of
nanoscale precipitates under post-heat treatment and obtained a distinguished balance
between strength and ductility based on the wire arc additive manufacturing method.
Nanoscale precipitation hardening promotes the improvement in high strength; however,
the reverted austenite with high stability and fine grain size is beneficial for ductility [149].
Chuanfeng Wu et al. [163] unfolded the heterogeneous mechanical properties along the
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building direction in direct laser-deposited PH17-4 steel, and the acceptable deformation
compatibility in the microstructure at the top of specimen was discussed. The cooperative
effect of strain partitioning hardening and the austenitic transformation-induced plasticity
promotes the superior balance of strength and ductility [149].
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mental mappings; (e) the line profiles of selected region. (Reprinted with permission from Ref. [160].
Copyright 2022 Elsevier).

It was revealed that the microstructure of as-built PH17-4 via the SLM method corre-
sponds to the full ferrite rather than the martensitic phase. However, the general corrosion
behavior of the sample after heat treatment exhibits distinguished properties from the
wrought martensitic steel (Figure 15) [150], and the precipitation of Cu-rich particles was
observed in the steel prepared by SLM methods and conventional techniques [32]. PH17-4
steel manufactured by SLM consists of 72% metastable austenite and 28% martensite phase,
and the distinguished mechanical properties result from the strain-induced transformation
of austenite and microstructural features of dual phase [164,165]. The difference of cor-
rosion behavior with microstructural inhomogeneity was systematically studied [32,113].
The size and morphology of the microstructure are observed to vary from the top and
side perspectives of building directions employing the direct-metal-laser-sintering (DMLS)
method [166]. The results illustrate that the H900 samples display the highest anti-corrosion
properties than the other heat treatment conditions, and the enhanced corrosion and me-
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chanical properties can be achieved by optimizing the heat treatment process on the fabri-
cated PH15-5 steel. An insignificant growth of lath size, a reduction in dislocation density,
low angle grain boundary, and low residual stress level on the side view were demonstrated
to contribute to the improvement in the corrosion response of the side surface [32].
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austenitized SLM-ed steel in NaCl solution at different acid atmospheres: (a) pH = 3.5, (b) pH = 2.5,
and (c) pH = 1.5 [150]. (Reprinted with permission from Ref. [150]. Copyright 2020 Elsevier).

5. Applications of Multi-Scale Computational Simulations and ML in Modeling the
Relationships among Composition, Microstructures, Process, and Properties of PHSS

Generally, the traditional material design method based on trial and error is very
cumbersome; therefore, it is urgent to carry out the modeling optimization. In recent years,
the multi-scale calculation and simulation methods of materials have been developed
rapidly and widely harnessed in the material design and mechanism research of new
materials, which provides an efficient way for the development of new PHSS. Figure 16
displays diverse computational and simulation approaches used in materials science from
the macroscale, microscale to the nanoscale, corresponding to the typical simulation ap-
proaches and examples in materials science investigations, such as the finite difference
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method (designated as FDM), finite element modeling (FEM), dislocation dynamic (DD),
cellular automaton (CA), phase field especially in microscopic phase field (MPF), micro-
scopic dynamic modeling (MDM), Monte Carlo (MC), molecular dynamics (MD), and first
principles calculation (FPC).
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The obtained FDM is determined through a numerical strategy. Physical characteristics
of fluid flow, temperature, entropy optimization, and concentration have been illustrated.
Variations of parameters are graphically investigated [167]. The microstructural evolution
and deformation behavior of alloy were studied in detail based on the crystal plasticity-
based FEM [168]. Meanwhile, the deformation simulations included the prediction of
stress-strain for PHSS employed by FEM approaches [152,169]. The inherent localization
physical mechanisms of mechanical behaviors manifested by DD simulation are well
illustrated from the analysis of the results, which can shed a further understanding at
the dislocation level [169]. A CA algorithm was utilized to simulate the nucleation and
grain growth of microstructural evolutions of PH17-4 steel during investment casting [170].
The framework of ML combined with CA was presented with remarkable accuracy to
investigate the static recrystallization microstructural evolution of FCC polycrystalline
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materials, accelerating the innovation of novel/enhanced materials [171]. The alteration of
atomic microstructure morphology maintains the consistency between the experimental
and MPF simulation results. Meanwhile, the MDM and MD approaches at the microscale
were adopted to reveal the dynamic reaction mechanisms [172,173]. Moreover, the FPC,
MD, and some MC simulations were conducted to uncover the inherent behavior and
mechanism from the atomic point-of-view and further control the tailored properties
of developed materials [47,174–178]. Arpana S. Murthy et al. [47] have illustrated the
segregation of Co atoms from the Cu-rich particles for PH17-4 steel utilizing the FPC
method via the energy-minimum criterion. Tian et al. [177] have investigated that the
addition of Co increases Fe-Fe ferromagnetic interactions and promotes the formation
of chromium-rich clusters in Fe. Therefore, combined with the characteristics of PHSS,
the targeted properties of PHSS can be efficiently predicted in the PHSS design with the
assistance of multi-scale calculation and simulation techniques.

As shown in Figure 17, the development of materials science has experienced a
research paradigm based on pure experience, followed by the development of theoretical
science represented by mathematical description, thermodynamics, and material dynamics
equations. Since 1950, computational science, phase field dynamics, and other methods
that have gradually developed into computational materials science methods have been
used to study materials and explain the evolution mechanism of materials’ microstructure
by solving differential equations. Computational techniques should be used to carefully
study the PHSS multi-dimensional composite space. Consequently, material informatics
are applied to extract knowledge from existing large data sets and establish a model to
lay a foundation for materials design with the advent of the big-data era. As a material
information technology, data driven science can be realized through data mining, ML,
and mathematical optimization. It can use existing databases and high-throughput data
based on forward and reverse methods, as shown in Figure 18, to discover the relationship
among composition, process, microstructure, and performance, forming a new method
to understand materials and facilitate material design. In addition, different relevant
algorithms are adopted to establish models to achieve high accuracy in material research.
The most credible strategy to combine ML algorithms with the prediction of mechanical
properties is to design physically presentative descriptors and take advantage of the existing
database of materials’ properties as training data, developing reliable and affordable
materials with high performance.
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strategies.

There are many types of alloying elements, and the additional content of alloying
elements as well as the interaction between various elements would increase the complexity
of the experiment. The traditional trial and error approaches are simple in facing the
dilemma of low efficiency. C.E. Campbell et al. [178] established an empirical Equation
(1) about MS via considering the chemical and mechanical energy changes with different
alloying elements, which provides theoretical guidance for the alloy design of PHSS:

Ms(K) = 818 − 33000 × Cc + 200 × CAl + 700 × CCo − 1400 × CCr − 1300 × CCu − 2300 × CMn − 500 × CMo
−400 × CNb − 1300 × CNi − 700 × CSi + 300 × CTi + 400 × CV

(1)

With the vigorous development of computational science, it is a new trend to examine
the influence of alloying elements on the properties of materials by leveraging algorithms
to model rationally. Additionally, common ML algorithms were adopted to investigate
the intrinsic relations of materials especially in steels, including random forest (RF), linear
regression (LR), support vector regression (SVR), multi-layer perceptron (MLP), convo-
lutional neural network (CNN), and K-nearest neighbor (KNN) [179–186]. Yupeng Diao
et al. [179] proposed a ML prediction model for comprehensive properties and successfully
employed the efficient global optimization algorithm to optimize multi-objective mechani-
cal properties for carbon steels. The corrosion rate of low-alloy steel in marine environments
was effectively predicted via feature selection and feature descriptor creation [183].

Physical metallurgical (PM) method has been employed as an efficient strategy to
develop distinguished mechanical properties and illustrate the mechanisms of strength
increment. Furthermore, Chunguang Shen et al. [186] introduced PM parameters into ML
modeling and established a ML model guided by PM, and these physical parameters can be
easily obtained, which are assisted by thermodynamic software calculations. The precision
of best prediction results of the PM model is apparently lower than the ML model. It can
be seen that with the expansion of the data set, the overfitting result gradually weakens,
as shown in Figure 19. Finally, the authors successfully established the ML model with
high prediction accuracy and strong generalization ability through regression modeling
and genetic algorithm optimization, and verified the accuracy of the model in predicting
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ultra-high PHSS through experiments. In addition, a genetic optimization framework was
constructed to the cultivation of stainless steel strengthened by Ni3Ti nanoprecipitates
coupled with thermodynamic calculations and PM theories [187]. Meanwhile, microstruc-
tural features extraction, composed of the size and morphology factors of defects in the
L-PBF fabricated PH17-4 stainless steel, was carried out and the correlations between
defect characteristics and fatigue properties were accurately obtained based on the SVR
framework [188]. Therefore, an accessible pathway consisting of ML and multi-scale sim-
ulation method is validated to exploit high-performance PHSS. Moreover, the feed-back
ANN algorithm was adopted for modeling the available flow curves of PH17-4 steel and
the aging hardening parameters for PH17-4 steel were optimized by ANN and genetic
algorithm, demonstrating the capability of ML [27,189].
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6. Summary and Outlook

In the present work, we focus on the establishment of the composition-microstructure-
properties model of PHSS to urgently develop novel precipitation hardening stainless
steels with superior mechanical properties. We over-reviewed the development history
of representative PHSS. The influence of the composition fluctuation of general alloying
elements on the microstructure and properties is discussed, and the research progress of
the microstructure and properties of PHSS after the heat treatment process is summarized
and illustrated, especially in the aspects of mechanical properties to guide the optimization
of the heat treatment process. The relationships between precipitation strengthening
nanoparticles and the microstructure and properties of steel were revealed, including
typical B2-NiAl precipitates, Ni3Ti phase, Cu-rich clusters, and other strengthening phases.
A novel material with multiple co-existing particles was indicated to achieve comprehensive
performance.

Compared to traditional fabrication techniques, the advancement of AM in terms
of machine capabilities and process parameters has resulted in the development of parts.
The emergence of AM techniques provides strong support for the manufacturing and
application of PHSS parts, especially for improving the microstructure and performance
of PHSS steel prepared by SLM. At present, the AM technology of alloys is still in the
immature stage. The parallel development of AM technology based on the traditional
method of fabricating alloys provides convenience for the application of PHSS. There is
still an enormous space for SLM to fabricate steel parts due to the drawbacks of PHSS, such
as anisotropy, macro and micro defects, and residual stress after the existing processes.



Materials 2022, 15, 8443 26 of 34

The development of new techniques and new approaches ensures the future ex-
ploration of PHSS with application potential. Moreover, it is necessary to employ ML
strategies in materials science to extract the data from the results of experimental physical
metallurgy and multi-scale simulation approaches, rather than trial-and-error methods, to
comprehensively and efficiently design tailored PHSS with excellent mechanical properties.
Additionally, future investigations will focus on developing reliable and robust databases
and modeling the assessable correlations of chemical composition, hot work processes,
microstructure, and properties. Machine learning and multi-scale simulation methods are
used to reveal the relationship among the fraction and features of precipitates, processes,
and properties to achieve accurate regulation of the precipitates. Meanwhile, attention
should be paid to the precision heat treatment parameter control that takes into account
fluctuations in composition by combining intelligent algorithms.

Therefore, ML coupled with multi-scale simulation approaches and experimental
methods undoubtedly exhibits a high-efficiency direction toward the development of
novel PHSS with high performance, since ML has a strong capability to solve the intrinsic
quantitative relationship between the microstructure of composition/process properties in
the PHSS system. The prosperity of ML applications in PHSS design is poised to provide
the perspective for a novel paradigm in integrated multi-scale computational materials
science as a whole.
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Abbreviations

Abbreviation Definition
PHSS Precipitation hardening steel
ML Machine learning
MD Molecular dynamics
PHS Precipitation hardening steel
MP Microstructure and properties
SLM Selective laser melting
TEM Transmission electronic microscopy
APT Atom probe tomography
SAED Selected area electron diffraction
EDS Energy dispersive spectroscopy
EBSD Electron Backscattered Diffraction
ST Solution treatment
AT Aging treatment
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STT Solution treatment temperature
STt Solution treatment time
ATT Aging treatment temperature
ATt Aging treatment time
HRTEM High Resolution Transmission Electron Microscope
FFT Fast Fourier Transformation
TRIP Transformation-induced plasticity
STEM Scanning transmission electron microscope
HAADF High-angle annular dark-field
AM Addictive manufacture
L-PBF Laser powder bed fusion
KAM Kernel Average Misorientation
VED Volumetric energy density
WAAM Wire arc additive manufacture
DMLS Direct-metal-laser-sintering
FDM Finite difference method
FEM Finite element modeling
DD Dislocation dynamic
CA Cellular automaton
MPF Microscopic phase field
MDM Microscopic dynamic modeling
MC Monte Carlo
FPC First principles calculation
FCC Face-centered cubic
B2 Ordered body centered cubic structure
RF Random forest
LR Linear regression
SVR Support vector regression
MLP Multi-layer perceptron
CNN Convolutional neural network
KNN K-Nearest Neighbor
PM Physical metallurgy
MS Martensite starts temperature
YS Yield strength
UTS Ultimate tensile strength
δ Elongation
KIC Fracture toughness
AK Charpy impact energy (work)
Ecorr Corrosion potential
Icorr Corrosion current density
Epit Pitting potential
Ipass Passivation current density
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