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Abstract: In this work, in order to produce Cu-MoS2-WS2-Ag-CNT self-lubricating materials, powder
metallurgy was used. Several different compositions containing single solid lubricant MoS2, WS2, Ag
and CNTs as well as multi-component lubricants in the copper matrix were prepared. Friction and
wear tests were carried out using the pin-on-disc method at room temperature. Light microscopy
(LM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffrac-
tion (XRD) were used to characterize the wear mechanism of sintered materials. The tribofilm on the
worn surfaces of sintered materials and counter-specimens was observed. The influence of single
solid lubricants and the synergistic interaction of two, three or four solid lubricants on tribological
properties of sintered composite materials were determined.

Keywords: self-lubricating sinters; silver; carbon nanotubes; tungsten disulfide; molybdenum disul-
fide; wear resistance; COF

1. Introduction

Frictional wear is the main cause of wear of machine parts and tools. It is estimated
to be responsible for 80% of their breakdowns. Approximately 30% of energy is used to
overcome frictional resistance. Annual economic losses due to frictional wear account for
almost 2% of national GDP. Therefore, studies on friction and the search for new materials,
including lubricating oils, greases and solid lubricants, are a topical issue of important social
and economic benefits. With developing industry and modern production technologies,
requirements for wear resistance in demanding operating conditions, such as high speeds,
high loads, high vacuum, radiation and operating temperature range, are increased. This
means a need to search for new materials, and modification of their surfaces by appropriate
treatments [1–5]. Nevertheless, the issue of lubrication is an indispensable element of
cooperation of these materials in friction nodes. Lubrication oils, plastic greases and solid
lubricants can be distinguished. Currently, there is a tendency to replace lubricating oils
and plastic greases with solid lubricants [6–10]. Oils and plastic greases can pose a serious
problem in some applications, for example, at high temperatures, when they may evaporate.
In addition, they cannot be used for a long time in a high vacuum greater than 10−1 Pa.
Lubricating oils pollute the environment during their production, and practically at all
stages of their use: in transport to users, in long-term storage, during operation and at their
disposal. Oils, aromatic and unsaturated hydrocarbons and heterogeneous compounds
(containing sulfur, nitrogen and oxygen) are particularly harmful to humans. The solution
may be to use solid lubricants. Solid lubrication technology was first used in military
industry, and then in advanced space, aviation and electronics industries. This solved many
problems that could not be solved with oil lubrication. Currently, an intense search for
self-lubricating materials and surface layers that contain solid lubricants embedded in their
matrix is underway [11–15]. They can be produced using: powder metallurgy (resulting
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in the formation of self-lubricating materials), laser alloying (resulting in the formation of
technological superficial layers) or thermal spraying as well as PVD and CVD techniques
(resulting in the formation of coatings) [11,16–23]. The disadvantages of self-lubricating
coatings are limited service life, difficulties in refilling, oxidation, aging-related degradation
and poor adhesion. To avoid the disadvantages of both lubricating oils or greases and
self-lubricating coatings, producing self-lubricating materials containing solid lubricants
in a metal matrix seems to be promising [24]. Powder metallurgy is of particular interest
as it results in a homogeneous composite in which particles of solid lubricant will be
evenly distributed, which may in turn allow a formation of tribofilm between mating parts
during operation. Solid lubricants can be divided into four groups: soft metals, metal
compounds, organic materials and inorganic materials [25,26]. In addition, they may be
divided depending on application temperature: the first group from −200 ◦C to room
temperature, second group from room temperature to 500 ◦C and third group working
over 500 ◦C [27].

In this study, eight sintered composite materials containing solid lubricants such as
WS2, MoS2, CNTs, Ag and copper, which constituted the sinter matrix, were examined.
Copper and silver have high thermal conductivity, which ensures heat dissipation from the
friction area of mating parts. Moreover, they have excellent electrical properties. Lubricating
properties are related to their low shear strength and easy intercrystalline slip. During the
friction, they form on the surfaces a film that reduces coefficient of friction (COF) and, as
a consequence, diminishes the wear. The higher the purity of soft metal, the lower the
shear strength and the easier the slip in the soft metal. Tungsten disulfide (WS2) has the
lowest dry friction coefficient of approximately 0.03. It has higher thermal stability than
that of MoS2, and has a layered structure. It can be used at high temperature, under high
pressure, in high vacuum and under heavy load. It is chemically inert, non-toxic and non-
corrosive to metal [7,26,28–30]. Molybdenum disulfide (MoS2) also has a layered structure.
It is the most commonly used solid lubricant. It is even incorporated in lubricating oils and
greases [26,31,32]. Moreover, there is a considerable interest in modifying oils and greases
with carbon nanotubes (CNTs). Introducing them into lubricating oils reduces friction and
wear of mating parts [33,34]. Due to their excellent physical properties, low density, high
aspect ratio and tribological properties, carbon nanotubes are also used as reinforcement in
composite materials [24,35–38]. The effect of single solid lubricant additions has been widely
researched. However, taking into account the different conditions of the investigation, the topic
still remains relevant. There are also studies of the influence of two or more solid lubricants
on the tribological properties of the produced materials. The studies by Kong et al. [39] have
shown that the introduction of titanium into the composite of Ni20Cr + 15 wt. % WS2 resulted
in a reduction of the friction coefficient from 0.53 to 0.37. The use of nano-Cu and h-BN as
solid lubricants in nickel-based coating also had a positive effect on the COF value over a
wide temperature range [13]. Lu et al. [30] have produced Cu/RGO/WS2 composites, which
were characterized by a reduced COF, which was approximately 0.2. They have found that
in the case of the addition of only WS2 in the amount of 40%, the friction coefficient was
higher and was approx. 0.3–0.4. In the work [40], the friction and wear characteristics of Ni-
Al-Ag-MoS2, Ni-Al-Ag-MoS2—5 wt.% hBN and Ni-Al-Ag-MoS2—10 wt.% hBN coatings
were tested. The friction coefficients obtained at room temperature were in the range of
0.45–0.65. Ni3Al-WS2-Ag-hBN composites have been tested by Shi et al. [41]. The friction
coefficients at room temperature ranged from 0.48 to 0.61.

An interesting group of materials that can contain solid lubricants in their structure
are high-entropy alloys (HEAs) [15,42,43]. Zhang et al. [15] produced CoCrFeNi HEA
composites containing silver and BaF2/CaF2 eutectic as solid lubricants using the spark
plasma sintering method (SPS). Ag was assigned the main role in reducing the coefficient
of friction of the composite at temperatures ranging from RT to about 400 ◦C. The good
lubricity of the composite from 400 to 800 ◦C was mainly attributed to the combined
lubricating effect of Ag, BaF2/CaF2 eutectic and various metal oxides that formed on the
surface of the composite at high temperatures.
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The works cited as well as the works of other authors prove that the search for new
self-lubricating materials is still valid. The objective of this study was to produce sintered
composite materials containing solid lubricants by powder metallurgy and to investigate
their tribological properties. The frictional wear tests were carried out under dry friction
conditions at room temperature. Light microscopy (LM), scanning electron microscopy
(SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) were used for
the research.

2. Materials and Methods
2.1. Sinter Preparation

In the first step, powder mixes were tumbled for 1 h. The chemical composition of powder
mixes used in order to produce the sinters is shown in Table 1. Figure 1 shows morphologies
of the powders used. Copper powder had a dendritic shape. The shapes of the MoS2 and
WS2 powders were different, as they are characterized by a flake structure. Silver powder
was in the form of agglomerates and had a spherical shape. Carbon nanotubes, just as
silver powder, were in the form of agglomerates. The diameter of the carbon nanotubes
was approximately 30 nm. In the second stage, powder metallurgy compacts were made of
powders with a copper matrix and solid lubricants. Powder mixture pressing was carried
out at a pressure of 1.17 GPa. In the next stage, sintering was carried out at 800 ◦C for 3 h
in a tube furnace under argon atmosphere. Sinter cooling was carried out in the furnace at
a 250 ◦C/h rate. The produced sinters had a diameter of 4 mm and a height of 5 mm. To
ensure clarity of this article, only the percentage is used, without “wt.”.

Table 1. The chemical composition of powder mixes used in order to produce the sinters.

Chemical Composition [wt. %]

No. Cu MoS2 WS2 Ag CNTs

1 bal. 10
2 bal. 20
3 bal. 20
4 bal. 2
5 bal. 5 5
6 bal. 5 5 2
7 bal. 5 5 2 2
8 bal. 5 5 2
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Figure 1. The powders used to make the sinters.

2.2. Wear Tests

Measurement of tribological properties of the sinters at room temperature was carried
out on a tribometer (T-21, Lukasiewicz Research Network—IST, Poland) in a pin-on-disc
arrangement. Commercially available Inconel®625 with a diameter of 25.4 mm and a height
of 4 mm was used as counter-specimens. Frictional tests in dry friction conditions were
carried out under a load of 5 N for 1 h at a rotational speed of 120 min−1. Each of the wear
tests was repeated three times. During the tests, friction forces were recorded for friction
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pairs: sintered material (pin)–Inconel®625 (disc). The friction coefficients were determined
using the equation:

µ =
Ff

Fl

where: µ—friction coefficient; Ff—friction force [N]; Fl—load applied [N].
The results of wear tests were presented in the form of graphs showing the friction

coefficients vs. the time of friction as well as the mass change of specimens and counter-
specimens for all the composite materials produced.

2.3. Tests of Worn Surfaces and of Worn Debris

The worn surfaces of sintered materials and counter-specimens as well as wear prod-
ucts were observed after the tests using SEM (Mira 3, Tescan, the Czech Republic) equipped
with EDS (Ultim Max 65, Oxford Instruments, Abingdon, UK). In order to limit the ex-
citation zone, an accelerating voltage of 12 kV was used. Quantitative tests of chemical
composition of the surface of sintered materials and wear products were carried out. The
element concentrations were also distributed in the form of EDS maps by means of a color
scale. In the color scale, the colors corresponded to the concentration of the selected element.
The intensive color pixels indicated the highest concentration of the element, and the darker
areas corresponded to the concentration near to zero. Numerical values on these maps
correspond to the number of counts. The phase composition tests were carried out on sinter
surfaces after the frictional tests using an X-ray diffractometer (Empyrean, PANalytical,
the Netherlands) equipped with a copper lamp (X-ray wavelength λ = 1.54060 Å) and an
X’Celerator detector. XRD patterns were recorded at room temperature, in the angular range
25–100◦ 2theta, in steps of 0.017◦ 2theta. The phase analysis of the obtained diffractograms
was performed in the HighScore program equipped with the PDF-4 database.

3. Results and Discussion

The results of the tests of friction coefficient as a function of time are shown in Figure 2.
The highest coefficient of friction was observed for the specimen with a copper matrix
with the addition of silver (sinter no. 1) and it was about 0.89, similar to pure copper. In
the work [44], the authors obtained a friction coefficient of 0.7–0.75 for pure copper in
a friction pair with WC-Co, while for the Cu-5% Ag alloy it was in the range of 0.6–0.8.
Such high coefficients of friction of pure metals or metal alloys are caused by plastic
deformation, caused by sliding and subsequent changes in the microstructure beneath
the worn surface [45,46]. During sliding, unevenness shear occurs, which affects the
roughness of the surface. Repeated sliding on a rough surface generates wear particles.
This leads to mechanical alloying and welding of these particles to the worn surface,
creating the nanostructured tribolayers [47–50]. The delamination of brittle tribolayers
during a subsequent slip leads to a further increase in surface roughness and a high COF. As
for the remaining specimens with a single additive, a gradual increase in COFs is observed
and some stabilization takes place at the final stage of the study. In the case of the Cu + 20%
MoS2 specimen (sinter no. 2), the friction coefficient changes from 0.15 to 0.23, and for the
Cu + 20% WS2 specimen (sinter no. 3) it was in the range of 0.13–0.22. The friction pair with
the specimen containing MoS2 was characterized by a smoother COF curve than that of
the specimen containing WS2. Furlan et al. [51] have extensively reviewed self-lubricating
composites containing only MoS2 ranging from 1–90 wt. % as well as additional ingredients.
Depending on the matrix and the test conditions, the friction coefficients ranged from 0.05
to 0.55. In the work [52], it was shown that MoS2 magnetron-sputtered coatings were
characterized by friction coefficients at the level of 0.03–0.04. In the case of using the friction
pair consisting of a Cu + 20% WS2 specimen and 100Cr6 steel as a counter-specimen, the
friction coefficient obtained by Freschi et al. [28] was higher than that in this study, and was
approximately 0.35. Xiao et al. [53] have investigated the effect of the amount of WS2 on
the lubricating properties of Cu-WS2 composites. The composite with 10 wt.% WS2 was
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characterized by a 71% reduction in COF, and the addition of 40% WS2 reduced the wear
rate by 96%.
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For the specimen with carbon nanotubes (sinter no. 4), the coefficient of friction was in
the range of 0.3–0.65. The beneficial effect of carbon nanotubes could result from a twofold
impact, namely, they may introduce rolling motion or they may be degraded and smeared
on the worn surface [24,36]. The resulting tribofilm on the contact surface between the
mating metallic surfaces prevented direct metal-to-metal contact and reduced the adhesion
between the contact surfaces [54]. The increase in the friction coefficient to about 0.6 after
approximately 2500 s and its increased fluctuations after approximately 3000 s probably
resulted from the partial removal of carbon nanotubes from the contact zone and the
breaking of the tribofilm [24,36].

In the case of sinter 5 containing 5% MoS2 and 5% WS2, the friction coefficient stabi-
lized at 0.23. Modification of sinter 5 by an addition of 2% silver (sinter no. 6) resulted
in a reduction of the friction coefficient to a value of about 0.15. The addition of carbon
nanotubes to the sinter containing 5% MoS2, 5% WS2 and 2% Ag (sinter no. 7) allowed us
to obtain a friction coefficient of 0.27 in the final stage of the tests. Fluctuations in the coeffi-
cient of friction were negligible for this specimen and oscillated within the range of 0.02 for
each test range. Modification of sinter 5 by the addition of carbon nanotubes allowed us to
obtain a sinter characterized by a smoothed curve illustrating changes in the coefficient
of friction and the shortest running-in period of approximately 500 s. This specimen was
not characterized by the lowest coefficient of friction among the tested specimens. COF
value was at the level of about 0.24, and in the final stage of the test it diminished to 0.22.
However, based on the course of friction coefficient changes, it should be concluded that
lubricating properties of this sinter were very good. The advantageous effect of carbon
nanotubes in composites containing sulfides (sinter no. 7) as well as sulfides and silver
(sinter no. 8) could be related to their difficult removal from the friction track during the
test and the formation of a multi-component tribofilm.

The specimens and counter-specimens were weighed prior to and following the
frictional tests in order to determine the changes in their mass. Weight loss was observed
for all the tested specimens, while weight gain was found for all the counter-specimens
(Figure 3). The changes in the mass of each friction pair were comparable, i.e., a loss in mass
of the specimen was similar to an increase in mass of the counter-specimen. The lowest
weight losses were found for sinters Cu + 2% CNTs (sinter no. 4) and Cu + 5% MoS2 + 5%
WS2 + 2% Ag (sinter no. 6), and were, respectively: 0.8 mg and 0.9 mg. The weight gains of
the counter-specimens were 0.5 mg and 0.8 mg, respectively. It should be noted that the Cu
+ 2% CNTs sinter was characterized by one of the highest friction coefficients measured.
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The highest weight loss of the specimens (5.2 mg and 5.5 mg) and the increase in the weight
of counter-specimens (5.8 mg and 5.5 mg) were recorded for the Cu + 10% Ag specimen
(sinter no. 1) and sinter no. 8, i.e., Cu + 5% MoS2 + 5% WS2 + 2% CNTs, respectively.

Materials 2022, 15, x FOR PEER REVIEW 6 of 17 
 

 

The specimens and counter-specimens were weighed prior to and following the fric-
tional tests in order to determine the changes in their mass. Weight loss was observed for 
all the tested specimens, while weight gain was found for all the counter-specimens (Fig-
ure 3). The changes in the mass of each friction pair were comparable, i.e., a loss in mass 
of the specimen was similar to an increase in mass of the counter-specimen. The lowest 
weight losses were found for sinters Cu + 2% CNTs (sinter no. 4) and Cu + 5% MoS2 + 5% 
WS2 + 2% Ag (sinter no. 6), and were, respectively: 0.8 mg and 0.9 mg. The weight gains 
of the counter-specimens were 0.5 mg and 0.8 mg, respectively. It should be noted that the 
Cu + 2% CNTs sinter was characterized by one of the highest friction coefficients meas-
ured. The highest weight loss of the specimens (5.2 mg and 5.5 mg) and the increase in the 
weight of counter-specimens (5.8 mg and 5.5 mg) were recorded for the Cu + 10% Ag 
specimen (sinter no. 1) and sinter no. 8, i.e., Cu + 5% MoS2 + 5% WS2 + 2% CNTs, respec-
tively.  

 
Figure 3. The average friction coefficients and mass changes. 

Figure 4 shows friction tracks on counter-specimens, which prior to the tests were 
subjected to grinding. All the tested counter-specimens showed horizontal grinding traces 
in friction tracks. As these marks were not fully destroyed during the operation of the 
friction pair, it proved very good tribological properties of the sinters tested in this study. 
Copper was visible in the friction tracks, so during the frictional wear test of the friction 
pairs, some matrix material was also removed and rubbed into the friction track. This 
proved adhesive wear. Under the influence of friction force, the worn surface was sub-
jected to shear stresses along the sliding direction and was torn off the surface and then 
spread over the counter-specimen surface. The most continuous tribofilm on the surface 
was observed for the counter-specimen cooperating with sinter no. 2—Cu + 20% MoS2. 
The friction pair with the highest coefficient of friction, i.e., the pair with a specimen with 
only silver addition (sinter no. 1), was characterized by filling the cavities on the counter 
specimen after grinding the worn debris. Unlike the first sinter, in other friction tracks, 
clear traces of solid lubricants being smeared and micro-scratches on the resulting tri-
bofilms were not visible apart from filling the grooves after the grinding process. In the 
work [55], the laser-textured surfaces entrapped CNTs and provided long-term lubrica-
tion. In the present study, the grooves on the surface of the counter-specimens after grind-
ing played a similar role. 

Figure 3. The average friction coefficients and mass changes.

Figure 4 shows friction tracks on counter-specimens, which prior to the tests were
subjected to grinding. All the tested counter-specimens showed horizontal grinding traces
in friction tracks. As these marks were not fully destroyed during the operation of the
friction pair, it proved very good tribological properties of the sinters tested in this study.
Copper was visible in the friction tracks, so during the frictional wear test of the friction
pairs, some matrix material was also removed and rubbed into the friction track. This
proved adhesive wear. Under the influence of friction force, the worn surface was subjected to
shear stresses along the sliding direction and was torn off the surface and then spread over the
counter-specimen surface. The most continuous tribofilm on the surface was observed for the
counter-specimen cooperating with sinter no. 2—Cu + 20% MoS2. The friction pair with the
highest coefficient of friction, i.e., the pair with a specimen with only silver addition (sinter
no. 1), was characterized by filling the cavities on the counter specimen after grinding the
worn debris. Unlike the first sinter, in other friction tracks, clear traces of solid lubricants
being smeared and micro-scratches on the resulting tribofilms were not visible apart from
filling the grooves after the grinding process. In the work [55], the laser-textured surfaces
entrapped CNTs and provided long-term lubrication. In the present study, the grooves on
the surface of the counter-specimens after grinding played a similar role.

Figure 5 shows SEM images of sinter surfaces after the wear tests. They were taken
in contrast of secondary electrons (SEs) and backscattered electrons (BSEs). The purpose
of the BSE contrast test was to detect possible chemical composition differences on sinter
surfaces. Darker areas contained lighter elements, and lighter ones—heavier ones. On the
worn surface of the Cu + 10% Ag sinter, a large portion of worn debris in the form of loose
particles was observed, that could be responsible for the high coefficient of friction. In BSE
contrast, besides dark areas, there were also lighter ones. It proved a certain spreading of
wear products and their oxidation in darker areas. The other specimens were characterized
by different worn surfaces, where traces of micro-cutting or micro-ploughing could be seen
to a greater or lesser extent. For the Cu + 20% MoS2 specimen (sinter no. 2), the tribofilm in
the form of darker areas was visible in the BSE contrast. As can be seen, the tribofilm did
not completely cover the specimen surface. Moreover, its thickness was very small.
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The BSE image largely reflected the observations in secondary electron contrast (SE).
The surface of the specimen containing only WS2 (sinter no. 3) as an additive was very
smooth, and only a few micro-scratches were visible. The BSE surface image of this sinter
showed the distribution of WS2 (light areas). Lubricant spreading was clearly visible
without any obvious directivity. This proves the excellent lubricating properties of WS2.
Sinter no. 4 with carbon nanotubes had the worn surface similarly to the MoS2 specimen
(sinter no. 2). The micro-scratches were characterized by a smaller depth and were thinner.
In addition, a higher content of very fine worn debris was observed. In the BSE image, a
tribofilm of uniform thickness was visible. The gray color variation could correspond to the
tribofilm thickness variation. So, in brighter areas the tribofilm could have a lower thickness.
As for the specimen containing two types of sulfides (sinter no. 5), apart from very fine
micro-scratches, a small worn debris content could be noticed, and in the BSE contrast,
a uniform gray color could be observed. The addition of 2% Ag (sinter no. 6) resulted in
the appearance of traces of micro-ploughing. In BSE contrast, a continuous tribofilm was
observed and traces of friction wear were poorly visible. In the specimen containing all
lubricant additives (sinter no. 7), micro-scratches, a few loose particles and some cracks in
the resulting tribofilm were visible. What could probably have happened in this case was
that during the test a strengthening, and then adhesive detachment and the formation of
a new tribofilm layer, occurred. The micro-scratches visible in the BSE image indicated
a relatively low thickness of the tribofilm. However, it should be noted that there was
practically one shade of gray on the specimen. A similar situation was observed in the SE
image for the specimen containing 5% MoS2, 5% WS2 and 2% CNTs (sinter no. 8), with
a greater number of micro-scratches. Tribofilm delamination was also visible. The BSE
image showed a homogeneous gray image with no clear scratches. Thus, in this case a
tribofilm of uniform thickness was obtained. Figures 6 and 7 show the EDS maps on the
worn surfaces of counter-specimens and sinters, respectively. EDS maps were made in
a 12-point color scale. The areas with the highest content of the analyzed element were
visible as white, then in colors showing a lower content, successively light pink, pink,
red, orange, yellow, light and dark green, purple, dark blue and black. The black area
indicated the absence of the element. The values entered in the successive rectangles of
different colors show the number of counts for a given element. As could be seen, copper
was visible in each surface analyzed. Thus, during the wear by friction, the sinters were
sheared, and then the copper matrix and lubricants, which were released from the worn
debris and the sinters themselves, were smeared. This was evidenced by the appearance on
maps of those elements that were part of lubricants in areas beside copper traces. Oxygen
was found in friction tracks in all the counter-specimens, that proved oxidation wear. The
lowest oxygen presence was found in the specimen Cu + 20% WS2 (sinter no. 3)—see
map in dark colors. Oxygen distribution coincided with copper distribution. It means that
copper was mainly oxidized. The highest oxygen content was found for specimens 1 and
4. Probably, the Ag and CNT particles contributed to an increased removal of tribofilm
layers largely made up of copper as well as to its intense oxidation. Obviously, this could
have an advantageous effect on tribological properties, because the copper oxide thus
formed also became a lubricant. Nickel’s presence on sinter surfaces proved that, to some
extent, abrasive or adhesive wear of counter-specimens occured throughout friction. The
highest oxygen content was found on the surfaces of sinters 1, 2, 4 and 5. Specimens 6-8
were subjected to relatively low oxidation. The distribution of the elements’ concentrations
on EDS maps, derived from solid lubricants on the entire analyzed surface of the sinters,
proved the formation of a continuous tribofilm on them.

The results of XRD phase composition analysis, performed on the sintered surfaces
after the friction test, are shown in Figure 8. The worn surfaces tested consisted mainly of the
components of the produced sinters. Pure copper was found in all the tested sinter surfaces.
On the surface of Cu + 10% Ag (sinter no. 1) and Cu + 2% CNTs (sinter no. 4) specimens, the
presence of copper oxide (Cu2O) was confirmed. Copper oxide was probably also present
on the other worn surfaces of the sinters. However, due to the penetration depth of X-rays
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of the order of several dozens of µm combined with the very small thickness of the copper
oxide, it could be invisible in XRD patterns for other sinters. A similar situation could be
in the case of phases with nickel. EDS analysis showed the presence of Ni on the worn
surfaces of the sinters, while in the XRD patterns no nickel phases, including nickel oxides,
were found. Ag2O and AgO oxides were found on the surface of the sinters containing
silver (1, 6 and 7), while silver sulfide (Ag2S) was found when the sinter contained sulfides
besides silver (sinters 6 and 7). CuS2 was found on the worn surfaces for all the sinters
containing MoS2.
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Figure 9 shows the worn debris, while Table 2 shows the results of testing their chem-
ical composition using the EDS method. During the friction test between the components
of the friction pairs, worn debris were formed, which were systematically removed from the
friction track. However, some worn debris could remain on the friction track as a result of the
difficulty in being removed beyond it. This was observed primarily in the case of friction
pairs 1 and 4. The presence of worn debris in the friction track, especially of larger sizes
and in larger amounts, increased the COF. Worn debris were collected from the friction
node immediately post-friction wear test. The lowest amount of wear products was found
in the friction pair composed of sinter 3, i.e., Cu + 20% WS2. The highest worn debris
amount was observed in the friction pair composed of sinter containing copper and 2%
CNTs (sinter no. 4). A significant amount of wear products was also found in the friction
pair with Cu + 10% Ag (sinter no. 1). In addition to fine particles, a small amount of larger
particles with a size of approximately 60 µm was detected. In a friction pair with sinter
no. 2 (Cu + 20% MoS2), a smaller amount of wear products of various sizes was observed.
Only fine worn debris was observed in the remaining friction pairs. As for the mating
Inconel®625 with multi-component sinters, the lowest amount of worn debris was found
in the Cu + 5% MoS2 + 5% WS2 + 2% Ag + 2% CNTs friction pair (sinter no. 7). Chemical
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composition tests confirmed the presence of oxygen in wear products in all the friction
pairs. The largest oxygen content was observed in the friction pair with sinters 1 and 4. The
presence of oxygen in worn debris indicated the oxidation wear in friction pair operation,
that was consistent with the XRD tests performed on the worn surfaces of the sinters. In
addition, in friction pairs 1 and 4 nickel was found in worn debris, obtaining 1.3-1.9 and
1.7-4.8 wt.%, respectively. This could prove that the Inconel®625 counter-specimens were
more intensively subjected to abrasion. The lowest nickel content, within measurement
error, was found in worn debris detected in friction pairs 3 and 5. In all wear products, all
the elements included in the chemical composition of individual sinters were found.
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Table 2. The chemical composition of worn debris (wt.%).

Friction Pair No. Point Cu Ni O Mo W Ag S C

1 1 78.7 1.9 12.7 6.7
2 79.1 1.7 12.4 6.8
3 79.9 1.3 12 6.7
4 81.5 1.5 10.4 6.6

2 5 87.8 0.2 3.4 5.2 3.4
6 83.2 0.3 5 6.6 4.8
7 86.6 0 5.3 5.1 3
8 82.8 0.2 6.6 6.3 4.1

3 9 85.1 0 1.3 10.1 3.5
10 78.3 0.1 1.4 15.8 4.5
11 79.2 0.1 3.3 12.8 4.7
12 77 0.1 1.6 16.5 4.8

4 13 80.7 2.7 10.9 5.8
14 76.8 1.7 10.1 11.4
15 81.7 2.4 10.2 5.8
16 80.5 4.8 8.9 5.9

5 17 94.8 0 1.7 1.1 1.4 1
18 87.2 0.3 3.9 2.3 3.7 2.8
19 72.6 0 1.7 0.3 20 5.4
20 85 0 7.9 1.9 2.9 2.2

6 21 87 0.6 3.3 1.9 3.5 1.8 1.9
22 91.5 0.5 2.2 1.2 1.7 1.6 1.4
23 83.1 0 5.7 1.5 4.9 2.2 2.6
24 83.6 0.9 2.6 1.6 6.5 2 2.8

7 25 75 0.7 2.1 2.8 5.5 1.7 3.7 8.7
26 77 0.9 5.8 1.9 3.1 1.7 2.2 7.4
27 75.2 0.6 3.1 1.6 5.5 1.5 2.4 9.9
28 76.6 1.3 2.9 1.9 3.7 1.4 2 10.1

8 29 76 0.3 4.3 1.9 4.3 2.4 10.8
30 73.2 0.4 3.1 3 4.4 2.9 13
31 74.3 0.5 4.8 2.8 3.7 2.6 11.3
32 73.9 0.1 3.3 2.3 8.4 2.6 9.4

4. Conclusions

In this work, sinters with a copper matrix containing solid lubricants such as Ag, MoS2,
WS2 and CNTs were produced by powder metallurgy. On the basis of the research, the
following conclusions were formulated:

- The lowest coefficient of friction (0.15) was observed for Cu + 5% MoS2 + 5% WS2 +
2% Ag sinter. The coefficient of friction for the sinter with silver addition was similar
to that of pure copper and was 0.89. The friction coefficient for the sinter with carbon
nanotubes was 0.56.

- The multi-component sinters with the addition of CNTs were characterized by smoothed
curves of changes in the coefficient of friction vs. the time of friction.

- The lowest weight losses were found for Cu + 2% CNTs and Cu + 5% MoS2 + 5% WS2
+ 2% Ag sinters.

- A mass increase was found for all the counter-specimens as a result of spreading sinter
components, including the copper matrix, on their surfaces at a contact point of the
friction pair.

- The Cu + 10% Ag sinter was characterized by the highest amount and greatest size of
worn debris.

- The main wear mechanisms of the produced sinters were micro-cutting and micro-
ploughing. In addition, adhesive and oxidation wear were observed.

- On the worn surfaces of sinters and counter-specimens, the presence of the tribofilm
was observed. Primary traces of the grinding process in the friction tracks indicated a
low wear of counter-specimens.



Materials 2022, 15, 8424 14 of 16

Author Contributions: Conceptualization, A.P.; formal analysis, A.P., M.K., M.T. and R.Č.; funding
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