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Abstract: Zinc materials are considered promising candidates for bioabsorbable medical devices used
for the fixation of broken bones or stents. Materials for these applications must meet high mechanical
property requirements. One of the ways to fulfil these demands is related to microstructure refinement,
particularly the decrease in grain size. In the present work, we combine two powder metallurgy
techniques (mechanical alloying—MA, and spark plasma sintering—SPS) to prepare Zn–1Mg–0.5Sr
nanograin material. The microstructure of compacted material consisted of Zn grains and particles
of Mg2Zn11 intermetallic phases from 100 to 500 nm in size, which resulted in high values of
hardness and a compressive strength equal to 86 HV1 and 327 MPa, respectively. In this relation,
the combination of the suggested techniques provides an innovative way to form extremely fine
microstructures without significant coarsening during powder compaction at increased temperatures.

Keywords: metals and alloys; biomaterials; mechanical alloying; sintering; nanostructure;
compression test

1. Introduction

Zinc is considered one of the most prospective materials used for biodegradable
applications due to its excellent biocompatibility and reasonable corrosion rate without
the formation of toxic corrosion products or the release of hydrogen. However, its poor
mechanical properties (yield stress ~20 MPa, ductility ~12 % [1]) are insufficient for most
medical applications. Improvements are generally achieved by suitable alloying and
thermomechanical processing (extrusion, rolling, and drawing). During processing, the
dynamic recrystallization leads to the grain refinement to sizes of several µm, causing
material strengthening according to the Hall–Petch relation. However, it is difficult to
further decrease the grain size of the zinc matrix to support higher yield strength due to the
low recrystallization temperature of zinc and its alloys (≈0 ◦C) [2]. Other strengthening
mechanisms such as solid solution strengthening and secondary phase strengthening can
affect the material’s behavior, but the quantity of these contributions is limited on the
basis of the material’s chemical composition [1,3,4]. Zn–Mg-based materials are widely
considered as the perspective for bioabsorbable medical devices, but the solubility of
Mg in Zn is limited to almost zero at ambient temperature, and the size of the Mg2Zn11
intermetallic phases reaches relatively high values between 1 and 10 µm, even for extruded
materials. Therefore, it is highly challenging to affect these characteristics in the desired
direction (lower grain and particle size, and higher Mg concentration in solid solution),
supporting the improvement of mechanical properties.
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To progress with Zn–Mg-based materials, mechanical alloying (MA) as the main
processing technique is suggested. The MA is a method based on a combination of repetitive
cold welding and braking of powder particles during milling with balls in the specific
vessel. Diffusion processes during the material processing led to the formation of metastable
phases like supersaturated solid solutions or a wide range of intermetallic phases [5]. The
process can be affected by several factors such as the rotation speed of the vessel, milling
time, temperature of the process, milled material, and size of the vessels and milling balls,
etc. [6]. Based on these conditions, high-energy milling may produce homogeneous fine-
grained alloy powders with enhanced solubility of alloying elements in a solid solution
over a thermodynamically stable concentration [5,7]. MA was found to be one of the
methods that is capable of forming nanocrystalline structures. Other techniques that
allow grain refinement close to 0.5 µm are equal-channel angular pressing (ECAP), high-
pressure torsion (HPT), and accumulative roll bonding [8]. To preserve the microstructure
of mechanically alloyed powders, a fast compaction technique, such as spark plasma
sintering (SPS), is suitable for subsequent consolidation [9]. The SPS is a compaction
method utilizing a combination of pressure and heating by Joule’s heat, which is generated
by a high direct current that comes through the compressed powder. The surface between
powder particles has significant resistance that leads to an increase in temperature [10,11]
of the sintered sample. This method generates compact samples with low porosity [6].

In the present work, we prepared the Zn–1Mg–0.5Sr (wt.%) alloy from powders of pure
metals by mechanical alloying and subsequent compaction by SPS. The magnesium and
strontium addition are considered due to the positive effect of these elements on mechanical
properties and materials’ biocompatibility [12–16]. However, ternary Zn-Mg–Sr alloys have
been successfully prepared by casting [12–14] and thermomechanical processing such as
extrusion [14], hot rolling [12,13], or even ECAP [17]; none of these studies has brought
materials with unique, extremely fine-grained microstructure enabling the improvement in
materials performance.

2. Materials and Methods
2.1. Materials Synthesis

Zn–1Mg–0.5Sr alloy (wt.%, Table 1.) was prepared by mechanical alloying (MA) for
120 min at 800 rotation per minute (RPM) using a Retch E-max mill equipped with a cooling
system that enabled the temperature to be kept below 50 ◦C. The ball-to-powder ratio
was selected as 10:1. The pure metallic powders: zinc (99.9 %, particle size <149 µm),
magnesium (99.8 %, particle size <44 µm), and strontium (99.8 %, particle size <500 µm)
were selected as initial materials. The weight of the powder mixture was 30 g. To prevent
agglomeration of the powder mixture during mechanical alloying, 0.08 g of stearic acid was
added to the powder mixture as a process control agent (PCA). The grinding vessels were
rinsed with Ar 99.96 % atmosphere against oxidation during MA. The prepared powder
mixture and pure Zn powder were compacted using SPS (FCT System HP-D 10) at 300 ◦C
with a heating speed of 10 ◦C/s, 19.1 MPa for 10 min in a graphite die under a protective
Ar atmosphere of 99.96 %. The temperature was selected according to our experiences with
other Zn-based alloys. Lower temperatures caused an increase in materials porosity, higher
temperatures support the coarsening of the microstructure and possible melting at particle
boundaries, causing the cracking of graphite vessels. The development of conditions during
the SPS method is shown in Figure 1. Material prepared by SPS was partially dissolved in
a 20 % solution of HNO3, and solutions were analyzed by Atomic absorption spectroscopy
(AAS, 280 FS AA SPECTROMETER, Agilent, Santa Clara, CA, USA).

Table 1. Chemical composition of Zn–1Mg–0.5Sr alloy (wt.%).

Sample Designation Zn Mg Sr

Zn–1Mg–0.5Sr 98.7 0.9 0.4
Zn 100.0 - -
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Figure 1. Time profiles of the SPS process conditions.

2.2. Microstructure Analyses

The samples for the microstructural observations were ground using SiC papers (up to
P2500) and polished using diamond paste D2 (2 µm) and Eposil F suspension (0.1 µm, Al2O3).
The microstructure of the prepared samples was characterized using an optical microscope
(Eclipse MA200, Nikon, Minato, Japan) and a scanning electron microscope (SEM—VEGA
3 LMU, tungsten filament, Tescan, Brno, Czech Republic) with an Energy dispersive X-ray
spectroscopy (EDS—Aztec, Oxford Instruments, Tubney Wood, UK). Material porosity was
measured using Xradia 610 Versa (µCT) (ZEISS, Oberkochen, Germany) under the following
conditions: resolution 7 µm; 160 kV, HE3 filter, and a detector distance of 150 mm. These
measurements were performed using cuboid samples with 3 × 3 × 3 mm3 dimensions cut
from the center and the edge of the sintered billet. In addition, smaller areas of the cubes were
measured using a higher resolution (1 µm) to reveal the presence and character of smaller
pores in the material structure. The results were processed by histotrophic segmentation
(pixel intensity) using Dragonfly software (version 2022.1.B.1249, Object Research Systems,
Montréal, Canada). Finally, the phase composition was measured by X-ray diffraction
(X’Pert3 Powder instrument in Bragg–Brentano geometry using a Cu anode with scanning
speed 0.055974◦/s, Malvern Panalytical, Malvern, UK). The names and reference codes of
the evaluated phases in the PDF 4 database were Zn (01-078-9363), Mg2Zn11 (04-007-1412),
and SrZn13 (04-013-4885). The details of the microstructure were studied by transmission
electron microscope (TEM—EFTEM Jeol 2200 FS, accelerating voltage 300 kV, LaB6, Jeol
GmbH, Tokio, Japan). Firstly, thin strips (thickness <100 µm) were prepared by grinding
and further thinned by Gatan’s PIPS polishing system by Ar ions (Gatan, Pleasanton, CA,
USA). The average particle, grain, and intermetallic phase size were measured on SEM
and TEM images and determined based on the measurements of Feret’s diameters. In
such cases, the distances between the two parallel lines in horizontal or vertical directions
restricting the object from its edges were measured and averaged for each particle, grain, or
intermetallic phase.

2.3. Mechanical Properties Testing

The mechanical properties of the alloy were characterized by Vickers hardness and
compression measurements. The HV1 was measured on a Future-Tech FM-100 at a load
of 1 kg. A minimum of ten indentations were performed, from which the average and
deviation were calculated. Compression tests were performed on three specimens with size
3 × 3 × 3 mm3 at a strain rate equal to 0.001 s−1 (Instron 5882) at ambient temperature.
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3. Results and Discussion
3.1. Microstructure

The Zn–1Mg–0.5Sr powder prepared by mechanical alloying and the original Zn
powder (Figure 2) were characterized by particle size from 25 to 140 µm (average size
70 µm) and 80 to 150 µm (average size 115 µm), respectively. Particles prepared by MA
(Figure 2B) are of various irregular shapes with significant surface morphology and sharp
edges as a consequence of the repetitive breaking and welding of powders and intensive
plastic deformation compared to elongated particles with a relatively fine surface for pure
zinc. Both powders were subsequently compacted by the SPS method. The microstructures
of Zn–1Mg–0.5Sr alloy and Zn are shown in Figure 3. Both materials are composed of
slightly deformed particles of original powder, separated by oxide shells (dark interface,
white arrows in Figures 3–5). Similar microstructure features were observed for other
Zn-based materials [18] prepared by SPS. A detail of the microstructure of Zn–1Mg–0.5Sr
alloy is shown in Figure 4. Material contained locally tightly arranged alternating layers
of Zn matrix and intermediate phases (Mg2Zn11, oxides), which were formed due to the
intensive plastic deformation during mechanical alloying. Overall, the Zn–1Mg–0.5Sr is
characterized by an extremely fine microstructure. To clarify this significant modification,
the microstructure of as-casted Zn–1Mg–0.5Sr is shown in the Supplementary Data.
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and intermetallic phase Mg2Zn11: (a) overview (SEM), (b) detail (TEM).

The grain size of Zn–1Mg–0.5Sr ranged from 100 to 500 nm (Figure 6B), with an aver-
age value of 193 nm. For comparison, the sample of compacted Zn achieved an average
grain size of 2.7 µm (Figure 6B). Therefore, fast processing by SPS prevented coarsening
of the microstructure during compaction, although this is not generally observed for the
processing of zinc at increased temperatures (sintering, hot extrusion, hot isostatic pressing,
etc.). The darker particles (red arrows in Figure 4A) correspond to the Mg2Zn11 intermetallic
phases ranging in size from tens of nm to ≈700 nm, with an average particle size of 459
nm. The X-ray diffraction (Figure 7) showed that the alloy contained 5.2 wt.% of Mg2Zn11
and 4.0 wt.% of SrZn13. On the basis of the distribution of elements in the microstructure
(Figure 4B), it is suggested that Sr is enriched, especially at grain boundaries, where it may
exist in the form of fine ZnSr13 or segregation. In addition, several holes observed in the
microstructure were enriched by Sr according to scanning electron microscope–Energy Dis-
persive X-ray Spectroscopy analyses (SEM–EDS analyses), indicating that SrZn13 particles
were partially dissolved during sample preparation for microstructure analyses due to their
high susceptibility to etching. Magnesium is predominantly contained in the intermediate
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phases, whereas 0.4 wt.% is covered by Mg2Zn11, and 0.5 wt.% remains for oxides in the mi-
crostructure. These oxides are presented in the microstructure-like fine particles distributed
mainly at the grain boundaries (Figure 5). To prove the origin of these particles, detailed EDS
analyses using TEM were performed. The composition related to the light areas described
in Figure 5b as oxides contained 35 ± 5 wt. % O, 20 ± 6 wt. % Mg, 45 ± 11 wt. % Zn. This
indicates that these particles are oxides and contain rather a mixture of ZnO and MgO.
Only 0.1–0.2 wt % of Mg was detected in the zinc solid solution, which is related to the low
solubility of Mg in Zn at laboratory temperature. One can suggest that the solubility of Mg
in Zn should be increased to metastable values during mechanical alloying, and indeed, we
have observed that the zinc in the powder may obtain up to 0.6 wt.% of Mg in the form of
solid solution. However, such conditions are not thermodynamically stable, and Mg has
a very high tendency to form an intermetallic phase like Mg2Zn11 with a standard Gibbs
energy of formation equal to ≈−235 kJ (at 298.15 K). Additionally, the standard Gibbs energy
of the formation of one mole of MgO is even more negative (≈−570 kJ at 298.15 K). There-
fore, MgO is precipitated in the microstructure, especially in areas with residual oxygen or
oxygen access through diffusion at grain or particle boundaries. Eventually, Mg content in
the solid solution is decreased close to the thermodynamically stable values (0.1 wt.%) in
compacted samples.
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Due to the various shape of milled powder particles and relatively low operating pres-
sure during the SPS process, the porosity of Zn–1Mg–0.5Sr was determined by µCT. The
results are shown in Figure 8. In the case of the sample from the center of the billet, the poros-
ity reached 0.05 vol.%, and the pores were presented in two different arrangements—larger
single pores and smaller pores interconnected by thin cracks. The larger individual pores
reached the size of 20–100 µm, and the content of these pores in the center of the sample
was relatively low. On the contrary, most pores were clustered into areas with mutual
interconnection between individual pores. These areas reached almost 700 µm in size, and
the maximal pore size in these areas was 50 µm. However, the average size of pores in
these areas was approximately 20 µm. The relation between the position of the clusters and
their size was not observed. The only difference between samples cut from the center and
the edge of the sample was the pore content, which was almost twice as high (0.11 vol.%)
at the edge of the billet. This increase was caused predominantly by larger clusters, which
is documented in Figure 8 (red-colored pores).
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In summary, the microstructure of Zn–1Mg–0.5Sr prepared by powder metallurgy
techniques is unique due to the extremely low grain size and the existence of both very
fine intermetallic phases and oxides. Almost chemically similar materials prepared by
conventional methods reached the grain sizes of 10–50 µm for casted Zn–1Mg–1Sr [12]) and
2–10 µm for extruded Zn–0.8Mg–0.2Sr [14]. Furthermore, these materials were character-
ized by significant differences in microstructural aspects like the size of intermetallic phases
and their arrangements, causing complications with anisotropy of mechanical properties.
In the works of Ali et al. [19], Guleryuz et al. [20], and Yan et al. [21] binary Zn–Mg materials
were prepared by a combination of MA (250–350 RPM, 4–8 h [19–21]) and hot sintering
(350 ◦C, 4 h, 300 MPa [19]; 410 ◦C, 30 min, 30 MPa [20], 430–580 ◦C, 4 h + hot forging
at 400 ◦C [21]). Prepared alloys reached much larger grain sizes (>80 µm) than in the
presented case and contained structural defects such as high internal porosity, microcracks,
and high volume fraction of oxides [20]. Some defects were partly eliminated in materials
produced by compression-assisted techniques [19,21]. Nevertheless, the microstructures
contained local segregations of pure magnesium, which were caused by insufficient en-
ergy generated by planetary mills during MA. Due to this, not all alloying elements were
converted into intermetallic phases or solid solutions. These inhomogeneities significantly
affect mechanical, corrosion, and other structurally sensitive properties. Yang et al. [22]
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focused on the preparation of mechanically alloyed Zn–Mg binary alloy (260 RPM, 4 h),
which was subsequently compacted by selective laser melting (SLM). Obtained samples
achieved a relative density of 97.8 % and an average grain size of 10 µm, suggesting that
these materials will fail regarding mechanical properties and that the remelting during the
SLM process completely transforms the fine structure of the powder. It is clear that up to
date, only a limited amount of Zn-based alloys with similar or close grain sizes has been
obtained. Material with grain size (590 ± 60 nm) has been prepared by the high-pressure
torsion (HPT) for Zn–1Mg alloy [23], but this method is limited in the size of the affected
regions. Significant work has been performed by Jarzębska and co-workers [24,25], who
used hydrostatic extrusion to reach fine-grained microstructures with an average grain size
slightly below 1 µm. Such behavior was attributed to the repetitive dynamic recrystalliza-
tion during the process. An insight into the average grain sizes and related properties for
selected Zn-based alloys with proximate composition to Zn–1Mg–0.5Sr is shown in Table 2.

Table 2. Key characteristics of selected Zn-based alloys with close composition to Zn–1Mg–0.5Sr.

Composition Synthesis Grain Size [µm] Hardness CYS [MPa] Ref.

Zn Casting 500 38 ± 1 - [12]
Zn–0.03Mg ECAP (90◦) 0.5–2.3 - - [26]
Zn–1Mg HPT 0.6 250 - [23]
Zn–1Mg PM + Sintering 7.3 81 ± 5 245 ± 12 [3]
Zn–1.6Mg Casting 35 82 ± 2 245 ± 12

[27]Zn–1.6Mg Extrusion 10 97 ± 3 292 ± 11
Zn–1.6Mg Melt spinning + extrusion 2 122 ± 3 382 ± 382
Zn–3Mg ECAP (120◦) 2 186 ± 4 - [28]
Zn–0.6Mg–0.1Sr Casting 36 - -

[17]
Zn–0.6Mg–0.1Sr ECAP (150◦) 3.6 - -
Zn–0.8Mg–0.2Sr Extrusion 2–6 - 220 ± 6 [14]
Zn-0.8Mg-0.2Sr ECAP 1–4 - 240 ± 10 [29]
Zn–1Mg–1Sr Casting 10–50 85 ± 2 -

[12]Zn–1Mg–1Sr Rolling 10–50 - 383 ± 71
Zn–1Mg–1Sr Extrusion 10–50 92 ± 5 -
Zn MA + PM - 38 ± 2 118 ± 2

This work
Zn–1Mg–0.5Sr MA + PM 0.5 86 ± 2 327 ± 3
Zn–1Mg–0.5Sr Casting - 82 ± 4 221 ± 6 Supplementary Data

CYS = compressive yield strength.

3.2. Mechanical Properties

The mechanical properties of Zn–1Mg–0.5Sr alloy were evaluated based on HV1 mea-
surements and compressive tests. The compressive stress–strain curves are presented in
Figure 9, and the evaluated compressive yield strength (σCYS) value and hardness mea-
surement results are shown in Table 1. The compressive yield strength (σCYS = 346 MPa)
and hardness (118 ± 2 HV1) are significantly increased compared to the pure zinc powder
compacted by SPS. This improvement is related to the presence of extremely fine-grained
microstructure, including the Mg2Zn11 particles. These hard intermetallic phases are pre-
sented in cubic crystallographic structure (Pm-3) and strengthen the material by blocking
the movement of dislocation in the hexagonal lattice of Zn [30], but they can also lead to
the loss of material plasticity [14]. However, the material continually deformed during
the compression test (Figure 9) without reaching the fracture, even for a deformation of
about 40 %, preserving excellent ductility. The hardness of the final product was mainly
affected by the intermetallic phases with significantly higher hardness values than the
surrounding matrix (330 HV for Mg2Zn11 [23], 356 HV for SrZn13 [31], 37 HV for Zn [23]).
The contributions of grain boundaries (or grain size), solid solution, or intermetallic phases
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to the strengthening of the material were calculated previously for Zn–Mg alloys [6,22] and
Zn-0.8Mg–0.2Sr [14]. It has been shown that the dominant effect is expected on the basis of
the hindering movement of dislocations at grain boundaries and the Mg2Zn11/Zn matrix
interface. On the contrary, the effect of solid solution strengthening may be considered
negligible even for increased concentrations of Mg in solid solution [32].
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Several studies were interested in zinc alloys with close composition. For example,
Li et al. [12] studied the effect of processing on the mechanical properties of Zn–1.2Mg–1.1Sr
alloy. They showed that the alloy reached the highest CYS value, equal to 375 MPa, after pro-
cessing by extrusion, which is a very similar value to obtained results (327 MPa). The slightly
higher σCYS is likely related to the higher concentration of Mg in the material and, therefore,
higher content of Mg2Zn11, when the 0.3 wt.% of Mg difference cause approximately 26 MPa
increase in σCYS. Another contribution may be related to the presence of SrZn13. However,
their contribution is slightly reduced by prior distribution at grain boundaries or inside
the Mg2Zn11 phase or eutectics in conventionally prepared materials. Materials prepared
in this study further contained oxide shells, which are known to significantly affect the
mechanical properties of materials prepared by SPS. The layer of oxides forms a network
structure that runs through the entire alloy and causes a decrease in strength and ductility
due to the weakening of the bonds between individual powder particles by the formation of
a brittle oxide interface. Despite this shortcoming, the materials behave under compression
loading superior to other Zn–Mg-based alloys with close composition (Table 2). This is
attributed to the fact that the presented oxide network was partially disrupted due to the
resistance heating at particle boundaries and possible local melting. These disruptions are
essential to stop the easy propagation of cracks through the oxide shells thus preserving the
material’s ductility.

4. Conclusions

The present study reveals the power of powder metallurgy processes in the synthesis
of Zn-based materials with a homogeneous nano-grain microstructure. A combination
of mechanical alloying and spark plasma sintering resulted in materials with the average
grain size and intermetallic particle size of Zn–1Mg–0.5Sr alloy below 500 nm, which was
observed for the first time for Zn-based bulk materials. Such microstructure refinement
is related to the blocking of the grain boundaries by oxide particles formed in the mate-
rial during mechanical alloying and preserving grain coarsening during compaction at
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increased temperatures. Microstructure refinement led to the compressive yield strength
and hardness values of 86 HV1 a 327 MPa, respectively. Furthermore, the compacted
materials retained high ductility in compression loading without any observed breakage.
Therefore, the suggested technology brings new possibilities in increasing the performance
of zinc-based alloys, particularly Zn–Mg–Sr and makes these materials candidates for
bioabsorbable medical devices like augmentations or screws.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma15238379/s1, Figure S1: Microstructure of Zn–0.9Mg–0.4Sr alloy
prepared by casting—SEM: (a) overview, (b) detail; Figure S2: Compressive stress-strain curves of
materials prepared by powder metallurgy and as-casted Zn–1Mg–0.5Sr alloy; Table S1: Mechanical
properties of studied materials.
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