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Abstract: Perovskite-type ABO3 oxides show a number of cation-ordered structures, which have sig-
nificant effects on their properties. The rock-salt-type order is dominant for B cations, and the layered
order for A cations. In this work, we prepared a new perovskite-type oxide, Sm2CuMn(MnTi3)O12,
with a rare columnar A-site order using a high-pressure, high-temperature method at about 6 GPa
and about 1700 K. Its crystal structure was studied with synchrotron powder X-ray diffraction. The
compound crystallizes in space group P42/nmc (No. 137) at room temperature with a = 7.53477 Å
and c = 7.69788 Å. The magnetic properties of the compound were studied with dc and ac magnetic
susceptibility measurements and specific heat. Spin-glass (SG) magnetic properties were found with
TSG = 7 K, while specific heat, in the form of Cp/T, showed a strong, very broad anomaly developing
below 20 K and peaking at 4 K. The dielectric constant of Sm2CuMn(MnTi3)O12 was nearly frequency
and temperature independent between 8 K and 200 K, with a value of about 50. Cu2+ doping drasti-
cally modified the magnetic and dielectric properties of Sm2CuMn(MnTi3)O12 in comparison with
the parent compound Sm2MnMn(MnTi3)O12, which showed a long-range ferrimagnetic order at
34–40 K. The antisite disorder of Cu2+ and Mn2+ cations between square-planar and octahedral sites
was responsible for the SG magnetic properties of Sm2CuMn(MnTi3)O12.

Keywords: quadruple perovskites; A-site columnar-ordered; antisite disorder; crystal structures;
spin-glass

1. Introduction

The properties of the perovskite-structure oxide material, ABO3, are controlled by their
chemical compositions and degrees of cation orderings [1,2]. There are perovskites with
B-site cation orderings, A-site cation orderings, and both types of orderings. In the case of
B-site ordering, the rock-salt-type order is dominant [3]. In the case of A-site ordering in
ABO3, the layered-type order is dominant [1,2,4], but there are other types of ordering [5,6].
There are also two special families of perovskites with A-site orderings: A-site-ordered
quadruple perovskites, AA′3B4O12 [7–9], and A-site columnar-ordered quadruple per-
ovskites, A2A′A′′B4O12 [10]. Quadruple perovskites can have ordered arrangements of 3d
transition metals at the A (in general) perovskite sites in addition to the B sites. The result-
ing B–B, A–B, and A–A exchange interactions can produce complex interaction patterns
and frustration networks and result in competing magnetic ground states, a large number
of magnetic transitions and unexpected magnetism [11].

With A = R = rare earth elements and Bi and A′ = A′′ = B = Mn, interesting classes
of perovskite manganites are formed, namely RMn7O12 [9] and RMn3O6 (in a short for-
mula) [12]. They show several magnetic transitions with spin reorientations [9], and some
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members have incommensurate magnetic structures [13]. The Cu2+ doping of RMn7O12
and RMn3O6 has beneficial effects on their magnetic properties. in a sense that magnetic
transition temperatures significantly increase, e.g., from about 80–87 K in RMn7O12 [13] to
360–400 K in RCu3Mn3O12 [14], and from about 60–77 K in RMn3O6 [12] to 160–180 K in
R2CuMnMn4O12 [11,15]. In case of BiMn7O12 [9], Cu2+ doping results in complex structural
behavior [16–18], complex magnetic behavior, and almost a linear rise of magnetic transition
temperatures in BiCuxMn7–xO12 [18] for 0.8≤ x≤ 3 from about 30 K (for 0 < x < 0.8) to 360 K
for x = 3 [19]. The beneficial effects of Cu2+ doping also took place in Y2MnGaMn4O12,
which shows spin-glass magnetic properties at 26 K [20], as Y2CuGaMn4O12 exhibits
long-range ferrimagnetic ordering at 115 K [21].

Sm2MnMn(MnTi3)O12 is a member of the A-site columnar-ordered quadruple per-
ovskites. The magnetic properties of Sm2MnMn(MnTi3)O12 [22,23] were somewhat un-
expected, as it shows a long-range ferrimagnetic ordering with TC = 34–40 K and a well-
defined M–H hysteresis loop with remnant magnetization of 2.3–2.4 µB/f.u. at 5 K. The
concentration of 3d transition metals (Mn2+) at the B sites (25%) was below the percolation
limit for the corner-shared octahedral network. Nevertheless, Mn2+ cations at the B sites
were involved in the long-range ordering with a noticeable ordered magnetic moment [23].
Similar compounds without magnetic cations at the B sites (e.g., Ca2MnMnTi4O12 [24]
and NaRMnMnTi4O12 [25]) show antiferromagnetic (AFM) transitions at lower tempera-
tures of about 12 K. Therefore, there should be a noticeable involvement of the A–A and
A–B exchange interactions in Sm2MnMn(MnTi3)O12 to stabilize the ferrimagnetic struc-
ture out of AFM one and to increase the magnetic transition temperature. In addition,
Sm2MnMn(MnTi3)O12 was the first example among A-site columnar-ordered quadruple
perovskites, demonstrating relaxor-type dielectric properties with broad maxima on the
temperature dependence of a dielectric constant near 220 K [22].

In this work, we investigated the effects of Cu2+ doping on the magnetic and dielectric
properties of the parent Sm2MnMn(MnTi3)O12 compound and prepared Sm2CuMn(MnTi3)O12
using a high-pressure, high-temperature method. However, in this case, the magnetic prop-
erties of the parent compound were “degraded” by Cu2+ doping, as only spin-glass (SG)
magnetic properties were observed below TSG = 7 K. We attributed this degradation to
antisite disorder. The relaxor-type dielectric properties of the parent compound disap-
peared, and Sm2CuMn(MnTi3)O12 demonstrated a frequency and temperature independent
dielectric constant between 10 K and 200 K, with a value of about 50.

2. Experimental

Sm2CuMn(MnTi3)O12 was prepared using a high-pressure, high-temperature method
using a belt-type high-pressure machine at 6 GPa and about 1700 K for 2 h in a Pt capsule.
After annealing at 1700 K, the samples were quenched to room temperature (RT) by turning
off the heating current, and the pressure was slowly released. Stoichiometric amounts of
Sm2O3 (99.9%), CuO (99.9%), MnO (99.99%), and TiO2 (99.9%) were used as an initial oxide
mixture with the 1:1:2:3 ratio, respectively. Commercial Sm2O3, CuO, and TiO2 chemicals
were used. A single-phase MnO oxide was prepared from a commercial MnO2 chemical by
annealing at 1273 K for 4 h in a 20% H2 + 80% Ar gas flow.

X-ray powder diffraction (XRPD) data were collected at RT with a RIGAKU Mini-
Flex600 diffractometer (CuKα radiation; a 2θ range of 8–100◦; a step of 0.02◦, and scan speed
of 1◦/min). The synchrotron XRPD data were collected at RT on the BL15XU beamline
(the former NIMS beamline) of SPring-8 [26] between 2.04◦ and 60.23◦ at 0.003◦ intervals
in 2θ with a wavelength of λ = 0.65298 Å. The data between 6◦ and 60.23◦ were used in
the refinements as no reflections were observed and expected below 6◦. The sample was
inserted into a Lindemann glass capillary tube (inner diameter: 0.1 mm), which was rotated
during the measurements. The Rietveld analysis of all XRPD data was performed using
the RIETAN-2000 program [27].

Scanning electron microscopy (SEM) images and energy-dispersive X-ray (EDX) spec-
tra were obtained on a Hitachi Miniscope TM3000 (operating at 15 kV).
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SQUID magnetometers (Quantum Design, MPMS-XL-7T and MPMS3) were used
for the magnetic measurements. Temperature dependence was measured between 2 and
400 K in applied fields of 100 Oe and 10 kOe under both zero-field-cooled (ZFC) and
field-cooled on cooling (FCC) conditions on an MPMS-XL-7T. Magnetic-field dependence
was measured at T = 2 K and 5 K between −70 and 70 kOe on MPMS3. Frequency
dependent alternating current (ac) susceptibility measurements were performed on cooling
with a Quantum Design MPMS3 instrument at different frequencies (f ), different applied
oscillating magnetic fields (Hac), and different static dc field (Hdc). Relaxation curves were
measured on MPMS3 using the following procedure: the sample was cooled down from
50 K to a measurement temperature at zero magnetic field, then a magnetic field of 100 Oe
was applied, and magnetization was measured (as one scan within 2 s) as a function of
time every 5 s.

Specific heat, Cp, was measured by cooling from 270 K to 2 K at zero magnetic field
and from 150 K to 2 K at magnetic field of 90 kOe by a pulse relaxation method using a
commercial calorimeter (Quantum Design PPMS).

The dielectric constant and dielectric loss were measured on a NOVOCONTROL
Alpha-A High Performance Frequency Analyzer in a frequency range from 100 Hz to
665 kHz in a temperature range from 8 K to 330 K (on heating) at zero magnetic field.

3. Results and Discussion

The as-synthesized Sm2CuMn(MnTi3)O12 contained a small amount of CuO impurity.
In addition, the synchrotron XRPD pattern showed the presence of Pt impurity. However,
Pt appeared from Pt capsules used in the synthesis and can be considered as an extrinsic
impurity. The presence of a CuO impurity suggests that the main phase should be slightly
Cu-deficient in comparison with the target composition. The morphology of the sample is
shown in Figure 1. The particle sizes varied between about 10 and 50 µm. The Ti:Mn:Sm:Cu
cation ratio determined with EDX was 3.24(8):2.02(5):1.96(4):0.77(7), respectively. These
values were close to the nominal values within 3σ.
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Figure 1. Scanning electron microscopy (SEM) images of the fractured surface of the as-synthesized
Sm2CuMn(MnTi3)O12 sample. The scale bars are 100 µm (left) and 30 µm (right); magnification is
1000 (left) and 2000 (right). The surface is partially polished in the right panel. No polishing has been
done in the left panel.

All of the reflections on the laboratory and synchrotron XRPD patterns (except CuO
and Pt) could be indexed in a tetragonal system in space group P42/nmc (No. 137) (Figure 2).
Sm2CuMnMnTi3O12 was found to crystallize in the parent structure of the A-site columnar-
ordered quadruple perovskites, A2A′A′′B4O12 [10]. Therefore, the structural data for the
parent compound Sm2MnMn(MnTi3)O12 [22,23] were taken as an initial starting model.
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Figure 2. Laboratory powder X-ray diffraction pattern of Sm2CuMn(MnTi3)O12 in a 2θ range
from 14◦ to 60.5◦. Possible Bragg reflection positions for Sm2CuMn(MnTi3)O12 (the first row) and
CuO impurities (the second row) are shown. The (hkl) indices of all of the observed reflections of
Sm2CuMn(MnTi3)O12 are given.

In the structural analysis, we first assumed ideal cation distributions (that is, Sm at the
A site, Cu at the square-planar A′ site, Mn at the tetrahedral A′′ site, and 0.75Ti + 0.25Mn
at the octahedral B site) and refined the occupation factors (g) together with all of the
other structural and nonstructural parameters (except g(B): one cation occupation factor
should always be fixed to avoid significant correlations among the refined g parameters).
In addition, in the structural analysis, we always assumed that Ti4+ cations were located at
the B site, as Ti4+ cations strongly prefer octahedral sites [28].

The refined g values were as follows: g(Sm–A) = 0.9167(16), g(Cu–A′) = 0.914(7),
and g(Mn–A′′) = 1.047(7). These values suggest that the ideal cation distribution was not
realized, and there were some antisite disorders. The g(Cu–A′) value suggested that this
site should contain lighter elements that could only be Mn (with the above assumption
on Ti). When only Mn was placed at the square-planar A′ site, the occupation factor was
g(Mn–A′) = 1.112(8), meaning that heavier elements should also be at this site. Because it
was difficult to precisely refine the distribution of Mn and Cu with X-ray diffraction, we
introduced a virtual atom: MC = 0.5Mn + 0.5Cu. The precise distribution of Mn and Cu
could only be determined with neutron diffraction. The disordering of cations at the Cu
site was also observed as in many cases of such perovskites [21,22,25,29].

The refined structural parameters and primary bond lengths and angles in
Sm2CuMn(MnTi3)O12 are listed in Tables 1 and 2. The experimental, calculated, and difference
synchrotron patterns are shown in Figure 3. The crystal structure of Sm2CuMn(MnTi3)O12 is
illustrated in the inset of Figure 3.
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Table 1. Structure parameters of Sm2CuMn(MnTi3)O12 from synchrotron powder diffraction data
(λ = 0.65298 Å) at room temperature.

Crystal system Tetragonal
Space group P42/nmc (No. 137, cell choice 2)

Z 2
Caclulated density (g/cm3) 6.15

Formula weight (g/cm3) 809.737
Used d range (Å) 0.6507–6.238

a (Å) 7.53477(1)
c (Å) 7.69788(1)

V (Å3) 437.0301(8)
g(Sm) 0.9413(9)Sm + 0.0587Mn
z(Sm) 0.22194(4)

B(Sm) (Å2) 0.796(7)
g(Cu) 0.4597MC + 0.0403Sm
z(Cu) 0.7804(3)

B(Cu) (Å2) 1.25(7)
g(Mn) 0.963(3)Mn + 0.037Sm

B(Mn) (Å2) 0.38(6)
g(Ti) 0.25MC + 0.75Ti

B(Ti) (Å2) 0.400(9)
y(O1) 0.0571(3)
z(O1) −0.0379(3)

B(O1) (Å2) 0.33(5)
y(O2) 0.5363(3)
z(O2) 0.5745(3)

B(O2) (Å2) 0.36(5)
x(O3) 0.44161(23)

B(O3) (Å2) 1.48(7)
Rwp (%) 3.16
Rp (%) 2.17
RI (%) 2.63
RF (%) 1.69

The Sm site is in the 4d site (0.25, 0.25, z); Cu is in the 4c site (0.75, 0.25, z); Mn is in the 2b site (0.75, 0.25, 0.25);
Ti is in the 8e site (0, 0, 0); O1 and O2 are in the 8g site (0.25, y, z), and O3 is in the 8f site (x, −x, 0.25). g is the
occupation factor. g(O1) = 1, g(O2) = 1, and g(O3) = 1. MC is a virtual atom: 0.5Mn + 0.5Cu.

Table 2. Bond lengths (in Å), bond angles (in deg), and distortion parameters of TiO6 (∆) in
Sm2CuMn(MnTi3)O12 at room temperature.

Sm–O1 × 2 2.352(3)
Sm–O1 × 2 2.472(2)
Sm–O2 × 2 2.437(2)
Sm–O3 × 4 2.744(1)
Cu–O3 × 4 2.055(2)
Mn–O2 × 4 2.102(3)
Ti–O1 × 2 1.954(1)
Ti–O2 × 2 1.988(1)
Ti–O3 × 2 2.023(1)

∆(TiO6) 2.0 × 10−4

Ti–O1–Ti × 2 149.17(9)
Ti–O2–Ti × 2 142.75(9)
Ti–O3–Ti × 2 144.17(9)
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Figure 3. Full experimental (black crosses), calculated (red line), and difference (blue line at the
bottom) room-temperature synchrotron powder X-ray diffraction patterns of Sm2CuMn(MnTi3)O12

in a 2θ range of 6◦ and 60◦. The brown tick marks show possible Bragg reflection positions for the
main phase, the blue tick marks are for CuO impurity (2.0 wt.%), and the green ones are for Pt
impurity (0.3 wt.%). The inset shows a tetragonal crystal structure of Sm2CuMn(MnTi3)O12; TiO6

octahedra (gray), MnO4 tetrahedra (green), and ideal CuO4 square-planar units (red) are plotted; Sm
atoms are given by black circles; split Cu sites are shown by yellow circles.

Our model suggested that a small fraction of Cu2+ cations should be located at the
B site. Indirect evidence for the location of Cu2+ cations at the octahedral site can be
seen from the resulting Ti/MC–O bond lengths. In the parent and related compounds,
R2MnMn(MnTi3)O12 (R = Nd, Sm, Eu, and Gd), the Ti/Mn–O bond lengths were about
1.99, 2.01, and 2.01 Å (from both the synchrotron [22,29] and neutron [23] diffraction data),
resulting in an octahedral distortion parameter, ∆, of about 0.2 × 10–4. On the other hand,
in Sm2CuMn(MnTi3)O12, the Ti/MC–O bond lengths were about 1.95, 1.99, and 2.02 Å
resulting in ∆ of about 2.0 × 10–4. This rise in the octahedral distortion could be caused by
the presence of a small amount of Jahn–Teller active Cu2+ cations at this site.

Magnetic susceptibility curves, χ versus T, of Sm2CuMn(MnTi3)O12 under applied
magnetic fields of 0.1 kOe and 10 kOe are shown on Figure 4. There was a divergence
between the 100 Oe ZFC and FCC curves at 7 K and a relatively sharp maximum on
the 100 Oe ZFC curve at 7 K. A divergence between the ZFC and FCC curves almost
disappeared under 10 kOe. These features are typical for spin-glass transitions [30–32].
Isothermal magnetization, M versus H, curves demonstrated an extended S-type shape
with very weak and narrow hysteresis (Figure 5). Almost no hysteresis was observed at
5 K because 5 K was close to its TSG = 7 K; on the other hand, the hysteresis was noticeably
wider at a lower temperature of 2 K. Such M versus H curves are also typical for spin
glasses [30–32].
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Figure 4. The left-hand axis shows the ZFC (filled symbols) and FCC (empty symbols) dc magnetic
susceptibility curves (χ = M/H) of Sm2CuMn(MnTi3)O12 at 100 Oe (black) and 10 kOe (red). The
right-hand axis gives the 10 kOe FCC χ−1 versus T curve with the Curie–Weiss fit between 250 K and
345 K (black line). Parameters of the fits are shown on the figure. The inset shows details below 30 K.
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Figure 5. M versus H curves of Sm2CuMn(MnTi3)O12 at T = 2 K (black) and T = 5 K (red) (f.u.:
formula unit). The inset shows details near the origin. Parameters of the M versus H curve at T = 2 K
are given: MS is the magnetization value at H = 70 kOe, MR is the remnant magnetization, and HC is
the coercive field.

The inverse magnetic susceptibilities (χ−1 versus T) followed the Curie–Weiss law
at high temperatures (Figure 4). To obtain the effective magnetic moment and the Curie–
Weiss temperature, we performed fits between 250 and 345 K using the 10 kOe FCC
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curves (the fit and fitting parameters are summarized on Figure 4). The experimental
effective magnetic moment was close to the expected one (8.803 µB; in the calculations we
used 1.5 µB for Sm3+ [33]). The negative Curie–Weiss temperature shows that the main
magnetic interactions were antiferromagnetic in nature. The ratio between the Curie–Weiss
temperature (−81.5 K) and TSG (the so-called frustration ratio) was about 11, indicating a
strong degree of magnetic frustration. We note that CuO was in an antiferromagnet with
transition temperatures of 213 K and 230 K. Therefore, CuO impurity should not affect the
reported magnetic properties at low temperatures.

To confirm the spin-glass nature of the sample, we measured ac magnetic susceptibility
curves (Figures 6 and 7). We note that no dependence of the χ′ and χ′′ values on the applied
Hac field was observed (inset of Figure 6). We indeed observed typical features of spin-
glasses: peak positions were frequency-dependent and shifted to higher temperatures with
increasing frequency; in addition, peak intensity was suppressed on the χ′ versus T curves
and enhanced on the χ′′ versus T curves with increasing frequency. All of these features are
typical for spin glasses [30–32]. In addition, the shape of the χ′ versus T and the χ′′ versus T
curves was also typical for spin glasses. The criterion, which quantifies the relative change
of the spin-glass temperature per frequency decade and is defined as ∆TSG/[TSG∆log(f )],
was about 0.023 for Sm2CuMn(MnTi3)O12 (with TSG = 7.2 K at f = 2 Hz and TSG = 7.6 K at
f = 500 Hz). This value is often observed in different spin-glass materials [30–32].

Sm2CuMn(MnTi3)O12 shows time-dependent magnetic properties below TSG, namely
magnetization relaxation (Figure 8). Above TSG, no noticeable relaxation of magnetization
was detected. Time-dependent magnetic properties, such as relaxation, are typical fea-
tures of spin-glass systems. Relaxation below TSG was fitted by the stretched exponential
function, f (t) = M0 −MSG × exp[−(t/tr)β] [30], and the resultant parameters are listed on
Table 3. The most important parameter is the mean relaxation time, tr, and it decreases
monotonically with increasing temperature.

Table 3. Results of the fittings of the relaxation curves of Sm2CuMn(MnTi3)O12 at different
temperatures.

T (K) M0 MSG tr (s) β

2 22.80(13) 23.67(18) 1270(24) 0.4362(4)
3 26.01(12) 27.20(20) 979(16) 0.4461(4)
4 22.81(10) 23.94(18) 800(11) 0.4495(4)
5 17.74(6) 18.62(13) 671(8) 0.4558(4)
6 12.34(14) 13.01(9) 554(6) 0.4654(4)

The fitting equation is f (t) = M0 −MSG × exp[−(t/tr)β] [30] applied to the 100 × [M(t) −M(0)]/M(0) versus time
(t) curves.

The specific heat data showed a noticeable magnetic contribution to the total specific
heat below about 20 K, where it could be clearly seen as a rise in Cp/T values below 20 K
(Figure 9). No λ-type anomaly was detected in the Cp versus T curve (inset of Figure 9,
a green curve). Instead, a broad anomaly was seen in the Cp versus T curve, which
gave a broad peak centered at 4 K in the Cp/T versus T curve. Therefore, specific heat
measurements confirmed the absence of long-range magnetic ordering. A magnetic field of
90 kOe slightly suppressed the peak near 4 K and moved the magnetic entropy into the
14–40 K range.
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Figure 6. (a) Real (χ′) and (b) imaginary (χ′′) parts of the ac magnetic susceptibility curves of
Sm2CuMn(MnTi3)O12 at different frequencies. The insets in (a,b) show the χ′ versus T and χ′′

versus T curves at different Hac = 0.05, 0.5, and 5 Oe and one frequency (f = 300 Hz) (the χ′′ data at
Hac = 0.05 Oe are not shown because they were too noisy).
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Figure 7. (a–d) χ′ versus T curves of Sm2CuMn(MnTi3)O12 at f = 2 Hz and 500 Hz and different bias
dc fields: (a) Hdc = 0 Oe, (b) 100 Oe, (c) 1 kOe, and (d) 10 kOe. Insets show χ′′ versus T curves (the
χ′′ data at f = 2 Hz and Hdc = 10 kOe were too noisy and not shown). (e) All χ′ versus T curves at
f = 500 Hz are shown in one figure. (f) All χ′′ versus T curves at f = 500 Hz are shown in one figure.

The temperature dependence of the dielectric constant and dielectric loss is shown
in Figure 10. The dielectric constant was nearly temperature and frequency-independent
between 8 and 200 K. Above about 200 K, a sharp rise in the dielectric constant was
observed, where the magnitude of the rise depended on frequency. This behavior typically
originates from the Maxwell–Wagner contribution due to increased conductivity. No
broad anomalies were observed in Sm2CuMn(MnTi3)O12 in comparison with the parent
compound Sm2MnMn(MnTi3)O12. This fact shows that Cu2+ doping drastically modified
the dielectric properties as well, in addition to the magnetic properties. We note that Pt
impurity was only observed in a powder sample, which could contain parts from the
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surface. The surfaces of a pellet used for dielectric measurements were polished. Therefore,
Pt impurity should not present in a pellet and affect dielectric measurements.
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Figure 8. Relaxation curves defined as 100 × [M(t) − M(0)]/M(0) versus time (t) for
Sm2CuMn(MnTi3)O12 at temperatures of 2, 3, 4, 5, 6, 7, and 10 K. Experimental points are given by
symbols, and the red line shows the fit at 3 K as an example. The equation used for fitting and the
resultant parameters are listed in Table 3.
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Figure 9. (a) Cp/T versus T curves of Sm2CuMn(MnTi3)O12 at H = 0 Oe (red triangles) and 90 kOe
(blue triangles) in comparison with the parent compound Sm2MnMn(MnTi3)O12 at H = 0 Oe (black
circles) and 90 kOe (brown circles). Cp is the total specific heat. The arrows show the positions of the
magnetic anomalies. The inset shows the Cp/T versus T curve at H = 0 Oe below 30 K, and the Cp

versus T curve at H = 0 Oe (green circles). For the Cp versus T curve, the Cp values were divided by
20, and the Cp unit is J K−1 mol−1. (b) Comparison of Cp/T versus T data for Sm2CuMn(MnTi3)O12

(red triangles) and Sm2MnZn(MnTi3)O12 (black circles) [34] at H = 0 Oe.
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Figure 10. Temperature dependence of the dielectric constant at different frequencies in
Sm2CuMn(MnTi3)O12. The inset shows temperature dependence of dielectric loss in the logarith-
mic scale.

Spin-glass magnetic properties were also observed in Sm2MnZn(MnTi3)O12 at TSG = 6.5 K,
with a significant antisite disorder [34]. This fact shows that antisite structural disor-
der should play a major role in the modification of magnetic properties of the parent
Sm2MnMn(MnTi3)O12 compound, not the nature of dopant cations (magnetic as Cu2+ or
non-magnetic as Zn2+). Both Sm2CuMn(MnTi3)O12 and Sm2MnZn(MnTi3)O12 demon-
strated similar low-temperature specific heat features (Figure 9b).

The beneficial effects of Cu2+ doping in RMn7O12 [13,14], RMn3O6 [11,12,15], and
Y2MnGaMn4O12 [20,21] originate from the fact that Cu2+ doping is aliovalent doping,
which produces Mn4+ cations. A mixture of Mn3+ and Mn4+ at the B sites of perovskites
significantly enhanced the exchange interactions and magnetic transition temperatures.
On the other hand, Cu2+ doping in the parent Sm2MnMn(MnTi3)O12 compound was
isovalent doping. Such doping did not change the oxidation state of Mn, while the antisite
disordering “degraded” the magnetic properties.

4. Conclusions

A new member of the A-site columnar-ordered quadruple perovskite family,
Sm2CuMn(MnTi3)O12, was prepared using a high-pressure, high-temperature method. Cu2+

doping significantly modified the properties of the parent Sm2MnMn(MnTi3)O12 compound,
as spin-glass magnetic properties at TSG = 7 K were observed in Sm2CuMn(MnTi3)O12 in com-
parison with the long-range ferrimagnetic order at TC = 34–40 K in Sm2MnMn(MnTi3)O12.
In addition, relaxor-like dielectric properties of Sm2MnMn(MnTi3)O12 disappeared in
Sm2CuMn(MnTi3)O12, which showed a nearly temperature and frequency-independent
dielectric constant between 8 and 200 K with a value of about 50.
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