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Abstract: High-speed, high-efficiency and high-power density are the main development trends
of high-performance motors in the future. At present, the design accuracy of traditional electric
machines is already high enough; however, for the future demand of high performance and utilization
in special environments (such as aviation and aerospace fields), more thorough research of materials’
performance under multi-physics field (MPF) conditions is still needed. In this paper, a test system
that combined temperature, stress and electromagnetic fields along with other fields, at the same
time, is built. It can accurately simulate the actual complex working conditions of the motor and
explore the dynamic characteristics of non-grain oriented (NGO) silicon steel. The rationality of this
method is verified by checking the test result of the prototype, and the calculation accuracy of the
motor model is improved.
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1. Introduction

Silicon steel is one of the most important materials in motor. Under the actual work-
ing state of the motor, the core material is in a physical field where temperature, stress,
frequency conversion and other external fields are coupled at the same time. For example,
when the built-in permanent magnet synchronous motor is running at high speed, the
alternating frequency of the magnetic field in iron core is high [1], and the iron loss increases
exponentially as the frequency increases [2]. In addition, high frequency will also cause
skin effects on the surface of silicon steel sheet, which will further increase the iron loss [3].
The loss of certain grades of silicon steel will increase several times when giving them
compressive stress from 0 MPa to 100 MPa [4,5]. Silicon steel material will appear as a
dynamic strain aging phenomenon under the action of temperature [6], and its tensile
strength will change at the same time. Similarly, the heat dissipation problem and demag-
netization problem caused by temperature rise during the operation of permanent magnet
synchronous motor indicate that it is necessary to consider the influence of frequency, stress
and temperature on the core material.

Traditional motor design and finite element analysis are calculated iteratively through
the basic data of materials under power frequency, no external force and constant tempera-
ture conditions. However, with the improvement of the requirements for high-performance
motors in the future, how to accurately calculate and predict the performance of motors
under extreme conditions is particularly important. The magnetic properties and mechan-
ical properties of silicon steel under MPF have gradually become a research hotspot. In
Reference [7], the author explored the influence of stress and temperature on the iron loss
of silicon steel, and completed the modification of the calculation coefficient of iron loss
according to the influence.

Many scholars have studied the effect of a single physical field (SPF) change on silicon
steel sheets’ magnetic properties. In addition to the excitations, the microstructure of

Materials 2022, 15, 8305. https://doi.org/10.3390/ma15238305 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15238305
https://doi.org/10.3390/ma15238305
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://doi.org/10.3390/ma15238305
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15238305?type=check_update&version=1


Materials 2022, 15, 8305 2 of 12

silicon steel will change with the change in stress [8,9], thus causing effects to its magnetic
properties. When it is applied with external force, silicon steel will show magneto elastic
properties [10] and stress demagnetization [7], which will also promote or deteriorate the
magnetization of silicon steel. With the increase in tensile stress, most of the silicon steel
will show a trend that its magnetic density firstly increases and then decreases. However,
the effect of stress on silicon steel sheet loss is not infinite. When stress reaches a certain
value, the loss will remain in a relatively stable numerical range [11].

By applying the temperature field to Epstein coils, Chen’s team explored the influence
of temperature rise on the magnetic properties of soft magnetic materials, and found that
the magnetic density of materials decreased with the increase in temperature [12]. The
influence of temperature on the electromagnetic properties of 0.5 mm medium grade NGO
silicon steel was studied, and the action mechanism model was proposed [13]. Temperature
coefficient K and effective resistivity of silicon steel lamination was subsequently introduced
to explore the change trend of iron loss with temperature, and came to a conclusion that
the iron loss decreases with temperature rise [14].

In 2016, American scholar G.M.R. Negri [15] conducted experiments involving thermal,
metallurgical and electromagnetic measurements on silicon steel, simulated the evolution
process of loss using the scalar hysteresis model and predicted the aging of silicon steel
based on the Arrhenius formula, providing important significance for motor design. Sim-
ilarly, Andreas Krings and Oskar Wallmark studied the influence of motor operating
temperature on its magnetic performance and proposed a core loss model including tem-
perature influence coefficient [16]. After them, different researchers continuously corrected
the temperature coefficient of this iron loss model through experimental measurement, and
verified the correctness of the modified model by testing the silicon steel and motor [17,18].
Some scholars have summarized relevant laws by studying the magnetic properties and
mechanical properties of NGO silicon steel within a certain temperature range [19–21]. In
addition, there are some scholars who also studied the electromagnetic characteristics of
oriented silicon steel at different ambient temperatures [22].

In conclusion, more domestic and foreign scholars are paying attention to the char-
acteristics of silicon steel under MPF. However, in the actual motor design process, some
designers still rely on the fixed model and basic material data provided by the commercial
finite element simulation software and empirical coefficients to design the motor. They
still lack the understanding of the nature and change mechanism of the material under the
influence of MPF, as well as the final impact on the motor performance.

The first part of this paper summarizes the current research status of the magnetic
properties of materials under MPF. In the second part, a high-power density drive motor is
designed, and three main factors that affect the characteristics of soft magnetic materials
under extreme operating conditions are proposed, which are temperature, stress and
frequency. In the third part, a magnetic characteristic test method based on “temperature
stress electromagnetic” three-field coupling is proposed, which can proximately simulate
the real situation of electrical steel when it runs inside the motor. In the fourth part,
30ADG1500 is used as the experimental object to find out the dynamic characteristics of
NGO silicon steel under MPF, and the motor’s efficiency is simulated and compared when
the influence factors are not considered and when the influence factors are considered.
The rationality of the method is verified through the test result of the prototype and the
calculation accuracy is improved by this method. Finally, the conclusion is summarized.

2. Motor Design and Multi-Physics Coupling Field Analysis

In order to explore the influence of magnetic characteristics of silicon steel on motor
performance, we have designed a new type of high-power density motor based on the
actual requirements of engineering, so that electric vehicles can maintain good performance
under starting, climbing and braking conditions. Based on the consideration of the motor’s
performance using flux weakening speed regulation method and the prototype manufac-
turing capability, we chose the interior permanent magnet rotor, which adopts the design



Materials 2022, 15, 8305 3 of 12

of 48 slots and 8 poles, and the peak speed of the motor can reach 9000 rpm. Detailed
parameters of the motor are shown in Table 1.

Table 1. Detailed parameters of the motor.

Parameter Value

Rated/Peak torque (Nm) 40/150
Rated/Peak power (kW) 20/40
Rated/Peak speed (rpm) 4774/9000

Stack length (mm) 144
Working temperature (◦C) −40~60

In order to further explore what kind of MPF environment the core will be in when
the motor is running at high speed, the finite element simulation of the motor was carried
out by Motor-CAD and Ansys software. Based on the actual working conditions of electric
vehicles, we set the ambient temperature as 60 ◦C, and predicted the temperature rise and
magnetic density of the driving motor at the peak speed, as shown in Figure 1.
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When the motor speed reaches 9000 rpm, the magnetic bridge of the rotor will bear
about 200 MPa of centrifugal force, which belongs to tensile stress for silicon steel and will
affect its loss characteristics. In addition, the fit between the stator and the casing adopts
the interference method. According to the interference amount, the calculation shows that
the stator will bear about 60 MPa of compressive stress, which will also affect the magnetic
characteristics of the silicon steel. Therefore, in the simulation analysis and calculation
of the model, we divided the model into four areas according to the actual situation, and
applied the characteristic data of silicon steel in different states. The purpose is to improve
the accuracy of the calculation.

The color of the magnetic density indicates the degree of saturation of the silicon steel
material used in the motor. The red area will heat slightly more than the other areas. As
can be seen from Figure 1, the magnetic density of the stator teeth is from 1.8 T to 2 T, the
magnetic density of the yoke is mostly between 1 T and 1.2 T, and the average temperature
of the iron core is about 120 ◦C at the peak rotating speed. The magnetic density of most
parts of the rotor are from 1 T to 1.4 T, and its maximum temperature is about 100 ◦C, which
is concentrated around the permanent magnet.

In the production process of the motor, the casing and stator usually fixed by in-
terference fit, and the rotor material will be affected by centrifugal force when rotating.
Considering those affects, area A of the rotor core is in the physical field of 100 ◦C and
0 MPa, area B is in the physical field of 100 ◦C and 200 Mpa of tensile stress (TS), area C of
the stator core is in the physical field of about 130 ◦C and 0 MPa of tensile stress and area D
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is in the physical field of 125 ◦C and 60 MPa of compressive stress (PS). Therefore, in order
to improve the calculation accuracy, it is necessary to consider the magnetic properties of
materials under MPF.

3. Experiments under Varying Ambient Conditions

In the harsh aerospace environment such as extremely low temperature, high temper-
ature or vacuum, the parameters of permanent magnet synchronous motor vary greatly,
and silicon steel’s characteristic is also prone to nonlinear changes. The coupling relation-
ship among electromagnetic, temperature, fluid, stress and other fields of MPF cannot be
ignored. How to accurately test the magnetic properties of silicon steel under MPF and
speculate on the motor performance has become a key technical problem.

3.1. Test Platform

In this paper, a test system for magnetic properties of silicon steel based on the MPF
environment of “temperature, stress and electromagnetic” is established. The test system is
composed of three core modules: electromagnetic characteristic test module, mechanical
characteristic test module and adjustable test environment module. The magnetic testing
equipment adopted a commercial equipment on the market. In addition, in order to test
the characteristics of the sample under more applicable conditions, we also customized a
tension machine and a device that can adjust the temperature environment, which uniquely
coupled the three parts together. This system can not only test the properties of silicon steel
under SPF, but also complete the properties of silicon steel under MPF.

As shown in Figure 2, the test platform can simultaneously change temperature, stress,
frequency, magnetic field strength and other major variables. We cut the size and shape
of the sample according to the relevant national standards, and wrapped the copper wire
around the left and right sides of the sample. During the experiment, the sample is fixed in
the equipment with adjustable temperature by the tension machine, and the copper wire is
drawn to the magnetic characteristics test equipment. In this way, we can test the magnetic
properties of the sample, for example, BH and BP data. The design of the test system not
only innovatively coupled multiple devices together to provide different environments for
silicon steel testing, but also saved space.
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When the temperature field is applied, the sample is heated by air heat conduction,
and the temperature is fed back by the sensor and adjusted in time. The temperature of the
object under test can be varied by contact-free heating or cooling in hot or cold air, so as to
avoid interference as much as possible and reduce magnetic leakage of the sample during
the test. By applying different voltage, current, frequency and magnetic field intensity to
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the sample of a commercial magnetic testing equipment of silicon steel, we can obtain the
characteristics data of silicon steel samples under different electromagnetic fields. Coupled
together, the three devices can be used to load different stress, temperature, electromagnetic
and other environments, providing a wider range of support for the magnetic properties of
silicon steel testing. Therefore, we can guide the material selection and optimal design of
the motor.

3.2. Function of Testing Device

Through the thermal simulation analysis of the motor model based on the Motor-
CAD software above, it is not difficult to find that the core will be in the environment of
high temperature, high frequency and high stress. Therefore, the magnetic properties of
silicon steel under multiple physical fields can more accurately reflect the performance of
the motor at high speed. Based on this, the following four variables are set in this paper,
and 30ADG1500 NGO silicon steel is used as the research object to analyze its magnetic
properties. The test range of the test device in this paper is shown in Table 2 below:

Table 2. Test range of the testing device.

Parameter Range

Stress −60–200 MPa
Temperature −40~150 ◦C

Frequency 40~1000 Hz
Magnetic field strength 0~10,000 A/m

4. Analysis and Prototype
4.1. Analysis of Magnetic Properties of Materials
4.1.1. Magnetic Properties of Silicon Steel Considering Temperature, Stress and Frequency

It was found that the magnetic properties of silicon steel are affected by both stress
and temperature. The stress has an effect on the microstructure of silicon steel, which leads
to the difference of hysteresis coefficient of different frequencies in the calculation of iron
loss. In addition, temperature affects the calculation coefficient of the eddy current loss
at different frequencies. Therefore, for the characteristics of silicon steel under multiple
physical fields, we need to consider the influence of stress, temperature and frequency on
magnetic characteristics of silicon steel for calculation and analysis. Refer to the following
formula for calculating iron loss:

PFe = Ph + Pc = kh(σ) f Bm + kc(T) f 2B2
m (1)

kh and kc are, respectively, the hysteresis loss coefficient and eddy current loss coefficient
after data fitting.

In order to clearly express the influence of temperature, stress and frequency on the
magnetic properties of silicon steel, this paper selected the experimental results under the
magnetic field strength of 1000 A/m to draw curves., as shown in Figure 3. In order to
show the magnetic properties of silicon steel with the change in stress and temperature, it
is drawn as a function of temperature and two-way stresses.

It can be seen that the magnetic density of NGO silicon steel will decrease with the
increase in temperature. Compressive stress will also reduce the magnetic density of
materials. However, the magnetic density first increases and then decreases with the
increase in tensile stress, and reaches a maximum value near 30 MPa. In addition, the
magnetic density is more affected by tensile stress at low temperature; with the increase in
temperature, the influence of tensile stress on magnetic density decreases gradually.

When the motor is running at a rated speed, the frequency is about 400 Hz. So, the
loss of 30ADG1500 under 1 T and 400 Hz was tested, and the changing trend is shown in
Figure 4.
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It can be seen that the loss of NGO silicon steel will decrease with the increase in
temperature; with the increase in applied stress, it first decreases and then increases,
reaching a minimum value around 30 MPa. The trend of loss change is opposite to that
of the magnetic density change. At high temperature, the loss is greatly affected by
tensile stress, and the influence of tensile stress decreases with the decrease in temperature.
However, the compressive stress will make the material loss deteriorate to a large extent,
and the deterioration extent will gradually increase with the increase in compressive stress.

As the motor’s speed increases, the frequency of the motor increases gradually. When
the motor operates at peak value, the operating frequency rises to 800 Hz. In Figure 5, the
changing trend of silicon steel’s loss with temperature and stress at 1.2 T and 800 Hz was
plotted. The changing trend of loss with stress and temperature is generally consistent with
Figure 4, but the turning point of tensile stress of loss trend is reduced from 30 MPa to
25 MPa.

From the experimental data above, at different temperatures, their magnetic properties
will show different levels of sensitivity to tensile stress. For example, at low temperature,
the iron core’s magnetic density is more affected by tensile stress, while the loss is less
affected; with the increase in temperature, the influence of tensile stress on magnetic density
decreases and the influence of tensile stress on loss increases.
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4.1.2. Comparison of Magnetic Properties of Materials

Figure 6 shows the comparison of magnetic properties of the NGO silicon steel with
and without considering MPF.
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From the above figure, it can be seen that the magnetic properties of silicon steel
will change under the action of temperature, stress, frequency and other external fields.
In conclusion, in the future design process of high-performance motors, the calculation
accuracy of the model will be greatly improved by considering the magnetic characteristics
of silicon steel under MPF.

4.2. Analysis of Simulation Results

In this subsection, we replace the A, B, C and D regions of the motor model with
the corresponding magnetic characteristics data under high temperature and stress, and
compare the motor simulation characteristics of silicon steel under the condition of consid-
ering MPF with that of not considering MPF. Based on the data from the test, motor’s loss
diagram and efficiency comparison diagram are drawn.

Figure 7 shows the analysis of the magnetic characteristic data for 1 T and 400 Hz of
the core material tested in the previous article under MPF. At 4775 rpm, motor’s iron loss
considering single electromagnetic field is 233.46 W, and iron loss considering the coupling
of MPF including electromagnetic, stress and temperature is 268.29 W. The iron loss of the
motor has increased by 34.83 W, which is about 14.9%. At the speed of 9000 rpm, motor’s
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iron loss considering single electromagnetic field is 466.92 W, and iron loss considering
MPF is 536.58 W, the iron loss of the motor has increased by 69.66 W, which is about 14.92%.
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With the increase in rotating speed, the proportion of copper loss decreases and the
proportion of iron loss increases, and the influence of the characteristics of iron core material
on the motor performance increases gradually. Therefore, for the design of high-speed
motors, considering the characteristics of iron core materials under MPF can not only more
truly reflect the motor performance, but also greatly improve the calculation accuracy.

The loss of the motor during operation is mainly composed of iron loss, copper loss
and mechanical loss. For the high-speed motor, efficiency as a very important index, iron
loss plays a more important role. For example, for electric vehicles, the high efficiency of
the motor can bring about an increase in the driving range. Therefore, we need to analyze
the actual loss of the motor at high speed with the help of the magnetic characteristics
data of silicon steel under MPF. In order to verify the reliability of the previous test, we
compared and analyzed the efficiency of the motor under SPF and MPF, and drew the
efficiency graph pair in the form of contour lines, as shown in Figure 8. The numerical
statistics of the efficiency are shown in Table 3.

When the motor runs at the peak speed, the stator and rotor core are in a high-
temperature state, and the influence of tensile stress on the loss of silicon steel sheet will
increase. It can be seen from the table and contour diagram that for the area where the
motor efficiency is greater than 95%, the calculated value of motor efficiency considering
the characteristic data of silicon steel in SPF is 26.21%, and the calculated value of motor
efficiency considering the characteristic data of silicon steel in MPF is 16.67%. The ratio of
the area of the high-efficiency area to the total area decreased by 9.54%. In addition, the
maximum efficiency of the motor decreased by 0.31%.

Therefore, in the process of motor design, if only the magnetic characteristics of iron
core materials under a SPF are considered, the efficiency of motor simulation will be a bit
high, which may possibly lead to the problem of insufficient performance after prototype
manufacturing, and have a certain impact on the accuracy of motor design. Therefore, in
the design of a high-performance motor, MPF has great practical value for improving the
accuracy of motor simulation calculation.
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Table 3. Comparison of efficiency ratios under two working conditions.

Efficiency SPF MPF

Area of efficiency >85% 84.33% 82.55%
Area of efficiency >90% 71.83% 68.38%
Area of efficiency >95% 26.21% 16.67%

Maximum efficiency 96.29% 95.98%

4.3. Prototype Testing

To verify the work of this paper, a 20/40 kW motor prototype was installed on a
0–15,000 rpm test bench for testing, as shown in Figure 9.
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Figure 9. Prototype and test equipment.

4.3.1. Temperature Rise Comparison

The load testing was carried out on the prototype with the flow of cooling water was
15 L/min, and the inlet temperature was 65 ◦C. The test results were compared with the
simulation results as Figure 10.
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Figure 10. Temperature comparison between simulation and prototype test.

As shown in Figure 10, Under the working condition of 30 s peak operation, the
simulated temperature rise is about 55 ◦C and the measured temperature rise is about 62 ◦C.
Different silicon steels usually have different coatings and will also have different levels
of sensitivity to temperature rise. After the research, it was found that the coating of the
silicon steel we used would make the temperature rise of the core slightly higher than that
of other silicon steels. In addition, other non-standard processes in the production process
will also have errors in simulation and testing. Therefore, we should strive to improve the
accuracy of processing.

4.3.2. Efficiency Comparison

The efficiency simulation data considering MPF were compared with the measured
efficiency data as Figure 11.
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It can be seen from the Figure 11 that the simulation data under the consideration of
MPF is more realistic. Although the area of the high-efficiency area of the motor has been
reduced, the total error is within 3% and the maximum efficiency point error is within 0.5%.
In addition, in the actual production process of the motor, due to other problems such as
process and coating, the efficiency of the motor will also decline slightly.

5. Discussion

At present, most motor designs are calculated based on material test data at 50 Hz,
0 MPa and room temperature. However, for future high-performance and special motor
requirements, more careful design and precise research under extreme working conditions
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are still needed. For this reason, the research significance of this paper is to improve the
accuracy of model calculations under complex working conditions, and to explore the
magnetic characteristics and mechanical properties of silicon steel under MPF from the
perspective of material properties testing.

In the experiments carried out in this paper, the main factors such as high temperature,
stress and frequency were considered. In the next phase of the test work, we will optimize
the function of the test equipment and complete the material characteristics test at extremely
low temperature.

6. Conclusions

Based on the analysis of a high-power density motor of an electric vehicle, this paper
used 1 T and 400 Hz and 1.2 T and 800 Hz working conditions as examples to explore the
characteristics of 30ADG1500 iron core material under the MPF of electromagnetic, stress
and temperature fields. A summary of our findings is as follows:

1. The magnetic density decreases with the increase in temperature and compressive
stress, and firstly increases and then decreases with the increase in tensile stress. The
influence of tensile stress on magnetic density at low temperature is greater than that at
high temperature.

2. The iron loss of materials will decrease with the increase in temperature; With
the increase in tensile stress, the iron loss firstly decreases and then increases, and the
influence increases at high temperature. The compressive stress will only worsen the iron
loss situation.

In the process of motor design, with the increase in motor speed, the proportion of
iron loss is increasing. The magnetic characteristics of iron core materials play a vital role in
motor performance. Based on the experiment, it was found that the iron loss of the motor
considering the MPF will increase by around 14.9%, leading to a decrease in the actual
efficiency of the motor. The range of efficiency greater than 95% will decrease by 9.54%.
Finally, the validity of the conclusion is verified by the prototype test result. Therefore,
when designing high-performance motors, it is necessary to consider the characteristics of
iron core materials under MPF, such as electromagnetic, stress and temperature fields, to
improve the calculation accuracy of the model and increase the reliability of motor design.

Author Contributions: Conceptualization, A.W. and B.T.; methodology, R.P.; software, Y.L.; valida-
tion, A.W., B.T. and Y.L.; formal analysis, S.X.; investigation, A.W.; resources, L.Z. and R.P.; data
curation, B.T.; writing—original draft preparation, A.W.; writing—review and editing, A.W.; visual-
ization, L.Z. and Y.L.; supervision, L.Z. and R.P.; project administration, R.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by programme of Scholars of the Xingliao Plan (No. XLYC2002113)
and Shenyang University of Technology Interdisciplinary Team Project (No. 100600453).

Institutional Review Board Statement: The study did not involve humans or animals.

Informed Consent Statement: The study did not involve humans.

Data Availability Statement: The data are not publicly available for privacy reasons. The data
presented in this study are available from the corresponding author.

Acknowledgments: This work was supported by the programme of Scholars of the Xingliao Plan
(No. XLYC2002113) and Shenyang University of Technology Interdisciplinary Team Project (No.
100600453). The authors wish to thank our colleagues Junsheng Shi for his technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shen, J.; Li, P.; Hao, H.; Yang, G. Study on electromagnetic losses in high-speed permanent magnet brushless machines-the state

of the art. Zhongguo Dianji Gongcheng Xuebao (Proc. Chin. Soc. Electr. Eng.) 2013, 33, 62–74.
2. Gerada, D.; Mebarki, A.; Brown, N.L.; Gerada, C.; Cavagnino, A.; Boglietti, A. High-speed electrical machines: Technologies,

trends, and developments. IEEE Trans. Ind. Electron. 2013, 61, 2946–2959. [CrossRef]

http://doi.org/10.1109/TIE.2013.2286777


Materials 2022, 15, 8305 12 of 12

3. Jiang, S.L.; Zou, J.B.; Xu, Y.X.; Liang, W. Variable coefficient iron loss calculating model considering rotational flux and skin effect.
Proc. CSEE 2011, 31, 104–110.

4. Oda, Y.; Toda, H.; Shiga, N.; Kasai, S.; Hiratani, T. Effect of Si content on iron loss of electrical steel sheet under compressive stress.
IEEE Trans. Magn. 2014, 50, 1–4. [CrossRef]

5. Oda, Y.; Hiratani, T.; Kasai, S.; Okubo, T.; Senda, K.; Chiba, A. Effect of compressive stress on iron loss of gradient Si steel sheet.
Electron. Commun. Jpn. 2016, 99, 74–83. [CrossRef]

6. Qian, K.W.; Li, X.Q.; Xiao, L.G.; Chen, W.Z.; Zhang, H.G.; Peng, K.P. Dynamic strain aging phenomenon in metals and alloys.
J. Fuzhou Univ. (Nat. Sci. Ed.) 2001, 26, 8–23.

7. Liu, G.; Liu, M.; Zhang, Y.; Wang, H.; Gerada, C. High-speed permanent magnet synchronous motor iron loss calculation method
considering multi-physics factors. IEEE Trans. Ind. Electron. 2019, 67, 5360–5368. [CrossRef]

8. Leng, J.C.; Tian, H.X.; Guo, Y.G.; Xu, M.X. Effect of tensile and compressive stresses on magnetic memory signal and its mechanism.
Eng. Sci. 2018, 40, 565–570.

9. Liu, J.; Tian, G.Y.; Gao, B.; Zeng, K.; Qiu, F. Domain wall characterization inside grain and around grain boundary under tensile
stress. J. Magn. Magn. Mater. 2019, 471, 39–48. [CrossRef]

10. Cao, H.; Huang, S.; Shi, W. Influence of core stress on performance of permanent magnet synchronous motor. J. Magn. 2019, 24,
24–31. [CrossRef]

11. LoBue, M.; Sasso, C.; Basso, V.; Fiorillo, F.; Bertotti, G. Power losses and magnetization process in Fe–Si non-oriented steels under
tensile and compressive stress. J. Magn. Magn. Mater. 2000, 215, 124–126. [CrossRef]

12. Chen, J.; Wang, D.; Cheng, S.; Wang, Y. Measurement and modeling of temperature effects on magnetic property of non-oriented
silicon steel lamination. In Proceedings of the 2015 IEEE International Magnetics Conference (INTERMAG), Beijing, China,
11–15 May 2015.

13. Chen, J.; Wang, D.; Cheng, S.; Wang, Y.; Zhu, Y.; Liu, Q. Modeling of temperature effects on magnetic property of nonoriented
silicon steel lamination. IEEE Trans. Magn. 2015, 51, 1–4. [CrossRef]

14. Chen, J.; Wang, D.; Jiang, Y.; Teng, X.; Cheng, S.; Hu, J. Examination of Temperature-Dependent Iron Loss Models Using a Stator
Core. IEEE Trans. Magn. 2018, 54, 1–7. [CrossRef]

15. Negri, G.M.; Sadowski, N.; Batistela, N.J.; Leite, J.V.; Bastos, J.P. Magnetic aging effect losses on electrical steels. IEEE Trans. Magn.
2016, 52, 1–4. [CrossRef]

16. Krings, A.; Mousavi, S.A.; Wallmark, O.; Soulard, J. Temperature influence of NiFe steel laminations on the characteristics of
small slotless permanent magnet machines. IEEE Trans. Magn. 2013, 49, 4064–4067. [CrossRef]

17. Xue, S.; Feng, J.; Guo, S.; Peng, J.; Chu, W.Q.; Zhu, Z.Q. A new iron loss model for temperature dependencies of hysteresis and
eddy current losses in electrical machines. IEEE Trans. Magn. 2017, 54, 1–10. [CrossRef]

18. Xue, S.; Feng, J.; Guo, S.; Chen, Z.; Peng, J.; Chu, W.Q.; Huang, L.R.; Zhu, Z.Q. Iron loss model under DC bias flux density
considering temperature influence. IEEE Trans. Magn. 2017, 53, 1–4. [CrossRef]

19. Hao, Y.W.; Wang, B. Research on temperature effect of intermediate frequency thin-gauge non-oriented silicon steel. Electr. Steel
2020, 2, 8–10.

20. Zhang, S.F.; Shen, Z.J.; Li, S.T.; Wu, Y. Effect of different ambient temperatures on magnetic properties of high grade non-oriented
silicon steel. Electr. Mater. 2018, 16–18+24. [CrossRef]

21. Xia, X.L.; Wang, L.T.; Pei, Y.H.; Shi, L.F.; Zhang, Z.H. Effect of ambient temperature on mechanical properties of high grade
non-oriented silicon steel. Met. Funct. Mater. 2017, 24, 50–53.

22. Kong, Q.Y.; Cheng, Z.G.; Li, Y.N. Magnetic properties of oriented silicon steel sheet under different ambient temperatures. High
Volt. Eng. 2014, 40, 2743–2749.

http://doi.org/10.1109/TMAG.2013.2290321
http://doi.org/10.1002/ecj.11918
http://doi.org/10.1109/TIE.2019.2934075
http://doi.org/10.1016/j.jmmm.2018.09.049
http://doi.org/10.4283/JMAG.2019.24.1.024
http://doi.org/10.1016/S0304-8853(00)00092-5
http://doi.org/10.1109/TMAG.2015.2432081
http://doi.org/10.1109/TMAG.2018.2829632
http://doi.org/10.1109/TMAG.2016.2517942
http://doi.org/10.1109/TMAG.2013.2255026
http://doi.org/10.1109/TMAG.2017.2755593
http://doi.org/10.1109/TMAG.2017.2703587
http://doi.org/10.16786/j.cnki.1671-8887.eem.2018.04.004

	Introduction 
	Motor Design and Multi-Physics Coupling Field Analysis 
	Experiments under Varying Ambient Conditions 
	Test Platform 
	Function of Testing Device 

	Analysis and Prototype 
	Analysis of Magnetic Properties of Materials 
	Magnetic Properties of Silicon Steel Considering Temperature, Stress and Frequency 
	Comparison of Magnetic Properties of Materials 

	Analysis of Simulation Results 
	Prototype Testing 
	Temperature Rise Comparison 
	Efficiency Comparison 


	Discussion 
	Conclusions 
	References

