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Abstract: For cemented paste backfill (CPB), uniaxial compressive strength (UCS) is the key to
ensuring the safety of stope construction, and its cost is an important part of the mining cost.
However, there are a lack of design methods based on UCS and cost optimization. To address
such issues, this study proposes a biobjective optimization approach by applying a novel evolved
random forest (RF) model. First, the evolved RF model, based on the beetle search algorithm (BAS),
was constructed to predict the UCS of CPB. The consistency between the predicted value and the
actual value is high, which proves that the hybrid machine learning model has a good effect on the
prediction of the UCS of CPB. Then, considering the linear relationship between the costs and the
components of CPB, a mathematical model of the cost is constructed. Finally, based on the weighted
sum method, the biobjective optimization process of the UCS and cost of CPB is conducted; the
Pareto front optimal solutions of UCS and the cost of CPB can be obtained by the sort of solution
set. When the UCS or the cost of CPB is constant, the Pareto front optimal solutions can always have
a lower cost or a higher UCS compared with the actual dataset, which proves that the biobjective
optimization approach has a good effect.

Keywords: uniaxial compressive strength; cost; multiobjective optimization model

1. Introduction

With the increase in demand for mineral products, the scale of mining development is
also expanding [1,2]. However, the exploitation of mineral resources has caused serious
environmental pollution and ecological damage [3,4]. The increase of tailings accumulation
not only occupies a large amount of land and the storage investment is huge, it also causes
certain pollution to the surrounding ecological environment, and the tailings contain a
large number of useful metals and nonmetallic minerals, which if not used are a waste of
resources [5–7]. Therefore, the exploitation and utilization of tailings resources is benefi-
cial to accelerate the development of the economic cycle, promote an energy-savings and
emissions-reduction system, and facilitate the implementation of a sustainable production
mode [7–9]. Making cemented paste backfill (CPB) from tailings as filling aggregate for
underground mining areas is the most commonly used means to treat tailings [10–13]. CPB
refers to a kind of cement-based material that is set and solidified by mixing dehydrated
tailings, cementitious materials, water, etc., in a certain proportion [14–16]. Filling under-
ground mining areas with CPB by specific methods can not only efficiently treat tailings, it
also helps to reduce surface subsidence, improve the underground environment of mining
operations, and enhance ore recovery [17–19]. The UCS of CPB is the key to ensuring the
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safe implementation of backfill mining [20,21]. To make better use of the UCS of CPB for
mining operations, many researchers have studied it. Fu et al. [22] studied the influence of
solid mass fraction, cement-to-sand ratio, and curing time on the UCS of CPB. The results
of X-ray diffraction (XRD) and scanning electron microscope have shown that the UCS
of CPB increased with the increase of ettringite and C-S-H gelling agent, and the UCS
of CPB is proportional to the solid mass fraction, cement, and curing time. The above
research results show that engineers can enhance the UCS of CPB to ensure the safety of
backfill construction by increasing the solid mass fraction, cement, and curing time. Jiang
et al. [23] determined the effects of the parameters, such as the water-binder ratio (W/B),
activator dosage, adhesive content, and sodium silicate/sodium hydroxide (SS/SH) on
the UCS of AAS-CPB (AAS-CPB). The results also showed that the UCS of AAS-CPB was
more sensitive to SS/SH and depended on the curing time, the UCS of AAS-CPB increased
with the decrease of W/B and with the increase of binder content, and if the dosage of the
activator was low, the UCS of AAS-CPB would increase as the activator dosage increased.
Xu et al. [24] studied the relationship between the UCS of CPB and several important design
parameters during the hydration process based on electrical resistivity (ER) measurement.
The conclusion showed that the UCS of CPB increased with the increase of any variable
of cement to tailings ratio, solid content, and curing time. The ER characteristics of CPB
samples were highly correlated with their respective microstructural properties, and the ER
test can effectively preliminarily predict the UCS of CPB. This study provides a new idea
for CPS prediction. Yu et al. [25] proposed a new artificial intelligence model to predict
the UCS of fiber-reinforced CPB and established a large and reliable database to evaluate
the reliability of the model. The use of an artificial intelligence model to evaluate the UCS
of CPB has achieved good results and can effectively overcome the shortcomings of the
traditional laboratory test method, such as high cost, long time, etc. However, it should
be noted that these previous studies are only focused on the modeling of the mechanical
properties of the CPB and only employed a laboratory test, while the lack of evolution-
ary algorithms to optimize the prediction process and effect resulted in unsatisfactory
modeling results [26,27].

The cost of CPB is an important part of the mining cost, accounting for about 20%
of the mining cost [6,21,28]. Therefore, since the cost of CPB is of great significance for
reducing the mining cost, some researchers have carried out a series of studies on the price
of CPB [28,29]. Bian et al. [30] studied fiber-reinforced CPB to reduce the overall usage
and cost of cement, and improve the mechanical properties of CPB. It is indicated that the
yield stress of CPB decreased continuously with the increase of initial sulfate content, while
the viscosity increased. Jin et al. [31] analyzed the influence of polyacrylamide (PAM) and
polycarboxylate superplasticizer (PCE) on CPB with varying water/solid ratios W/S and
W/C. The results showed that the high W/C (1.0 and 1.2), low W/S (0.3), 0.05% PAM, and
1.0% PCE can benefit the production cost as well as the physical properties of the CPB.
Chang et al. [32] proposed the use of fly ash in CPB to reduce the costs and improve the
strength of backfill. The research results show that replacing cement in CPB with fly ash
can effectively reduce its cost and have an overall impact on the strength of it.

Although some researchers have studied the UCS and the cost of CPB, and achieved
certain research results, few researchers have optimized the UCS and the cost of CPB at the
same time [33–35], while it should be noted that the coal back-filling engineers tended to
be cautious about the cost. Also, the use of intelligent combinatorial algorithms to predict
the performance of CPB is missing in past research. Researchers usually use the laboratory
test method to study the performance of CPB [3,10,12,36]. However, the laboratory test
method has many shortcomings, such as high cost, long time, and high labor consumption.
Especially when studying the impact of multiple variables on the performance of CPB, the
number of test pieces to be prepared will increase exponentially, and the corresponding
cost and time will also increase exponentially. To address these challenging issues in the
CPB design process, the present study develops a biobjective optimization model for the
UCS and cost optimization of CPB. First, to improve the reliability and efficiency of the
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prediction results, a new evolutionary algorithm is proposed in this paper. In such a
process, the so-called beetle search algorithm (BAS) was employed to optimize the random
forest (RF) hyperparameters, and the evolved RF was employed to model the UCS of
CPB [37–39]. Then, according to the linear relationship between the CPB mixture and the
cost, the mathematical model of CPB cost optimization was established, and the multiobjec-
tive optimization problem was transformed into a single objective optimization problem
by using a so-called weighted sum method. Finally, the optimal Pareto front solution set is
obtained by using the order preference by similarity to the ideal solution (TOPSIS). The
research process of the present study can be summarized in Figure 1.
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2. Methodology
2.1. Optimization of the UCS for CPB
Data Analysis

To ensure the verification of the accuracy of the established model, a reliable database
containing 362 datasets was established in this study, and the datasets in the database
were collected from published literature. As shown in Figure 1, the UCS of CPB is the
output variable and the input variables of the database are the specific gravity (Gs), the
rheological agent with a diameter of 10 mm(D10), the rheological agent with a diame-
ter of 50 mm(D50) (as can be seen from the previous research literature, the diameters
of rheological agents commonly used in CPB are 10 mm and 50 mm [40–42], so this
study uses these two diameters of rheological agents as the two input variables for pre-
dicting the UCS of CPB), the coefficient of uniformity (Cu), coefficient of curvature (Cc),
time (T), water, tailings, cement, among which Gs, D10, D50, Cu, and Cc are indicated
in the physical properties of the tailings. According to its physical properties, it can be
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divided into thirteen different kinds, as shown in Table 1. T, water, tailings, cement, and
the UCS of frequency distribution histogram are presented in Figure 2. The binder content
is varying from 88 kg to 629 kg for one cubic meter of CPB. The input variables T, water,
tailings, and cement have wide numerical coverage and reasonable settings, so the output
variable has reasonable numerical distribution and wide coverage.

Table 1. Physical characteristics of tailings.

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13

Gs 2.08 2.08 2.61 2.67 2.71 2.75 2.79 2.83 2.83 2.83 2.86 2.91 2.91
D10 0.248 0.004 0.005 0.035 0.447 0.016 0.08 0.005 0.023 0.023 0.015 0.248 0.004
D50 1.442 0.012 0.083 0.195 0.244 0.084 0.302 0.049 0.192 0.192 0.012 1.442 0.019
Cu 8.3 4.65 27.43 7.42 11.645 6.56 4.65 12.7 10.54 10.54 12.8 27.43 6.57
Cc 0.9 0.87 0.87 1.07 1.084 0.9 0.94 1.3 2.04 2.04 1.33 2.04 0.91
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Figure 2. Frequency distribution histogram of input parameters ((a): T; (b): Water; (c): Tailings;
(d): Cement; (e): UCS).
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Before the start of model training, it is necessary to analyze the correlation between
the input variables, because it can determine whether the selected input variables can
accurately predict the UCS of CPB [43,44]. In this study, SPASS software was used to
analyze the correlation between input variables, and the results are presented in Figure 3.
The overall correlation of the input variables is low, with only the correlations between
DS and D10, and D50, D10, and D50, as well as the tailings and water that are higher than
0.6. The correlations between the other input variables are lower than 0.6. It indicates that
the nine input variables determined in the present research are reasonable to predict the
UCS of CPB, and the prediction effect of the model will not be affected because of the high
correlation between input variables.
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2.2. Optimization Model of UCS for CPB
2.2.1. Beetle Search Algorithm (BAS)

The employed BAS is an intelligent optimization algorithm inspired by the principle of
beetle foraging [45–47]. The principle is thus: the beetle receives the smell of food through
whiskers. If the left side receives the strong smell of food, the beetle moves to the left,
otherwise, it moves to the right, according to this principle, until the beetle finds the food.
The search process of BAS can be described by the following steps.

Step 1: Initialization parameters. The K-dimensional optimization problem, x rep-
resents the center of mass, xl and xr represent the left and right of the beetle’s whiskers,
d represents the initialization parameters, and δ represents the initial step size.

Step 2: Randomly generate the K-dimensional vector and normalize them to unit
vectors, the formula is as follows:

b =
rand(k, 1)
‖rand(k, 1)‖ (1)

where, rand(k, 1) represents a k-dimensional random vector, and the left and right whiskers
should be respectively expressed as:

xl = xt +
dt · b

2
(2)
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xr = xt −
dt · b

2
(3)

where xt represents the position of the centroid of the longhorn at the first iteration and
dt represents the distance between the two whiskers at the tth iteration.

Step 3: Calculate the fitness values fl and fr of the left and right whiskers, and determine
the direction of beetle advance according to the size relationship of the two whiskers:

xt = xt−1 − δtbsign( fl − fr) (4)

where sign(·) represents the sign function and δt represents the step length of the beetle at
the t iteration.

Step 4: Calculate the fitness value after the moving of the beetle, and update the
distance between the left and right whiskers and the step length of the beetle.

δt = eta− δ · δt−1 (5)

dt = eta− d · dt−1 (6)

Figure 4 gives the process to determine the fitness value of the beetle after movement.
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2.2.2. Random Forests (RF)

The so-called RF is based on the idea of a decision tree and Bagging ensemble learning,
and the output result is the mode or average of multiple decision tree results. RF overcomes
the shortcoming of a low prediction accuracy of the single decision tree and improves the
applicability of the model. Figure 5 gives the program of the RF model.
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The process of RF modeling is as follows:

(1) Data preprocessing. According to the requirements, the data set is divided into an
input layer and an output layer. The employed dataset should be randomly divided
into the training and testing parts according to the proportion.

(2) Operation of the model. The RF model is established by using the training data set,
and the model results are output.

(3) Model evaluation. Select appropriate indexes and datasets to test the prediction effect
of the established RF model on the UCS of CPB.

(4) Repeat steps (2) and (3) until the best model parameters and results are found.

The flow chart of RF is shown in Figure 6.
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2.3. Optimization Model of Cost for CPB

There is an obvious linear relationship between the cost of CPB and its components.
In this study, the cost of CPB is optimized by mathematical formula modeling; the formula
is as follows:

Cost = CW QW + CTQT + CCQC (7)

where CW , CT , and CC, respectively, represent the costs of water, tailings, and cement;
QW , QT , and QC, respectively, represent the quantities of water, tailings, and cement in
each cubic meter of concrete; The unit price of water, tailings, and cement are 0.0024 $/kg,
0.02 $/kg, and 0.0475 $/kg; the densities are 1000 kg/m3, 2500 kg/m3 and 3150 kg/m3;
thus the unit price for water, tailings, and cement are 0.24 $/m3, 50 $/m3, and 150 $/m3,
respectively.
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(1) Constraints of range

In specific optimization problems, the range of the decision variable values is deter-
mined by the range of corresponding variable values in the database:

Vimin ≤ Vi ≤ Vimax (8)

where Vi represents the ith decision variable, w represents the minimum value of the ith
decision variable, and Vimin represents the maximum value of the ith decision variable.

(2) Constraints of the mixture proportion

Regarding the mixture design process, it is very important to restrict the corresponding
proportion according to the data in the database, mainly including the water-to-cement
ratio ( W

C ), the water-to-solid ratio ( W
C+T ), and the tailings-to-cement ratio ( T

C ).

0.31 ≤ W
C
≤ 4.64 (9)

0.10 ≤ W
C + T

≤ 0.47 (10)

1.27 ≤ T
C
≤ 14.27 (11)

(3) Volume constraint

The total volume of each component in CPB is one, and the constraints are as follows:

Vm =
Qw

Ww
+

QT
WT

+
QC
WC

(12)

where WW represents the unit weight of water, WT represents the unit weight of tailings,
and WC represents the unit weight of cement.

(4) Constraints on the UCS of CPB

According to the actual conditions, the UCS of the optimized CPB must be greater
than the design value, and there needs to be an upper bound, the UCS range constraint of
the optimized CPB is as follows:

Pcg ≤ Pc ≤ P′cg (13)

where Pcg is the given UCS, Pc is the predicted UCS, and P′cg is the maximum value of
the UCS.

2.4. Biobjective Optimization Model Considering the UCS and Cost

In the present study, the biobjective optimization model including the UCS and cost
of CPB was transformed into the single objective one by using the weighted sum method.
Then, the solution set with a minimized objective function is searched. Finally, regarding
the UCS and the cost for the CPB, the Pareto frontier optimal solution set can be obtained
by the following process (Figure 7).
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2.4.1. Biobjective Problem

The multiobjective optimization problem refers to when there are two or more op-
timization objectives, and these objectives are coupled together by decision variables
in a competitive state so they cannot be optimized to the best at the same time. Com-
pared with the single objective extremum solution, the multiobjective optimization solu-
tion is more complex and exists more widely in real life [48]. Usually, the maximization
problem is transformed into the minimum problem by taking the reciprocal or negative
value. The general formula of the biobjective optimization solution can be obtained by the
equations below.

minF(X) = ( f1(x), f2(x), · · · fm(x)) (14)

G(X) = (g1(x), g2(x), · · · , gk(x)) ≤ 0 (15)

H(X) = (h1(x), h2(x), · · · hj(x)) = 0 (16)

in which X represents the decision variable, F(X) is the target solution to be optimized,
G(X) and H(X) present the inequality and equality constraint, respectively.

2.4.2. Pareto Optimality

Regarding the process to obtain the single objective optimization solution, the merits
of the corresponding decision variable are evaluated directly by comparing the value of the
two solutions. Regarding the process to obtain the solution of the multiobjective optimiza-
tion, there are multiple objective functions, so the merits of decision variables cannot be
evaluated simply by comparing the values of functions. To address such issues, the concept
of Pareto domination is employed in the present study, the core idea of which is to judge the
merits of the solution by comparing the value of the decision variable at the corresponding
position. In the optimization problem of minimizing the optimal, assuming that x1 and x2
for all subtargets there f (x1) ≤ f (x2), that is to say, all corresponding subtargets’ corre-
sponding solutions of x1 are lower than (or equal to) the subtargets function value of x2, and
that there are at least corresponding objective function values of x1, which is less than the
sub-targets function value of x2. This means that x1 is dominant over x2. In the process of
obtaining the solution of the multiobjective optimization, it is typically conflicted between
the target variables; if the target improves to a subtarget, it is likely to the optimization
effect of other subtargets, so the optimal solution of multiobjective optimization problems
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usually is not the only solution, but made up of multiple nondominated solutions of the
optimal solution set. Regarding the biobjective optimization problem in this study, the
Pareto dominance relations are shown in Figure 8, considering that the minimum objective
function is optimal.
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2.4.3. Weighted Sum Method

In the present research, the biobjective (UCS and cost) optimization problem was
addressed by using the so-called weighted sum method. It gives weight coefficients to
different subobjective functions and then forms new objective functions, transforming the
biobjective optimization to one with only a single objective by the following equation.

f =
m

∑
i=1

ωi fi,
m

∑
i=1

ωm = 1 (17)

in which ωi represents the weight of the first (UCS) and second objective (cost), and
ωi ∈ [0, 1].

2.4.4. Decision-Making Method

In this study, the technique for order preference by similarity to an ideal solution
(TOPSIS) was employed as the decision-making method [49]. It is an evaluation method
approximating the ideal solution ranking, which requires the function to be monotonical
(monotonically increasing or monotonically decreasing). This method can make full use
of the information in the original data to accurately reflect the gap between evaluation
schemes. The basic principle of TOPSIS is to sort the detected objects by calculating the
distance between them, the optimal solution, and the worst solution. If the evaluation
objects are closer to the optimal solution, and at the same time are furthest away from the
worst solution, the solution is the optimal one, and vice versa is the least optimal one. The
calculation formula for the positive ideal solution (di+), negative ideal solution (di−), and
proximity coefficient (Ci) are as follows:

di+ =

√√√√ n

∑
j=1

(Fij − Fideal
j )

2

(18)

di− =

√√√√ n

∑
j=1

(Fij − Fnon−ideal
j )

2

(19)



Materials 2022, 15, 8298 11 of 17

Ci =
di−

di+ + di−
(20)

where i represents a Pareto solution, n represents the number of objectives, Fideal
j represents

the jth ideal solution in the single objective optimization problem, Fnon−ideal
j represents the

jth nonideal solution in the single objective optimization problem, and Cj is the proximity
coefficient. The larger it is, the better the corresponding solution is, the smaller it is, the
worse the corresponding solution is.

3. Results and Discussion
3.1. Hyperparameter Tuning

In this study, BAS and 10-fold CV were used to optimize the RF model to predict the
UCS of CPB. Figure 9 shows the relationship between the number of iterations and the
root mean square error (RMSE) value. It can be clearly seen from the figure that with the
increase in the number of iterations, the RMSE value first converges sharply to a lower
value and then tends to be stable. When the number of iterations reached 10, the RMSE
value decreased to the minimum. In order to obtain the optimal hyperparameters, a 10-fold
CV was used to optimize the RF hyperparameters. As shown in Figure 10, the minimum
RMSE value is obtained at the second fold. The above analysis results show that BAS and
10-fold CV have a good tuning effect on RF hyperparameters.
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3.2. Evaluation of the Optimization Model of the UCS

Figure 11 shows the comparison between the predicted UCS values of the training
data set and the actual UCS values of the test data set CPB. The horizontal lines in the
figure represent errors. It can be seen that the predicted values of the training set and the
test set have a high consistency with the measured values. There are only a few points
with large errors in the test set, however, these points with large errors will not affect the
model’s prediction effect on the UCS of CPB.
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Figure 12 shows the fitting effect between the predicted UCS values of CPB in the
training and testing datasets. From the figure, it can be indicated that the predicted and
actual values of the training and test sets fit well, and these points are close to the perfect
fitting curve with R = 1. The R values of the training set and the test set were 0.988 and
0.9474, respectively, and the RMSE values were 0.222 and 0.4443, respectively. The above
analysis results prove that RF has a high prediction accuracy for the UCS of CPB.
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To further determine the influence of each input variable on the UCS of the CPB, this
study analyzed the importance scores of different input variables, and the results are shown
in Figure 13. It is indicated from the figure that the importance scores of cement, T, Cu,
D10, Cc, Gs, water, tailings, and D50 to the UCS of the CPB decrease successively; that is,
cement and T have high sensitivity to the UCS, while tailings and D50 have low sensitivity.
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It should be noted that the important scores are based on the influence of varying input
parameters on the UCS and these obtained scores will not be limited by any restriction.
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3.3. Determination of the Effect of the Biobjective Optimization Model

Figure 14 gives the results of the biobjective optimization regarding the UCS and
the cost of CPB. It can be seen that the actual UCS of CPB have reasonable numerical
distribution and wide coverage, and are all located above the Pareto front optimal solution
of nondominant points. It is proved that the cost of the actual data set to reach a specific
UCS is greater than the cost of the Pareto front-end optimal solution to reach the UCS,
or the UCS of the actual data is smaller than the UCS of the corresponding Pareto front
end optimal solution under the same cost. The above analysis proves that the biobjective
optimization model proposed in this paper can effectively reduce the cost without weaken-
ing the mechanical properties, and effectively enhance the mechanical properties without
increasing the cost. That is, the model has a good optimization effect on the cost and UCS
as well as strong adaptability.
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According to the above analysis, cement is the most sensitive input variable for CPB
UCS, so the UCS of CPB can be improved by increasing the amount of cement added.
However, due to the high cost of cement, increasing the amount of CPB will increase its
cost. How to balance the cost of CPB and UCS is an important problem for researchers to
solve. In this paper, the TOPSIS method is used to sort the optimal solutions of the Pareto
frontier. It can be indicated from Table 2 that the highest TOPSIS score of the Pareto front
optimal solution is 0.997, and the UCS of the corresponding CPB is 1.78 MPa, the cost is
45.75 $/m3, and the Gs, D10, D50, Cu, Cc, T, water, tailings, and cement corresponding
to the mixture are 2.79 kg/m3, 0.08 kg/m3, 0.3 kg/m3, 4.65, 0.94, 7 days, 200 kg/m3,
1088 kg/m3, and 505 kg/m3, respectively.

Table 2. TOPSIS score of CPB mixture.

No. Gs
(kg/m3)

D10
(kg/m3)

D50
(kg/m3) Cu Cc T

(Days)
Water

(kg/m3)
Tailings
(kg/m3)

Cement
(kg/m3)

UCS
(MPa)

Cost
($/m3)

TOPSIS
Score

1 2.79 0.08 0.3 4.65 0.94 7 200 1088 504 1.78 45.75 0.997
2 2.79 0.08 0.3 4.65 0.94 7 200 1133.33 420 1.3 42.66 0.994
3 2.79 0.08 0.3 4.65 0.94 7 200 1165.71 360 0.75 40.46 0.993
4 2.79 0.08 0.3 4.65 0.94 7 200 1208.89 280 0.38 37.53 0.989
5 2.79 0.08 0.3 4.65 0.94 7 200 1236.36 229.09 0.2 35.66 0.987
6 2.79 0.08 0.3 4.65 0.94 7 200 1255.38 193.85 0.18 34.36 0.982
7 2.79 0.08 0.3 4.65 0.94 28 200 1088 504 2.73 45.75 0.976
8 2.79 0.08 0.3 4.65 0.94 28 200 1133.33 420 1.83 42.66 0.968
9 2.79 0.08 0.3 4.65 0.94 28 200 1165.71 360 1.33 40.46 0.961

10 2.79 0.08 0.3 4.65 0.94 28 200 1208.89 280 0.85 37.53 0.943
11 2.79 0.08 0.3 4.65 0.94 28 200 1236.36 229.09 0.21 35.66 0.927
12 2.79 0.08 0.3 4.65 0.94 28 200 1255.38 193.85 0.2 34.36 0.903
13 2.08 0.248 1.44 8.3 0.9 3 200 1208.89 280 0.25 37.53 0.883
14 2.08 0.248 1.44 8.3 0.9 3 200 1236.36 229.09 0.14 35.66 0.857
15 2.08 0.248 1.44 8.3 0.9 3 200 1255.38 193.85 0.09 34.36 0.788
16 2.08 0.248 1.44 8.3 0.9 7 200 1208.89 280 0.55 37.53 0.783
17 2.08 0.248 1.44 8.3 0.9 7 200 1236.36 229.09 0.29 35.66 0.779
18 2.08 0.248 1.44 8.3 0.9 7 200 1255.38 193.85 0.21 34.36 0.768
19 2.08 0.248 1.44 8.3 0.9 28 200 1208.89 280 1.84 37.53 0.743
20 2.08 0.248 1.44 8.3 0.9 28 200 1236.36 229.09 0.58 35.66 0.721

4. Conclusions

The USC and cost optimization design of CPB is a challenging problem faced by the
backfilling of goaf in the mining area. To solve this problem, this study established the
UCS and cost prediction biobjective optimization model of CPB based on the machine
learning model and mathematical formula modeling. Through the analysis of this study,
the following points can be highlighted:

(1) BAS has good performance in RF hyperparameter tuning. The RMSE value of the
UCS of CPB reaches the minimum value in the second iteration.

(2) The BAS and RF hybrid machine learning model achieves high prediction accu-
racy on the training set (R = 0.988, RMSE = 0.222 MPa) and test set (R = 0.9474,
RMSE = 0.443 MPa) for the UCS of CPB.

(3) The sensitivity of different input variables to the UCS of CPB from high to low is
cement, T, Cu, D10, Cc, Gs, water, tailings, and D50.

(4) The weighted sum method is used to transform the biobjective optimization problem
of cost and UCS into a single objective optimization problem. Comparing the obtained
Pareto front optimal solution set with the data set, it is found that under the same
CPB cost, the Pareto front optimal solution set has a higher UCS, and under the same
CPB UCS, the Pareto front optimal solution set has a lower cost. It is proved that the
proposed biobjective optimization method is useful for the CPB optimization of the
cost and UCS.
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(5) The TOPSIS method was used to rank the optimal solution of the Pareto front optimal
solution. The UCS, cost, and values corresponding to input variables of the top
20 Pareto front optimal solutions are listed.

The biobjective optimization approach provides an efficient solution for the optimiza-
tion of the UCS and cost of CPB, and can also be used in the field of civil engineering to
solve other biobjective optimization problems. In the future, researchers can focus on more
performance optimization of CPB, not just the UCS and cost.

Author Contributions: Conceptualization, Y.H.; Methodology, Y.H., Y.S., L.L. and X.W.; Validation,
J.H.; Investigation, Y.S., L.L. and X.W.; Data curation, L.L.; Writing—original draft, Y.C., M.M., F.L.
and X.W.; Writing—review & editing, Y.C., M.M. and F.L.; Visualization, J.H.; Supervision, F.L. and
J.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. 52108426), the Faculty Start-up Grant of China University of Mining and Technology (Grant
No. 102520282), and the Natural Science Foundation of Jiangsu Province (Grant No. BK20210513).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare that they have no conflict of interest in this work.

References
1. Cheng, Q.; Guo, Y.; Dong, C.; Xu, J.; Lai, W.; Du, B. Mechanical properties of clay based cemented paste backfill for coal recovery

from deep mines. Energies 2021, 14, 5764. [CrossRef]
2. Cui, L.; Fall, M. Mathematical modelling of cemented tailings backfill: A review. Int. J. Min. Reclam. Environ. 2019, 33, 389–408.

[CrossRef]
3. Eker, H.; Bascetin, A. Influence of silica fume on mechanical property of cemented paste backfill. Construct. Build. Mater. 2022,

317, 126089. [CrossRef]
4. Grabinsky, M.; Thompson, B.; Bawden, W. Evaluating cemented paste backfill plug strength and the potential for continuous

pouring 1. In Proceedings of the 13th International Symposium on Mining with Backfill (MINEFILL), Katowice, Poland, 25–28
May 2021; pp. 127–139.

5. He, W.; Zheng, C.; Li, S.; Shi, W.; Zhao, K. Strength development monitoring of cemented paste backfill using guided waves.
Sensors 2021, 21, 8499. [CrossRef]

6. Zhao, Y.; Taheri, A.; Karakus, M.; Chen, Z.; Deng, A. Effects of water content, water type and temperature on the rheological
behaviour of slag-cement and fly ash-cement paste backfill. Int. J. Min. Sci. Technol. 2020, 30, 271–278. [CrossRef]

7. Hu, J.; Zhao, F.; Ren, Q.; Kuang, Y.; Zhou, T.; Luo, Z. Microscopic characterization and strength characteristics of cemented
backfill under different humidity curing conditions. R. Soc. Open Sci. 2019, 6, 191227. [CrossRef]

8. Ionescu, D.; Petrolito, J.; Dare, A.; Pentreath, Z.; Sonnberger, L.; Destech Publicat, I. Assessment of the effect of different cementing
materials on the strength of cemented paste backfill. In Proceedings of the 3rd International Conference on Green Materials and
Environmental Engineering (GMEE), Beijing, China, 22 October 2017; pp. 174–178.

9. Jafari, M.; Shahsavari, M.; Grabinsky, M. Experimental study of the behavior of cemented paste backfill under high isotropic
compression. J. Geotech. Geoenviron. Eng. 2020, 146, 06020019. [CrossRef]

10. Li, B.; Zhang, J.; Yan, H.; Liu, H.; Zhu, C. Thermal enhancement of gangue-cemented paste backfill with graphite and silica sand:
An experimental investigation. Environ. Sci. Pollut. Res. 2022, 29, 49050–49058. [CrossRef]

11. Li, B.; Zhang, J.; Yan, H.; Zhou, N.; Li, M. Experimental investigation into the thermal conductivity of gangue-cemented paste
backfill in mine application. J. Mater. Res. Technol. 2022, 16, 1792–1802. [CrossRef]

12. Li, G.; Deng, G.-z.; Ma, J. Numerical modelling of the response of cemented paste backfill under the blasting of an adjacent ore
stope. Construct. Build. Mater. 2022, 343, 128051. [CrossRef]

13. Yu, X.; Tang, W.; Li, N.; Jiang, M.; Huang, J.; Wang, D. Refined decomposition: A new separation method for rap materials and its
effect on aggregate properties. Construct. Build. Mater. 2022, 358, 129452. [CrossRef]

14. Li, Z.; Shi, X.; Chen, X. Effect of rice straw on tensile properties of tailings cemented paste backfill. Appl. Sci. 2022, 12, 526.
[CrossRef]

15. Liu, H.-l.; Hou, C.; Li, L.; Du, J.-f.; Yan, B.-x. Experimental investigation on flow properties of cemented paste backfill through
l-pipe and loop-pipe tests. J. Cent. South Univ. 2021, 28, 2830–2842. [CrossRef]

http://doi.org/10.3390/en14185764
http://doi.org/10.1080/17480930.2018.1453320
http://doi.org/10.1016/j.conbuildmat.2021.126089
http://doi.org/10.3390/s21248499
http://doi.org/10.1016/j.ijmst.2020.03.003
http://doi.org/10.1098/rsos.191227
http://doi.org/10.1061/(ASCE)GT.1943-5606.0002383
http://doi.org/10.1007/s11356-022-19305-9
http://doi.org/10.1016/j.jmrt.2021.12.123
http://doi.org/10.1016/j.conbuildmat.2022.128051
http://doi.org/10.1016/j.conbuildmat.2022.129452
http://doi.org/10.3390/app12010526
http://doi.org/10.1007/s11771-021-4810-y


Materials 2022, 15, 8298 16 of 17

16. Niu, H.; Hassani, F.P.; Kermani, M.F.; He, M. Rheological and mechanical properties of fibre-reinforced cemented paste and foam
backfill. Int. J. Min. Reclam. Environ. 2021, 35, 488–505. [CrossRef]

17. Tuylu, S. Effect of different particle size distribution of zeolite on the strength of cemented paste backfill. Int. J. Environ. Sci.
Technol. 2022, 19, 131–140. [CrossRef]

18. Wang, Z.; Wang, Y.; Wu, L.; Wu, A.; Ruan, Z.; Zhang, M.; Zhao, R. Effective reuse of red mud as supplementary material in
cemented paste backfill: Durability and environmental impact. Construct. Build. Mater. 2022, 328, 127002. [CrossRef]

19. Wu, W.; Xu, W.; Zuo, J. Effect of inclined interface angle on shear strength and deformation response of cemented paste
backfill-rock under triaxial compression. Construct. Build. Mater. 2021, 279, 122478.

20. Xu, S.; Suorineni, F.T.; Li, K.; Li, Y. Evaluation of the strength and ultrasonic properties of foam-cemented paste backfill. Int. J.
Min. Reclam. Environ. 2017, 31, 544–557. [CrossRef]

21. Huan, C.; Zhu, C.; Liu, L.; Wang, M.; Zhao, Y.; Zhang, B.; Zhang, X. Pore structure characteristics and its effect on mechanical
performance of cemented paste backfill. Front. Mater. 2021, 8, 9947620. [CrossRef]

22. Fu, J.-X.; Song, W.-D.; Tan, Y.-Y. Study on microstructural evolution and strength growth and fracture mechanism of cemented
paste backfill. Adv. Mater. Sci. Eng. 2016, 2016, 9947620. [CrossRef]

23. Jiang, H.; Han, J.; Li, Y.; Yilmaz, E.; Sun, Q.; Liu, J. Relationship between ultrasonic pulse velocity and uniaxial compressive
strength for cemented paste backfill with alkali-activated slag. Nondestruct. Test. Eval. 2020, 35, 359–377. [CrossRef]

24. Xu, W.; Tian, X.; Cao, P. Assessment of hydration process and mechanical properties of cemented paste backfill by electrical
resistivity measurement. Nondestruct. Test. Eval. 2018, 33, 198–212. [CrossRef]

25. Yu, Z.; Shi, X.-z.; Chen, X.; Zhou, J.; Qi, C.-c.; Chen, Q.-s.; Rao, D.-j. Artificial intelligence model for studying unconfined
compressive performance of fiber-reinforced cemented paste backfill. Transact. Nonferrous Met. Soc. China 2021, 31, 1087–1102.
[CrossRef]

26. Ma, W.; Tian, Y.; Zhao, H.; Orton, S.L. Time-dependent behavior of reinforced concrete columns subjected to high sustained loads.
J. Struct. Eng. 2022, 148, 04022161. [CrossRef]

27. Huang, J.; Shiva Kumar, G.; Ren, J.; Zhang, J.; Sun, Y. Accurately predicting dynamic modulus of asphalt mixtures in low-
temperature regions using hybrid artificial intelligence model. Construct. Build. Mater. 2021, 297, 123655. [CrossRef]

28. Zhang, B.; Xin, J.; Liu, L.; Guo, L.; Song, K.-I. An experimental study on the microstructures of cemented paste backfill during its
developing process. Adv. Civ. Eng. 2018, 2018, 1–10. [CrossRef]

29. Zhang, B.; Li, K.; Zhang, S.; Hu, Y.; Han, B. A modeling method for predicting the strength of cemented paste backfill based on a
combination of aggregate gradation optimization and lstm. J. Renew. Mater. 2022, 10, 3539–3558. [CrossRef]

30. Bian, J.; Fall, M.; Haruna, S. Sulfate-induced changes in rheological properties of fibre-reinforced cemented paste backfill. Mag.
Concr. Res. 2021, 73, 574–583. [CrossRef]

31. Jin, J.; Qin, Z.; Zuo, S.; Feng, J.; Sun, Q. The role of rheological additives on fresh and hardened properties of cemented paste
backfill. Materials 2022, 15, 3006. [CrossRef]

32. Chang, B.; Du, C.; Chu, X.; Zhang, L. Study on the optimization of filling ratio and strength variation characteristics of cemented
backfills containing fly ash. Front. Mater. 2021, 8, 424. [CrossRef]

33. Wang, J.; Zhang, C.; Fu, J.; Song, W.; Zhang, Y. Effect of water saturation on mechanical characteristics and damage behavior of
cemented paste backfill. J. Mater. Res. Technol. 2021, 15, 6624–6639. [CrossRef]

34. Qi, C.; Tang, X.; Dong, X.; Chen, Q.; Fourie, A.; Liu, E. Towards intelligent mining for backfill: A genetic programming-based
method for strength forecasting of cemented paste backfill. Miner. Eng. 2019, 133, 69–79. [CrossRef]

35. Mbonimpa, M.; Kwizera, P.; Belem, T. Mine backfilling in the permafrost, part II: Effect of declining curing temperature on the
short-term unconfined compressive strength of cemented paste backfills. Minerals 2019, 9, 172. [CrossRef]

36. Wang, Y.; Yu, Z.; Wang, H. Experimental investigation on some performance of rubber fiber modified cemented paste backfill.
Construct. Build. Mater. 2021, 271, 121586. [CrossRef]

37. Huang, J.; Zhang, J.; Li, X.; Qiao, Y.; Zhang, R.; Kumar, G.S. Investigating the effects of ensemble and weight optimization
approaches on neural networks’ performance to estimate the dynamic modulus of asphalt concrete. Road Mater. Pavement Des.
2022, 23, 1–21. [CrossRef]

38. Huang, J.; Zhang, J.; Gao, Y.; Liu, H. Intelligently predict the rock joint shear strength using the support vector regression and
firefly algorithm. Lithosphere 2021, 2021, 2467126. [CrossRef]

39. Huang, J.; Xue, J. Optimization of svr functions for flyrock evaluation in mine blasting operations. Environ. Earth Sci. 2022,
81, 434. [CrossRef]

40. Celestin, J.C.H.; Fall, M. Thermal conductivity of cemented paste backfill material and factors affecting it. Int. J. Min. Reclam.
Environ. 2009, 23, 274–290. [CrossRef]

41. Jiang, H.; Fall, M.; Cui, L. Freezing behaviour of cemented paste backfill material in column experiments. Construct. Build. Mater.
2017, 147, 837–846. [CrossRef]

42. Li, J.; Zhang, C.; Li, L.; Fan, C.; He, Z.; Qian, Y. Utilization of low-alkalinity cementitious materials in cemented paste backfill of
gold mine tailings. J. Renew. Mater. 2022, 10, 3439–3458. [CrossRef]

43. Huang, J.; Zhou, M.; Zhang, J.; Ren, J.; Vatin, N.I.; Sabri, M.M.S. Development of a new stacking model to evaluate the strength
parameters of concrete samples in laboratory. Iran. J. Sci. Technol. Transact. Civ. Eng. 2022, 46, 4355–4370. [CrossRef]

http://doi.org/10.1080/17480930.2021.1883217
http://doi.org/10.1007/s13762-021-03659-7
http://doi.org/10.1016/j.conbuildmat.2022.127002
http://doi.org/10.1080/17480930.2016.1215782
http://doi.org/10.3389/fmats.2021.700917
http://doi.org/10.1155/2016/8792817
http://doi.org/10.1080/10589759.2019.1679140
http://doi.org/10.1080/10589759.2017.1353983
http://doi.org/10.1016/S1003-6326(21)65563-2
http://doi.org/10.1061/(ASCE)ST.1943-541X.0003462
http://doi.org/10.1016/j.conbuildmat.2021.123655
http://doi.org/10.1155/2018/9783046
http://doi.org/10.32604/jrm.2022.021845
http://doi.org/10.1680/jmacr.19.00311
http://doi.org/10.3390/ma15093006
http://doi.org/10.3389/fmats.2021.764410
http://doi.org/10.1016/j.jmrt.2021.11.078
http://doi.org/10.1016/j.mineng.2019.01.004
http://doi.org/10.3390/min9030172
http://doi.org/10.1016/j.conbuildmat.2020.121586
http://doi.org/10.1080/14680629.2022.2112061
http://doi.org/10.2113/2021/2467126
http://doi.org/10.1007/s12665-022-10523-5
http://doi.org/10.1080/17480930902731943
http://doi.org/10.1016/j.conbuildmat.2017.05.002
http://doi.org/10.32604/jrm.2022.021214
http://doi.org/10.1007/s40996-022-00912-y


Materials 2022, 15, 8298 17 of 17

44. Huang, J.; Zhou, M.; Zhang, J.; Ren, J.; Vatin, N.I.; Sabri, M.M.S. The use of ga and pso in evaluating the shear strength of steel
fiber reinforced concrete beams. KSCE J. Civ. Eng. 2022, 26, 3918–3931. [CrossRef]

45. Kou, B.; Ren, D.; Guo, S. Geometric parameter identification of medical robot based on improved beetle antennae search algorithm.
Bioengineering 2022, 9, 58. [CrossRef] [PubMed]

46. Liao, L.; Zhang, F.; Ieee Comp, S.O.C. Beetle antennae search algorithm for community detection in complex network. In
Proceedings of the 16th International Conference on Computational Intelligence and Security (CIS), Nanning, China, 27–30
November 2020; pp. 253–258.

47. Zheng, Q.; Xiang, D.; Fang, J.; Wang, Y.; Zhang, H.; Hu, Z. Research on performance seeking control based on beetle antennae
search algorithm. Meas. Control 2020, 53, 1440–1445. [CrossRef]

48. Chen, D.; Lv, Z. Artificial intelligence enabled digital twins for training autonomous cars. Internet Things Cyber-Phys. Syst. 2022, 2,
31–41. [CrossRef]

49. Chen, R.; Shen, H.; Lai, Y. A metaheuristic optimization algorithm for energy efficiency in digital twins. Internet Things Cyber-Phys.
Syst. 2022, 2, 159–169. [CrossRef]

http://doi.org/10.1007/s12205-022-0961-0
http://doi.org/10.3390/bioengineering9020058
http://www.ncbi.nlm.nih.gov/pubmed/35200411
http://doi.org/10.1177/0020294020944939
http://doi.org/10.1016/j.iotcps.2022.05.001
http://doi.org/10.1016/j.iotcps.2022.08.001

	Introduction 
	Methodology 
	Optimization of the UCS for CPB 
	Optimization Model of UCS for CPB 
	Beetle Search Algorithm (BAS) 
	Random Forests (RF) 

	Optimization Model of Cost for CPB 
	Biobjective Optimization Model Considering the UCS and Cost 
	Biobjective Problem 
	Pareto Optimality 
	Weighted Sum Method 
	Decision-Making Method 


	Results and Discussion 
	Hyperparameter Tuning 
	Evaluation of the Optimization Model of the UCS 
	Determination of the Effect of the Biobjective Optimization Model 

	Conclusions 
	References

