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Abstract: The bond strength between concrete and corroded steel reinforcement bar is one of the
main responsible factors that affect the ultimate load-carrying capacity of reinforced concrete (RC)
structures. Therefore, the prediction of accurate bond strength has become an important parameter for
the safety measurements of RC structures. However, the analytical models are not enough to estimate
the bond strength, as they are built using various assumptions and limited datasets. The machine
learning (ML) techniques named artificial neural network (ANN) and support vector machine (SVM)
have been used to estimate the bond strength between concrete and corroded steel reinforcement
bar. The considered input parameters in this research are the surface area of the specimen, concrete
cover, type of reinforcement bars, yield strength of reinforcement bars, concrete compressive strength,
diameter of reinforcement bars, bond length, water/cement ratio, and corrosion level of reinforcement
bars. These parameters were used to build the ANN and SVM models. The reliability of the developed
ANN and SVM models have been compared with twenty analytical models. Moreover, the analyzed
results revealed that the precision and efficiency of the ANN and SVM models are higher compared
with the analytical models. The radar plot and Taylor diagrams have also been utilized to show the
graphical representation of the best-fitted model. The proposed ANN model has the best precision
and reliability compared with the SVM model, with a correlation coefficient of 0.99, mean absolute
error of 1.091 MPa, and root mean square error of 1.495 MPa. Researchers and designers can apply
the developed ANN model to precisely estimate the steel-to-concrete bond strength.

Keywords: corrosion; bond strength; reinforced concrete; corroded steel reinforcement; machine
learning; artificial neural network; support vector machine; sustainability

1. Introduction

The maintenance and retrofitting of reinforced concrete (RC) structures have become
critical issues in the civil engineering sector for having great serviceability and large
ultimate load-carrying capacity. Deterioration of concrete structures mainly happens due
to the lack of maintenance, environmental decay, reinforcement corrosion, and aging of
structures through time [1]. The gradual decomposition of objects, usually made of metal,
brought on by the environment and chemical reactions is referred to as corrosion. One
of the best examples of this phenomenon is iron oxide formation or rusting. Alkaline
solution is found in the pores of the hydrated cement paste, which supports passivation
and defends steel in concrete. Further, there is a formation of a thin layer of oxide film
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on the steel surface that protects it from corrosion. However, when this thin layer of an
oxide film is locally damaged or removed, corrosion may occur [2]. Chloride penetration
or carbonation of concrete may be responsible for the removal of an oxide film. The
pH of fresh concrete is in the range of around 12 to 13, but decreases significantly to
8.5 when it reacts with carbon dioxide in the air. The process of carbonation results in the
deterioration of RC. In the presence of moisture, carbon dioxide transforms into diluted
carbonic acid, which destroys concrete and lowers its alkalinity. The types of corrosion
include sulfidic corrosion (sulfidation), uniform corrosion, and localized corrosion. Pitting
corrosion, galvanic corrosion, crevice corrosion, and selective weld attack all fall into the
category of localized corrosion.

Corrosion of the reinforcement bars embedded in concrete is regarded as the pri-
mary cause of deterioration of RC structures and may result in serious damage to RC
structures [3]. Particularly when the structural service life increases, corrosion will cause
the link between concrete and reinforcement bar to erode, which lowers the structural
performance and dependability [4]. The corrosion of reinforcement bar affects reinforcing
by reducing the reinforcement bar diameter, and influences concrete by cracking due to the
volumetric expansion of the corrosion products. Hence, it affects the interaction between
the reinforcement bar and concrete due to the loss of bond between them.

For all RC structures, the bond between steel-to-concrete is an important parameter.
Transferring loads between concrete and reinforcement bar is necessary to maintain the
composite action. This load transfer is referred to as a bond. More bond strength (BS)
between concrete and steel leads to safer and easier transfer of the load [5]. BS is directly
proportional to the load-carrying capacity of RC structures. The main factors that affect BS
between concrete and reinforcement bar are concrete compressive strength (CS), concrete
cover, the diameter of reinforcement bars, type of reinforcement bars, and spacing between
reinforcement bars. It is crucial to evaluate the loss of steel-to-concrete BS for the calculation
of the remaining residual capacity of RC elements impacted by corrosion of reinforcement
bar. Once the structure’s remaining bond capacity is determined, the residual service life
might be found in the corrosion-affected RC structures [6,7]. The general formula to find
BS is given below:

τu =
PF

π × d× Lb
(1)

where PF is the pullout force (kN), d is the diameter of the reinforcement bar (mm), and Lb
is the bond length (mm).

Most of the studies available in the literature have shown that BS between reinforce-
ment bar and concrete is slightly increased to some extent of the corrosion level. In most
of the studies, an accelerated corrosion process was applied for the prediction of BS be-
tween corroded reinforcement bar and concrete. In the experimental study carried out
by Coccia et al. [8] to determine the influence of corrosion on BS of steel-to-concrete, the
results demonstrated that low corrosion percent (lower than 0.6) led to an increase of BS
(50–60%) and higher corrosion entities caused a sharp bond reduction. Another research
was conducted by Yalciner et al. [9] to evaluate BS of steel-to-concrete as a function of
concrete cover, CS of concrete, and level of corrosion. The experimental results illustrated
that the degradation of BS is more in high-strength concrete compared with low-strength
concrete. Chung et al. [10] assessed the bond behavior of highly corroded reinforcement
bars and analyzed results to reveal that BS increases up to maximum value but eventually
decreases for greater corrosion values. Ma et al. [11] determined the effect of corrosion on
the steel-to-concrete BS. The results depicted that the bond behavior between the deformed
reinforcement bar and concrete was less sensitive to corrosion than smooth reinforcement
bars. Choi et al. [12] examined the effect of corrosion on the bond characteristics in RC
specimens. The experimental results indicated that the slip at failure was increased when
the corrosion level was higher than 5%, and there was an increase in BS when the corrosion
level was lower than 1%; also, a brittle failure pattern was observed when the area of
corrosion exceeded 50%.
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For the estimation of the bond behavior of corroded RC, many mechanically driven
empirical models are available in the literature. However, these models have only a limited
degree of accuracy since the hidden mechanism is so complicated. Additionally, although
the majority of models are deterministic, the problem itself is probabilistic since there are a
variety of uncertainties, including uncertainty related to material qualities and geometric
dimensions [4].

To create a complete and comprehensive dataset, the current research work has col-
lected the experimental BS data of corroded reinforcement bar (without any type of stirrups)
from previously published studies. Twenty analytical models have also been gathered to
check the precision of the machine learning (ML) model. The ML-based artificial neural
network (ANN) and support vector machine (SVM) models have been developed to predict
the steel-to-concrete BS. The ANN algorithm is used as an effective ML technique and
precise estimation approach of BS between concrete and corroded reinforcement bar. This
study demonstrates that the developed ANN has enough capabilities to predict steel-to-
concrete BS.

1.1. Determination of BS

The pullout test is mainly used to determine the steel-to-concrete BS (cubes, cylinders,
and beams). As indicated in Figure 1, the test specimen must be installed in a suitable testing
apparatus so that the reinforcement bar is pulled axially from the specimen. Figure 1a–c
shows the setup for the cube, cylinder, and beam specimens, sequentially. The pullout
testing procedure is detailed in the published literature [8–10,12].
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Figure 1. Pullout test setup; (a) cube, (b) cylinder, (c) beam specimens.

The maintenance of RC structures is one of the major activities of the civil engineering
industry. Corrosion has a large influence on the bond, shear, and flexural strength; hence, it
is crucial to estimate how much bond capacity remains after the structure has been affected
by corrosion. Accurate prediction of BS helps assess the residual life, structural performance,
and reliability of RC structures. It is essential to utilize a precise and effective model for
predicting BS of RC in order to increase the residual life of structures. The computational-
based models can achieve higher accuracy with minimal errors. The developed ANN model
in this study is the most suitable and practically applicable model with high precision. The
proposed ANN model also outperforms the existing ML as well as analytical models. The
results of this study provide a practically applicable model to estimate the steel-to-concrete
BS. The proposed ML model is more accurate and can help researchers and designers
precisely predict BS with less experimental effort.
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2. Application of ML in Concrete Technology

The development of data mining and ML techniques over the past few decades has
made it possible to create prediction models from empirical data without having a thorough
understanding of the underlying physical principles. As a result, these models may be
useful for predicting various properties of concrete as well as numerous forces acting on
structural members that can be impacted by compositional, processing, and testing factors.

Soft computing approaches have effectively been used in recent years to predict several
important properties of RC structures and other different engineering applications [13–16].
ML algorithms are suitable for solving concrete-like complex problems and developing
good relationships between input and output parameters. Nowadays, ANN is employed
for estimating universal concerns in numerical models because of their eminent properties
to self-learn, adapt, and tolerate faults.

The previous studies that applied the ML algorithms to find BS are summarized
below and mentioned in Table 1. Concha and Oreta [17] did the estimation of BS with the
ANN model. The collected dataset contains 108 concrete cube samples (BS in the range of
6.029 to 30.922 MPa), and only four input parameters were considered to estimate BS. The
results illustrated that the correlation coefficient (R) value of the ANN model was 0.927.
Mousavi et al. [7] estimated BS with three ML models, namely MLP, RBFNN, and SVR, with
482 experimental datasets, while the BS range was 0.19 to 91.42 MPa. The considered input
parameters were eight, and the analyzed results displayed that the precision of the SVR
(R = 0.977) model was higher compared with other ML models. Rahman and Al-Ameri [18]
used the ANN algorithm to estimate the steel-to-concrete BS. Only twenty-one experimental
datasets were employed to develop the ML model, and the BS range was between 2.32
to 14.15 MPa. It was concluded that the accuracy of the ANN model was good, with an
R-value of 0.963.

Farouk et al. [19] estimated BS with multiple linear regression (MLR), SVR, ANN,
PSO, IEPSO, PANN, and IEPANN algorithms. Among all the ML models, the precision
of the IEPANN model was good, with an R-value of 0.973. ANFIS, ANN, and GMDH
were utilized by Alizadeh et al. [20] to estimate (1.64 to 22.34 MPa) with 159 experimental
datasets. The results depicted that the reliability of the ANFIS model was higher, with an
R-value of 0.988 compared with other ML models. Amin et al. [21] applied gene expression
programming (GEP) to estimate BS in the range of 0.76 to 21 MPa. The R-value of the GEP
model was 0.963 and showed sufficient accuracy of the developed model. The R-value
of the developed model was 0.945. MLP, RBFNN, and GEP models were applied by Ben
Seghier et al. [22] to estimate BS. The collected dataset contained 218 experimental values
that had BS in the range of 1.3 to 31.7 MPa. The precision of the MLP-LMA (R = 0.97)
model was higher than the rest of the ML models. Yartsev et al. [23] utilized only the ANN
model with 250 experimental datasets, with BS in the range of 1.3 to 31.7 MPa; the R-value
of the developed ANN model was 0.947. Bseiso [24] used the ANN algorithm with two
different activation functions (AF), namely sigmoid and rectified linear unit (ReLU), on
the collected database of 90 experimental values with a BS range of 1.3 to 31.7 MPa. ANN
with ReLU activation revealed a higher R-value of 0.983 with higher accuracy. Kumar
et al. [25] studied BS between fiber-reinforced cementitious mortar and concrete surfaces
with 10 different machine-learning models. Among all the models, the precision of the
optimized GPR model was good, with an R-value of 0.9336.
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Table 1. Summary of ML models used to estimate BS.

S. No. References Input Parameter AI Method Used Bond Range (MPa) R (Best Method
Value)

1 Golafshani et al. [26] f
′
c, c, Av/S, Rr, ρ, ls ANN, FL 1.521–8.994 0.993 (FL)

2 Güneyisi et al. [13] f
′
c, c, Tb, d, Lb, η GEP, ANN 1.3–31.7 0.96 (ANN)

3 Yan et al. [27]
d, c/d, Lb/d, d, Surf, Pos, Surf/Tr,√

f
′
c

ANN, GA 2.4–24.52 0.945 (ANN-GA)

4 Yartsev et al. [23] f
′
c, d, η, Ad, Sd, Surf ANN 1.3–31.7 0.94721 (ANN)

5 Concha and Oreta [28] f
′
c, Lb, d, c, UPV, η, ft, Cs ANN Average = 6.591 0.957 (ANN)

6 Yartsev et al. [29] f
′
c, ft, Ad, Surf, Tb, Ec ANN — 0.947 (ANN)

7 Bolandi et al. [30] Surf, Pos, d, c/d, Lb/d, f
′
c MGGP 0.76–21 0.961 (MGGP)

8 Hoang et al. [31] f
′
c, c, Tb, d, Lb, η LSSVR, DFP 1.3–31.7 0.9505

(DFP-LSSVR)

9 Alizadeh et al. [20] Surf, Pos, d, c/d, Lb/d, f
′
c, Atr/Snd

ANFIS, ANN,
GMDH 1.64–22.34 0.988 (ANFIS)

10 Concha and Oreta [32] f
′
c, ft, Lb, d, c, UPV ANN Std. deviation = 6.376 0.981 (ANN)

11 Bseiso [24] η, c, f
′
c ANN-ReLU, ANN-S 1.3–31.7 0.983 (ANN-ReLU)

12 Ben Seghier et al. [22] f
′
c, c, Tb, d, Lb, η MLP, RBFNN, GEP 1.3–31.7 0.97 (MLP-LMA)

13 Concha and Oreta [17] f
′
c, Lb, c/d, UPV ANN 6.029–30.922 0.927 (ANN)

14 Shahri and Mousavi [33] f
′
c, d, Surf, Lb/d, c/d, Es/EFRP,

Atr/Snd
M5 model tree,
MARS, KSM 1.06–6.73 0.969 (MARS)

15 Rahman and Al-Ameri [18] f
′
c, c/d, Lb/d, Lb, d, Ct ANN 2.32–14.15 0.963 (ANN)

16 Farouk and Jinsong [34] f
′
c, UHPC, Cm, St, Im SVM, MLR, ANN 0.5–8.85; 1.19–41.2

0.979 (SVM)
(Splitting); 0.925

(SVM) (Slant shear)

17 Mousavi et al. [7] f
′
c, c, d, Lb, fy, Ns, As, η

MLP, ANN, RBFNN,
SVR 0.19–91.42 0.977 (SVR)

18 Amin et al. [21] d, f
′
c, c/d, Lb/d GEP 0.76–21 0.963 (GEP)

19 Farouk et al. [19] d, f
′
c, fy, d, Lb, c

MLR, SVM, PANN,
IEPANN 11.1–71.79 0.973 (IEPANN)

3. Experimental Data and Methods
3.1. Data Bank

In this research, 476 experimental datasets of corroded steel-to-concrete BS were
collected from previous studies. All the experimental data were of the pullout test without
any stirrups or transverse reinforcement bars provided [8–12,35–43]. This study took nine
input parameters into account; surface area of the specimen (SAS), water/cement ratio (w/c),
CS of concrete (f ′c), concrete cover (c), bond length (Lb), diameter of reinforcement bars
(d), type of reinforcement bars (Tb), yield strength of reinforcement bars (fy), and corrosion
level of reinforcement bars (η) to predict BS (τu), which represents the output parameter.
Table 2 lists the details of the collected database that includes the series of input and output
parameters. The range of BS in the database was from 0.19 to 91.42 MPa and the corrosion
level varied from 0 to 22.90%. Table 3 presents the statistical parameters of the collected
database, such as mean, minimum, maximum, and standard deviation (Std.) values.

The relative frequency distribution of input and output parameters is illustrated in
Figure 2. The maximum used values of SAS for most of the dataset were between 20,000
and 40,000 mm2. The majority of data have used a w/c range of 0.75 to 0.8. The most
frequently used value for CS of concrete was 25 MPa. Many of the collected specimens
had an embedded length of 50 mm with a 14–16 mm reinforcement bar diameter. In most
of the cases, a deformed reinforcement bar was used in the specimens, as shown in the
graph. Most frequently, steel reinforcement bars with fy between 400 and 500 MPa were
employed. The range of c was 30 to 50 mm. The majority of the specimens had a corrosion
level between 0 and 2%. BS values of many of the specimens were in the range of 1 to
10 MPa. The methodology adopted to achieve the objective of the current study is reported
in Figure 3.
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Table 2. Details of collected database.

S.
No. References

No. of
Speci-
mens

Input Parameters Output

SAS
(mm2) w/c f ′ c

(MPa)
Lb

(mm)
d

(mm) Tb
fy

(MPa) c (mm) η (%) τu
(MPa)

1 Wei-Liang and
Yu-xi [35] 27 10,000 0.55 22.13 80 12 1–2 389–

428 44 0.12–
9.99

1.4–
11.34

2 Horrigmoe
et al. [36] 32 80,424.77 0.68 30 160 25 2 500 147.5 0–6.82 3.89–

11.91

3 Chung et al.
[10] 40 30,000 0.58 28.3 39 13 2 526.8 68.5 0–8.8 9.4–20.1

4 Yalciner et al.
[9] 57 22,500 0.4–

0.75 23–51 50 14 2 458 15–45 0–
18.75 1.8–21.7

5 Zhao et al.
[37] 11 22,500 0.36 38.4–

41.9 100 18 2 357.5 66 0–6.18 1.18–
6.39

6 Choi et al. [12] 9 22,500 0.4–0.6 21–32 100 25 2 524 62.5 0–9.98 51.23–
91.42

7 Coccia et al.
[8] 10 22,500 0.7 29 70 12 2 507.5 69 0–3.92 4.7–

14.13

8 Ma et al. [11] 33 22,500 0.48 24.81 100 18–
22 1–2 258.68–

373.64 30 0–
10.41

1.83–
9.05

9 Yalciner and
Marar [38] 156 40,000 0.63–

0.79 24–38 220–
270 14 4 459 30–45 0–4.3 2.134–

9.167

10 Hou et al. [39] 42 22,500 0.45 45.5 48–
112 16 2 456 48.07–

50.27
0–

15.25
10.05–
21.28

11 Mak et al. [40] 9 8992.02 0.6 22.8–
30.7 50 10 2 530 48.5 0–22.9 10.1–

17.9

12 Tariq and
Bhargava [41] 37 5026.55–

31,415.93 0.4 35 40–
100

8–
20 2 550 36–90 0–16 0.19–

22.59

13 Vuong et al.
[42] 12 40,000 0.38–

0.48
24.6–
44.1 60 12 2 400 94 0–

12.93
13.81–
26.51

14 Lu et al. [43] 1 14,400 0.42 52.6 80 15.2 3 1828 52.4 0 11.2

Table 3. Statistical parameters of collected database.

Parameter Symbol Used Unit Minimum Maximum Mean Std.

Concrete

SAS mm2 5026.55 80,424.77 31,715.84 16,660.00
w/c _ 0.36 0.79 0.59 0.14
f ′c MPa 21.00 52.60 31.78 8.36
c mm 15.00 147.50 52.39 30.82

Lb mm 39.00 270.00 132.17 84.75

Reinforcement
Bar

d mm 8.00 25.00 15.23 3.83
Tb

_ 1.00 4.00 2.59 1.01
fy MPa 258.68 1828.00 463.93 86.39
η % 0.00 22.90 3.41 4.05

BS τu MPa 0.19 91.42 10.01 10.60

3.2. Preparation of Data

Preparation of data is a process of formatting, transforming, or checking the accuracy
of data. After collecting the experimental data from the previous studies, the process of
data normalization must be done before operating the ML algorithms. Data normalization
helps scale the data so that all the numeric values come under the same range. This issue
increases the readability of the data by the ML algorithms and also helps improve the
model accuracy, enhance the generalization ability, and learning ability of the algorithms.
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As the parameters of the data are in different units, therefore, it is essential to make the data
unit less. The data have been standardized in the range of −1 to +1 using Equation (2) [44].

zn =

[
2× (z− zmin)

(zmax − zmin)

]
− 1 (2)

where zn is the normalized output of variable z, z is the variable of input to be normalized,
and zmax and zmin are the maximum and minimum values of the input variable z, respectively.

After the process of normalization, the dataset was divided into three categories, in
which 80% of the datasets were randomly selected for training, 10% were selected for
testing, and 10% were selected for validation (as shown in Figure 3). Hence, 476 specimens
were distributed as 380 (for training), 48 (for testing), and 48 datasets (for validation).

3.3. Performance Criterion

Performance indices were used to assess the efficacy and performance of the analytical
as well as the ML models. R, a20-index, mean absolute error (MAE), root mean square
error (RMSE), mean absolute percentage error (MAPE), and Nash–Sutcliffe efficiency index
(NS), are the most used performance metrics. The MAPE, MAE, and RMSE represent the
errors, and lower the values of these errors resulting in a higher R, and thus, the accuracy
and performance of the ML models will be greater [45,46]. If the values of R, NS, and
a20-index are near 1, then it reveals a strong positive relationship between the models. The
mathematical expression of these indices is given below [47,48]:

R =
∑N

i=1(ri − r)(si − s)√
∑N

i=1(ri − r)2 ∑N
i=1(si − s)2

(3)

MAE =
1
N

N

∑
i=1
|ri − si| (4)

RMSE =

√√√√ 1
N

N

∑
i=1

(ri − si)
2 (5)

MAPE =
1
N

N

∑
i=1

∣∣∣∣ ri − si
ri

∣∣∣∣× 100 (6)

NS = 1− ∑N
i=1(ri − si)

2

∑N
i=1(ri − s)2 (7)

a20− index =
m20

N
(8)

where r and s are the experimental and predicted output sets, respectively, while r and s are
the means of the experimental and predicted output sets, respectively. N is the number of
points in the dataset, and m20 is the number of values obtained from measured/predicted
values and falls into the range of 0.8 to 1.2 [1].
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′
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3.4. Analytical Models

Twenty analytical models were collected from the literature and used to assess the
accuracy of the developed ANN model. Most of the commonly used available analytical
models that were utilized to estimate the steel-to-concrete BS are summarized in Table 4.
For easy understanding and further analysis, the collected analytical models are assigned
different model identities. Cabrera [49], Lee et al. [50], Stanish et al. [51], Chung et al. [10],
Aslani and Nejadi [52], Yalciner et al. [9], Yalciner and Marar [38], Australian Standard
3600 [53], Orangun et al. [54,55], Esfahani and Rangan [56], CEB-FIP [57], Hou et al. [39],
Wang et al. [58], Diab et al. [59], Eligehausen et al. [60], and Amini Pishro et al. [61] are
assigned to Models 1–20.

Table 4. Details of analytical models.

Model References Formulation Remarks

Model-1 Cabrera [49] fbo = 23.478− 1.313 C fbo = BS (MPa), C = Corrosion level (%)

Model-2 Lee et al. [50] τmax =

{
0.34 f ′c − 1.93, ∆w < 2.5%
5.21 e−0.0561η , ∆w ≥ 2.5%

τmax = BS (MPa), η = Corrosion percentage
(%), f ′c = CS (MPa)

Model-3 Stanish et al. [51] τbu√
f ′c
= 0.77− 0.027 Xp

τbu = BS (MPa), Xp = Corrosion
percentage (%), f ′c = CS (MPa)

Model-4 Chung et al. [10]
{

Ub = 16.87 f or Co ≤ 2.0
Ub = 24.7 Co

−0.55 f or Co > 2.0
Ub = BS (MPa), Co = Corrosion percentage

(%)

Model-5 Aslani and Nejadi [52]

For plain bars,

τmax =

[
0.7
(

c
db

)0.6
+ 4

(
db
ld

)]
( f ′c)

0.23

For deformed bars, τmax =[
0.679

(
c

db

)0.6
+ 3.88

(
db
ld

)]
( f ′c)

0.55

τmax = BS (MPa), c = Concrete cover (mm),
db = Diameter of bars (mm), ld = Bond

length (mm), f ′c = CS (MPa)

Model-6 Yalciner et al. [9]

For uncorroded specimens,
τbu = −2.7143 + 0.3621 f ′c + 2.3296

( c
D
)

For corroded specimens, τbu =
0.40551 f ′c − 0.25306

( c
D
)
+ 0.97926 CL

(R2 = 0.98)

τbu = BS (MPa), c = Concrete cover (mm),
D = Diameter of bars (mm), f ′c = CS (MPa),

CL = Corrosion level (%)

Model-7 Yalciner and Marar [38]

For uncorroded specimens,
τHK = 2.9549 + 0.104 f ′c + 0.6888

( c
D
)

For corroded specimens,
τHK = 0.0817 f ′c + 0.7764

( c
D
)
+

1.2647 CL + 3.3657

c = Concrete cover (mm), D = Diameter of
bars (mm), f ′c = CS (MPa), τHK = BS (MPa),

CL = Corrosion level (%)
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Table 4. Cont.

Model References Formulation Remarks

Model-8 Yalciner and Marar [38]

For uncorroded specimens,
τHKS = 3.3679 + 0.1079 f ′c + 0.0737

( c
D
)

For corroded specimens,
τHKS = 0.0809 f ′c + 0.0251

( c
D
)
+

0.7568 CL + 4.0116

τHKS = BS (MPa), c = Concrete cover (mm),
D = Diameter of bars (mm), CL =

Corrosion level (%), f ′c = CS (MPa)

Model-9 Australian Standard 3600 [53] τu = 0.265
√

f ′c
(

c
db

+ 0.5
)

—

Model-10 Orangun et al. [54,55]
τu =

0.083045
√

f ′c
[
1.2 + 3.0

(
c

db

)
+ 50

(
db
ld

)] —

Model-11 Esfahani and Rangan [56] τu = 8.6
( c

d +0.5
c
d +5.5

)
0.55

√
f ′c —

Model-12 CEB-FIP [57] τu = 2.5
√

f ′c τu = BS (MPa), f ′c = CS (MPa)

Model-13 CEB-FIP [57] τu = 7.0
(√

f ′c
25

)0.25
—

Model-14 Hou et al. [39]
τu =

0.335
[
−0.124 ρ2

c + 1.183 ρc + 93.504
] ( d

ld

)0.379

τu = BS (MPa), d = Diameter of bars (mm),
ld = Bond length (mm), ρc = Corrosion

ratio (%)

Model-15 Wang et al. [58] τu = 0.09 f ′c − 0.655 τu= BS (MPa), f ′c = CS (MPa)

Model-16 Wang et al. [58] τu = −0.054 f ′c + 0.7
√

f ′c − 1.193 —

Model-17 Diab et al. [59]
τu =

0.08305
√

f ′c
[
22.8− 0.208

(
c

db

)
− 38.212

(
db
ld

)] —

Model-18 Eligehausen et al. [60] τ = 0.75
√

c
d ( f ′c)

0.5 —

Model-19 Amini Pishro et al. [61] τ = 26.8276
( c

d +0.5
c
d +7.7136

)
× 0.55

√
f ′c —

Model-20 CEB-FIP [57] τ = 13.5
√

f ′c
30

τu = BS (MPa), f ′c = CS (MPa)

4. ML
4.1. SVM

Vapnik and Chervonenkis created the SVM algorithm in 1963, and it was originally
presented by Boser, Guyon, and Vapnik at the Computational Learning Theory conference
in 1992 [62]. SVM is a type of ML algorithm that comes under the category of supervised
learning and is used to analyze data for classification, prediction, and regression analy-
sis [7]. However, mostly, it is used to analyze data for classification problems in ML. The
working of SVM is based on the principle of statistical learning theory and structural risk
minimization (SRM) to attain good generalization performance. SVM is a data-driven algo-
rithm that forms a relationship between the input data and the target-dependent variable
in accordance with the principle of SRM [34]. For easy placing of new data points in the
correct category, the SVM algorithm’s objective is to establish a boundary that can divide
N-dimensional space into groups or classes, and this best line boundary is known as the
hyper plane. There will be many decision boundaries, but for best results, the best decision
boundary should be selected (the boundary with the maximum distance between data
points), and the main goal of the SVM algorithm is to maximize the margin between the
data points. Support vectors are the extreme points or vectors that contribute to the creation
of the hyper plane, which are selected by SVM.

Some of the applications of SVM include the classification of images, face detection,
text and hypertext categorization, and bioinformatics. The advantages of SVM are high di-
mensional input space, regularization parameters, and sparse document vectors. Numerous
scholars have used the SVM approach to great success in the field of structural engineering.

Considering a set of training points {(x1, y1) . . . . . . (xi, yi)}, where the following
function helps define the nonlinear mapping between input and output vectors, xi ∈ RN is
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an N-dimensional input vector and yi ∈ R is the target output. The predicted value, f (xi),
can be calculated from Equation (9):

f (xi) = ωTφ(xi) + b (9)

where ω and b are the support vector variable and bias, respectively, and φ(xi) is the transfer
function (nonlinear mapping function).

For the training dataset with l sample, the standard form of the ϑ-SVM optimization
model can be expressed as follows [44]:

minR(ω, ξ, ξ∗, ε) = 1
2‖ ω ‖2 + C

[
ϑε + 1

l

l
∑

i=1
(ξi + ξ

∗
i )

]
subject to : yi −ωTφ(xi)− b ≤ ε + ξi

ωTφ(xi)+b−yi≤ε+ξi
ξ∗ ,ε≥0

(10)

where C is the variable used to stabilize the model difficulty and experiential risk term
‖ ω ‖2, and ξ∗i denotes the distance and is called a slack variable. To solve dual optimization
problems, the Lagrange technique of multipliers is used in the following equation [44].

maxR
(
ai, a∗i

)
=

l
∑

i=1
yi
(
ai, a∗i

)
− 1

2

l
∑

i=1

l
∑

j=1

(
ai − a∗i

)(
aj − a∗j

)
K
(
xi, x∗i

)
subject to :

l
∑

i=1

(
ai − a∗i

)
= 0, 0 ≤ ai, a∗i ≤ C/l

l
∑

i=1

(
ai + a∗i

)
≤ C.v

(11)

where kernel functions are denoted by K (xi, xj), and the non-negative Lagrange multipliers
are represented by ai and ai

*.
Equation (12) states the regression for an unknown input vector x,

f (x) =
l

∑
i=1

(ai − a∗i )× K(x, xi) + b (12)

where K(x, xi) is a kernel function, and
(
ai − a∗i

)
and b are the results to the problem.

4.2. ANN

In 1956, John McCarthy first coined the term “Artificial Intelligence” at the Dartmouth
conference. Artificial intelligence is like mimicking human behavior. A computer system
that can simulate human intellect is created via the science of artificial intelligence. The
history of ANN began with Warren McCulloch and Walter Pitts in 1943 when they proposed
the first mathematical model inspired by biological neurons, resulting in the first conception
of the artificial neuron. A technology known as ANN was developed using research on the
nervous system and brain [63]. ANN is a special kind of ML algorithm that is similar to
the neurons in the human brain. In general, multiple neurons come together to form an
ANN, which works as the foundation for the operation of a function in accordance with its
task [64]. ANN has been used for nonlinear modeling in a variety of engineering fields,
including ocean engineering, hydraulics, and geotechnical engineering.

The signals or samples that reflect the values supposed by the variables of a certain
application are known as “input signals”. To improve the computing efficiency of learning
algorithms, the input signals are generally normalized. Each input variable is given a
weight, called a synaptic weight, which allows the relevance of each one to the neuron’s
functionality to be quantified. The variable known as the bias (activation threshold) is used
to define the appropriate threshold that the output of the linear aggregator should have
to provide a trigger value for the neuron output. The purpose of AF, which is predicated
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by its functional picture, is to limit the neuron output within a suitable range of values.
The output signal is the final value that a neuron produces in response to a specific set
of input signals. It can also serve as an input for further neurons that are sequentially
connected [63].

An ANN can generally be divided into three groups called input, hidden (intermedi-
ate), and output layers, as displayed in Figure 4. The input layer has the responsibility of
collecting the data (information), signals, and characteristics from the external domain. The
hidden layer is made up of neurons that are in charge of identifying patterns connected to
the system or process under study. Most of the network’s internal processing are carried
out by these layers.

The following categories can be used to group the basic architectures of ANN:
(i) single-layer feed-forward networks, (ii) multilayer feed-forward networks, (iii) recur-
rent networks (feedback architecture), and (iv) mesh networks. In the ML field, the word
“epoch” refers to the total number of runs the algorithm has made across the whole training
dataset [63].
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4.2.1. Development of ANN Model

An ANN network with three layers as input, hidden, and output was developed in
order to produce an ML model that could predict the corroded steel-to-concrete BS. Further,
the input layer was composed of input nodes known as the input parameters, the hidden
layer was composed of neurons that help receive the data from the input layer, process the
data, and produce the desired output. However, the output layer was composed of the
target parameter. The complexity of the network increases with an increase in the number
of hidden layers. The development of an ANN model with the minimum number of layers
is always a better approach. In this study, single hidden layer was used to develop the
reliable and easy-to-use ANN model.

In order to increase the effectiveness of the training procedure, the Levenberg-Marquardt
(LM) algorithm, a second-order gradient algorithm based on the least-squares method for
nonlinear models, was applied to the backpropagation algorithm [63].
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This work also makes use of the LM algorithm, one of the most effective training
algorithms. The LM procedure randomly divides input and output vectors of data into
three categories: training, testing, and validation. In nonlinear least squares problems, the
LM method is an iterative process that is commonly used as a learning technique [65].

AF is the function that is used to obtain the output of the node; it is also known as the
transfer function. It maps the resulting values between 0 to 1 or −1 to 1, etc., depending
upon the function. The most common AFs are “TanSig” and “LogSig”. In this research
work, the “TanSig” function was applied between the input to the hidden layer. The
mathematical equation for the “TanSig” function is expressed as:

TanSig =
2

1− e−2z − 1 (13)

where z represents the value of the input. Other various AF are used in the ANN, such
as linear function, nonlinear function, Gaussian function, hyperbolic tangent function,
Sigmoid or ReLU, logistic function, and leaky ReLU.

By applying a trial-and-error approach to obtain optimum performance, the per-
centages of training, testing, and validation set are considered as 80%, 10%, and 10%,
respectively. Afterward, the hit and trial method was applied, in which hidden layer
neurons were trained by changing the number of neurons from 3 to 16. The performance
of each neuron was calculated by the ranking of neurons based on R and MSE values, as
depicted in Figures 5 and 6, respectively. The process of training the data was carried out
by changing the number of neurons, the neurons which indicated the best performance
was taken as the final result. All the performance indices were calculated after selecting the
best neuron. This work makes use of a linear transfer function named as “purelin” function
from the hidden to the output layer. After that, all the values of biases and weights between
layers are determined, and then AF is applied to get the output [6].

The R-value of each neuron is provided in Figure 5. As illustrated in Figure 5, neuron
13 has the maximum R-value of the overall dataset close to one. Similarly, as shown in
Figure 6, the MSE value at neuron 13 is minimum and approaches zero. As a result, the
network performed at its optimum level when the hidden layer contained 13 neurons. The
steel-to-concrete BS can be calculated using the equations below:

Ni = f(I−H)

(
N

∑
i=1

Wi(I−H)Xi + B(I−H)

)
(14)

where Wi(I−H) is the value of weights from input to the hidden layer, Xi is the normalized
input value, B(I−H) is the value of bias from input to hidden layer, and f(I−H) is AF that is
used from input to hidden layer (“TanSig” transfer function is used), and Ni is the input
parameter that is the sum of biases, weights, and normalized inputs. The final output of
the ANN model (BS), τu, can be achieved from Equation (15):

τu = f(H−O)

(
N

∑
i=1

Wi(H−O)Ni + B(H−O)

)
(15)

where Wi(H−O) is the value of weights from the hidden to the output layer, B(H−O) is the
value of bias from the hidden layer to the output layer, and f(H−O) is AF that is used from
the hidden to the output layer (“purelin” transfer function is used), and Ni is the value that
is obtained from Equation (10).
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Figure 5. Values of R for each neuron; (a) training dataset, (b) validation dataset, (c) testing dataset,
(d) overall dataset.
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Figure 6. Values of MSE for each neuron; (a) training dataset, (b) validation dataset, (c) testing dataset,
(d) overall dataset.

5. Results and Discussion

In this section, the results of the analytical models and ANN models are explained
individually. The comparison of the analytical results with the ANN model is summarized
in the discussion section. A Taylor plot is used to demonstrate the graphical fitting of
the analytical and developed ANN models. The ANN mathematical formulation is also
expressed in the current section.

5.1. Results of Analytical Models

The selected input parameters have been processed through twenty analytical models.
The details of these analytical models are available in Section 4. For better understanding,
the analytical models have been divided into three groups based on the R-values. The range
of the R-values for Group-I, II, and III were 0–0.15, 0.15–0.30, and 0.30–0.40, respectively.
The other performance indices, such as MAE, RMSE, MAPE, NS, and a20-index have also
been used to assess the performance of these analytical models. The R-values of Model-6,
Model-7, Model-8, Model-4, Model-1, Model-16, Model-12, Model-15, Model-20, Model-13,
and Model-2 were 0.053, 0.054, 0.069, 0.101, 0.107, 0.126, 0.138, 0.138, 0.138, 0.139, and
0.139, respectively. The MAE value of Model-1 was 12.036 MPa, which was the highest
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among Group-I models. Similarly, the RMSE value of Model-1 was the highest, as well.
However, the MAPE value of Model-6 was the highest, which was 241.66%. The a20-index
and NS values of Model-7 and Model-20 were highest in Group-I models. Based on all the
performance indices, the reliability of Model-2 was good compared with other Group-I
models. The R-value of Model-2 was 175.47%, 170.37%, 111.59%, 44.55%, 36.45%, 15.87%,
and 5.04% higher than Model-6, Model-7, Model-8, Model-4, Model-1, Model-16, and
Model-13, respectively. The comparison of the performance indices of Group-I models is
presented in Figure 7.

The R-value of Model-2 was 5.8% higher than Model-12, Model-15, and Model-20,
sequentially. The MAE value of Model-2 was the lowest among Group-I models. The MAE
value of Model-2 was 39.58%, 27.23%, 10.99%, 27.29%, 51.91%, 35.75%, 24.34%, 26.47%,
23.34%, 5.55% lower than Model-6, Model-7, Model-8, Model-4, Model-1, Model-16, Model-
12, Model-15, Model-20, and Model-13, respectively. The comparison of the performance
indices of Group-II models is demonstrated in Figure 8.

In Group-II models, the R-values were between 0.15 and 0.30. Only six analytical
models fell into the group. The R-values of Model-9, Model-19, Model-3, Model-11, Model-
18, and Model-17 were 0.160, 0.168, 0.171, 0.171, 0.174, and 0.298, sequentially. The R-value
of Model-17 was the highest among Group-II models, which was 86.25%, 77.38%, and
71.26% higher than Model-9, Model-19, and Model-17, respectively. Similarly, the R-value
of Model-17 was 74.27% higher than Model-3 and Model-11. The MAE value of Model-18
was the lowest one compared with other Group-II models. This MAE value was 5.33%,
73.75%, 18.88%, 11.9%, and 20.18% lower than Model-9, Model-19, Model-3, Model-11,
and Model-17, sequentially. In Group-II, the NS (0.029) and a20-index (0.229) values of
Model-18 were the highest. Model-17 and Model-19 had negative NS values, which means
the performance of these models was very bad. The RMSE and MAPE values of Model-18
were 10.705 MPa and 77.912%, respectively. Based on all the performance metrics, it can be
concluded that the performance of Model-18 was good in Group-II models.

The comparison of performance indices of Group-III models is displayed in Figure 9.
In Group-III models, the R-values were between 0.30 and 0.40. Therefore, only three
analytical models have fallen into the group. The R-value of Model-14 was 9.37%, and
9.07% higher than Model-5 and Model-10, respectively. The MAE, RMSE, and MAPE
values of Model-10 were 4.514 MPa, 9.888 MPa, and 87.517%, respectively. The MAE
value of Model-10 was 24.57% and 42.08% lower than Model-5 and Model-14, respectively.
Similarly, the RMSE value of Model-10 is 5.21% and 11.17% lower than Model-5 and Model-
14, respectively. In addition, the MAPE value of Model-10 was 37.24% and 51.87% lower
than Model-5 and Model-14, respectively. The NS value of Model-10 was also greater than
other Group-III models. Therefore, based on the analyzed results, it can be summarized
that the performance of Model-10 was good compared with other models. The values of all
the performance metrics are reported in Table 5.
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Figure 7. Comparison of performance indices of Group-I models; (a) R, (b) MAE, (c) MAPE,
(d) RMSE, (e) NS, (f) a-20 index.
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Figure 9. Comparison of performance indices of Group-III models; (a) R, (b) MAE, (c) MAPE,
(d) RMSE, (e) NS, (f) a-20 index.
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Table 5. Division of models in three groups.

S. No. Group Model R MAE
(MPa) MAPE (%) RMSE

(MPa) a20-Index NS

1

Group-I

Model-6 0.053 9.580 241.660 13.203 0.141 −0.161
2 Model-7 0.054 7.954 209.657 12.480 0.212 −0.289
3 Model-8 0.069 6.503 137.778 11.300 0.191 −0.133
4 Model-4 0.101 7.982 147.153 11.545 0.183 −0.054

5 Model-1 0.107 12.036 222.142 14.462 0.103 −0.084
6 Model-16 0.126 9.008 83.371 13.891 0.006 0.001
7 Model-12 0.138 7.650 174.141 11.218 0.183 0.016
8 Model-15 0.138 7.872 69.634 13.088 0.040 0.009
9 Model-20 0.138 7.550 170.961 11.149 0.181 0.016

10 Model-13 0.139 6.128 59.549 11.777 0.179 0.003
11 Model-2 0.146 5.788 58.224 11.158 0.185 −0.007

12

Group-II

Model-9 0.160 5.550 65.313 11.275 0.223 0.019
13 Model-19 0.168 20.017 422.526 21.771 0.017 −0.075
14 Model-3 0.171 6.477 50.691 12.192 0.191 0.014
15 Model-11 0.171 5.964 125.361 10.549 0.189 0.020
16 Model-18 0.174 5.254 77.912 10.705 0.229 0.029
17 Model-17 0.298 6.582 89.402 11.639 0.151 −0.130

18
Group-III

Model-5 0.363 5.984 139.444 10.432 0.288 0.112
19 Model-10 0.364 4.514 87.517 9.888 0.275 0.131
20 Model-14 0.397 7.794 181.843 11.132 0.187 0.123

Figure 10 indicates the relationship between experimental and predicted values for
each of the analytical models. In all the cases, the scatter plots show the poor performance
of all the analytical models.

5.2. Results of ANN and SVM Models

In the development of the ANN model, the dataset was split into three parts, namely
training (380 samples), validation (48 samples), and testing (48 samples) datasets. Based
on the R and MSE values, thirteen neurons in the hidden layer were selected to build the
ANN model. The analyzed results of the ANN model are given in Table 6. The R-values
of the training, validation, and testing datasets were 0.994, 0.948, and 0.995, respectively.
The overall R-value of the ANN model was 0.99, and the MAE, RMSE, MAPE, NS, and
a20-index values of the whole dataset were 1.091 MPa, 1.495 MPa, 17.879%, 0.98, and
0.761, respectively. Figure 11 depicts the scatter plot, frequency distribution, and absolute
errors of the developed ANN model. In Figure 11a, the range of the majority of errors
(ANN-training) fell between −4 and +4 MPa. The absolute error plot is illustrated on the
right side of Figure 11a. The maximum value of the absolute error was 4 MPa. Most of the
BS values were within the error range of 2 MPa.

Table 6. Results of proposed ANN model.

Model R MAE (MPa) MAPE
(%) RMSE (MPa) a20-

Index NS

ANN-Training 0.994 0.844 13.669 1.127 0.834 0.987
ANN-

Validation 0.948 1.213 16.855 1.681 0.667 0.896

ANN-Testing 0.995 1.319 19.235 1.665 0.625 0.990
ANN-All 0.990 1.091 17.879 1.495 0.761 0.980

SVM-Training 0.993 0.896 15.799 1.336 0.826 0.983
SVM-Testing 0.979 1.642 22.937 2.608 0.693 0.948

SVM-All 0.989 1.120 18.438 1.814 0.786 0.971
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Figure 10. Experimental vs. predicted values of testing samples; (a) Model-1, (b) Model-2,(c) Model-3,
(d) Model-4, (e) Model-5, (f) Model-6, (g) Model-7, (h) Model-8, (i) Model-9, (j) Model-10,
(k) Model-11, (l) Model-12, (m) Model-13, (n) Model-14, (o) Model-15, (p) Model-16, (q) Model-17,
(r) Model-18, (s) Model-19, (t) Model-20.
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Figure 11. Scatter plot, frequency distribution, and absolute error of proposed ANN model;
(a) training dataset, (b) validation dataset, (c) testing dataset, (d) overall dataset.

Figure 11b provides the scatter plot, frequency distribution, and absolute errors of the
validation dataset. In the scatter plot, almost all the values fell into the error range of −30%
to +30%. The frequency distribution of the errors is also shown, which were in the range of
–4 MPa to +6 MPa. Meanwhile, Figure 11c displays the scatter plot, frequency distribution,
and absolute errors of the testing dataset. The frequency distribution range of the errors, in
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this case, was between −5 MPa and +4 MPa. The absolute error plot represents that the
majority of the error values of BS were within 1 MPa.

The scatter plot, frequency distribution, and absolute errors of the whole dataset are
depicted in Figure 11d. The majority of the error values in the frequency distribution plot
were in the range of −5 MPa to +5 MPa. In the ANN-all dataset, the absolute error plot
indicates that the majority of the error values of BS were within 4 MPa.

The values of all the performance metrics for training, testing, and all datasets of
the ANN and SVM models are listed in Table 6. The scatter plot of the developed SVM
model with the frequency distribution and absolute error is demonstrated in Figure 12.
The R-values of the SVM training, testing, and all datasets were 0.993, 0.979, and 0.989,
respectively. Most of the error values in the frequency distribution plot were in the range of
−5 MPa to +10 MPa, −5 MPa to 15 MPa, and −5 MPa to +15 MPa for training, testing, and
all datasets of the SVM model, respectively. The majority of the BS values in the absolute
error plot was within 5 MPa.
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Figure 12. Scatter plot, frequency distribution, and absolute error of proposed SVM model;
(a) training dataset, (b) testing dataset, and (c) overall dataset.
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5.3. Discussion

In the current section, the comparison between the analytical model, proposed ANN
and SVM models, and the existing (ML) SVR model is summarized. A Taylor plot is used
to show the fitting of the models.

The best-selected models in Group-I, Group-II, and Group-III were Model-2, Model-18,
and Model-10, respectively. The performance indices of the analytical as well as ANN and
SVM models are reported in Table 7. In Group-I, II, and III models, the performance of
Group-III model was good. The R-value of Model-10 was 149.32% and 109.2% higher than
Model-2 and Model-18, respectively. The NS value of Model-10 was 351.72% higher than
Model-18. Similarly, the a20-index of Model-10 was 48.65% and 20.09% higher than Model-2
and Model-18, respectively. The MAE and RMSE values of Model-10 were 4.514 MPa and
9.888 MPa, which were the lowest among all the analytical models. The R-value of the
ANN model was 0.99, which was 171.98% and 0.1% higher than the R-value of Model-10
and SVM model, respectively. The values of other performance metrics such as MAE,
RMSE, MAPE, NS, and a20-index of the ANN model were 1.091 MPa, 1.495 MPa, 17.879%,
0.980, and 0.761, respectively. Similarly, the MAE, RMSE, MAPE, NS, and a20-index of
the SVM model were 1.120 MPa, 1.814 MPa, 18.438%, 0.971, and 0.786, respectively. The
values of MAE, MAPE, and RMSE of the developed ANN and SVM models were smaller
than the error performance indices of Model-10. In addition, the NS and a20-index of the
ANN model had higher values compared with Model-10 values. The comparison of the
performance indices of the best-fitted model from each group with the proposed SVM and
ANN models is presented in Figure 13.

Table 7. Performance indices of the best model from each group I, II, III, and proposed SVM and
ANN models.

Group Model R MAE (MPa) MAPE (%) RMSE (MPa) NS a20-Index

Group-I Model-2 0.146 5.788 58.224 11.158 −0.007 0.185
Group-II Model-18 0.174 5.254 77.912 10.705 0.029 0.229
Group-III Model-10 0.364 4.514 87.517 9.888 0.131 0.275

Existing model Mousavi et al. [7] 0.977 - - 5.372 - -
Proposed model-I SVM 0.989 1.120 18.438 1.814 0.971 0.786
Proposed model-II ANN 0.990 1.091 17.879 1.495 0.980 0.761

Mousavi et al. [7] used MLP, RBFNN, and SVR algorithms to estimate the steel-to-concrete
BS. The SVR model outperformed the other ML models. The R-values of training, testing, and
all the datasets were 0.9818, 0.9618, and 0.9772, sequentially. The RMSE values of training,
testing, and all the datasets were 3.101 MPa, 3.726 MPa, and 5.372 MPa, respectively.

The R-value of the proposed ANN model was 1.31% higher than the model of Mousavi
et al. [7]. The RMSE of the ANN model was 72.17% lower than Mousavi et al. [7] model;
this means that the developed ANN model has more accuracy than the existing ML models.

In essence, the Taylor diagram is a form of mathematical graphic representation where
the baseline indicates that the R-value is one, and the RMSE value is zero, as displayed in
Figure 14.
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The green dotted line represents the values of the original experimental dataset. If the
proposed model patterns are close to the observed patterns, it means that they are similar
in terms of their standard deviation, their correlation value is high, and their RMSE value is
close to zero. In Figure 14a, all the models in Group-I fell into the standard deviation range
of 0.061 to 5.515 and the R-range of 0.053 to 0.146. The overall performance of Group-I
models was very poor. Moreover, as illustrated in Figure 14b,c, the performance of Group-II
and III models was also poor. The ANN model is directly over the green dotted line in
Figure 14d, while the rest of the analytical models from other groups are located far from
the green dotted line, except the SVM model. The SVM model is inside the green dotted
line because its standard deviation value was lower. The graphical representation of the
Taylor diagram also confirms the reliability and accuracy of the developed ANN model.

5.4. Relative Importance

The influence of each input parameter on BS of steel-to-concrete is indicated by the
relative importance diagram in Figure 15. According to Figure 15, η had the maximum
influence on the output (14.3%) which was followed by w/c (12.9%), fy (11.8%), Lb (10.9%),
SAS (10.8%), d (10.6%), Tb (10.3%), and f’c (9.7%). The least influenced parameter was c with
8.8% effect on BS.
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5.5. ANN Formulation

The mathematical expression to calculate the steel-to-concrete BS is expressed in
Equation (16). These numeric values are the weights of the output layer, while −1.0047 is
the bias of the output layer. The values of the coefficients R1 to R13 can be obtained from
Equation (17).

τu = −0.4089R1 + 0.6782R2 − 0.3081R3 + 0.2883R4 + 0.5820R5 − 0.2998R6
+ 0.2018R7 − 1.5947R8 − 0.2597R9 − 0.2323R10 + 0.1298R11
− 1.6161R12 + 0.3285R13 − 1.0047

(16)

In Equation (17), the first matrix shows the weights of the hidden layer, and the biases
are added after the multiplication of normalized input parameters.
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6. Conclusions

This study developed an ML model to estimate BS between steel surface and concrete.
The ANN and SVM models were developed using 476 experimental datasets with input
parameters such as SAS, w/c, f ’c, c, Lb, d, Tb, fy, and η. Based on the analyzed results, the
following conclusions are drawn:

• Based on the R-value, twenty analytical models were divided into three groups Group-
I, Group-II, and Group-III with R-ranges of 0 to 0.15, 0.15 to 0.30, and 0.30 to 0.40,
respectively. Model-2 performed well in Group-I, with an R-value of 0.146. Similar to
this, Model-18 performed well in Group II with an R-value of 0.174, while Model-10
performed well in Group III with an R-value of 0.364.

• The R-value of Model-10 was 149.32% and 109.2% higher than Model-2 and Model-
18, respectively. The NS value of Model-10 was 351.72% higher than Model-18. Sim-
ilarly, the a20-index of Model-10 was 48.65% and 20.09% higher than Model-2 and
Model-18, respectively.
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• The MAE and RMSE values of Model-10 were 4.514 Mpa and 9.888 Mpa, which were
lowest among all the analytical models. In the analytical models, the performance of
Model-10 was good compared with Group-I, II, and III models.

• The R-value of the ANN model was 0.99, which was 171.98% higher than the R-value
of Model-10. The values of other performance metrics such as MAE, RMSE, MAPE,
NS, and a20-index were 1.091 MPa, 1.495 MPa, 17.879%, 0.980, and 0.761, respectively.
The values of MAE, MAPE, and RMSE of the ANN model were smaller than the error
performance indices of Model-10. In addition, the NS and a20-index of the SVM and
ANN models had higher values than Model-10 values.

• Sensitivity analysis revealed that, as compared with other parameters, the corrosion
level had the greatest influence on BS.

• Based on all the analyzed results as well as a graphical representation, it can be
concluded that the performance of the ANN model was good, and the developed
ML-based ANN model could effectively be used to predict BS of concrete to steel.

In future work, nature-inspired, as well as other ML algorithms, can be used to enhance
the accuracy of the proposed model. The collection of more datasets, as well as increasing
the range of input and output parameters, also improve the reliability and applicability of
this model.
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Nomenclature

SVM support vector machine SAS surface area of specimen
MLR multiple linear regression w/c water/cement ratio
ANN artificial neural network f ′ c compressive strength
GEP gene expression programming Lb bond length
RBFNN radial basis function neural network d diameter of reinforcement bar
MLP multilayer perceptron Tb type of reinforcement bar
LSSVR least squares support vector regression fy yield strength of reinforcement bar
DFP differential flower pollination c concrete cover
SVR support vector regression η corrosion level
MGGP multi-gene genetic programming τu bond strength
GA genetic algorithm PF pullout force
FL fuzzy logic zn normalized output of variable
ML machine learning z variable of input to be normalized
ReLU rectified linear unit zmin minimum value of input variable z
ANFIS adaptive neuro-fuzzy inference system zmax minimum value of input variable z
GMDH group method of data handling r actual output
MARS multivariate adaptive regression spline s projected output
MNLR multiple nonlinear regression N number of points in data set
KSM Kriging surrogate model Ni input parameter (sum of biases, weights, and normalized inputs)
BPANN back propagation ANN Xi normalized input value
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RegTree regression tree Wi(H-O) value of weight from hidden to output layer
PSO particle swarm optimization Wi(I-H) value of weight from input to hidden layer
LMA Levenberg–Marquardt algorithm B(H-O) value of bias from hidden to output layer
RMSE root mean square error B(I-H) value of bias from input to hidden layer
MAE mean absolute error f(I-H) AF that is used from input to hidden layer
MAPE mean absolute percentage error f(H-O) AF that is used from hidden to output layer
R correlation coefficient Rr relative rib area
NS Nash-Sutcliffe efficiency index Av/S amount of transverse steel area to spacing ratio
RC reinforced concrete ls splice length
Std. standard deviation ρ splice bar size
MSE mean square error c/d ratio of concrete cover to reinforcement bar diameter
BS bond strength Lb/d ratio of bond length to reinforcement bar diameter
AF activation function Surf reinforcement bar surface treatment
Ns number of stirrups Pos reinforcement bar position/location
As area of stirrups Surf/Tr ratio of reinforcement bar surface to transverse reinforcement bar
Cm curing method

√
f ′c square root of concrete compressive strength

UHPC ultra-high-performance concrete Ad anchorage depth
Atr area of transverse reinforcement bar Sd surface dimensions of specimen
Ec elastic modulus of concrete Cs crack severity of concrete
UPV ultrasonic pulse velocity Es/EFRP ratio of elasticity modulus of steel reinforcement bars to that of FRP bars
ft tensile strength of reinforcement bar IEPSO improved eliminate particle swarm optimization
St surface treatment IEPANN improved eliminate particle swarm optimization hybridized ANN
i interface moisture condition PANN particle swarm optimization hybridized ANN
Ct type of concrete Atr/Snd ratio of area of transverse reinforcement bar to product

(transverse bar spacing, number of developed bars, and bar diameter)
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