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Abstract: Silicon carbide nanotubes (SiCNTs) have generated significant research interest due to their
potential use in the fabrication of electronic and optoelectronic nanodevices and biosensors. The
exceptional chemical, electrical and thermal properties of SiCNTs are beneficial for their application
in high-temperature and harsh-environments. In view of the limited thermal stability of carbon
nanotubes, they can be replaced by silicon carbide nanotubes in reinforced composites, developed
for operations at high temperatures. However, fundamentally theoretical studies of the mechanical
properties of the silicon carbide nanotubes are at an early stage and their results are still insufficient
for designing and exploiting appropriate nanodevices based on SiCNTs and reinforced composites. In
this context, the present study deals with the determination of Young’s and shear moduli of non-chiral
single-walled silicon carbide nanotubes, using a three-dimensional finite element model.

Keywords: silicon carbide nanotubes; Young’s and shear moduli; modelling; numerical simulation

1. Introduction

For nearly two decades, non-carbon nanotubes (N-CNTs) have been the focus of
interest for the National Aeronautics and Space Administration (NASA) due to their use
in hazardous environments [1]. Silicon carbide nanotubes (SiCNTs) have been sought
after by NASA because of their excellent thermal resistance and durability under high
temperatures in comparison to carbon nanotubes (CNTs). While the thermal stability of
the CNTs is limited to 600 ◦C [2], the SiCNTs remain stable at higher temperatures, up
to 800–1000 ◦C [1]. This high thermal stability makes SiCNTs viable for developing new
devices for exploration in aggressive environments, such as in space missions. In addition,
the SiCNTs have promising applications as biosensors [3] and toxic gas detectors [4].

SiCNTs were synthesized for the first time by Sun et al. [5], who converted multi-
walled carbon nanotubes (MWCNTs) using a chemical reaction with silicon oxide. Later,
SiCNTs were produced via thermally induced synthesis, with MWCNTs as a template [6]
and through a controllable two-stage thermal process, using ZnS nanowires as models [7].
Pei et al. [8] grew SiCNTs through the hydrothermal method, firstly by synthesizing
silicon nanotubes (SiNTs) and then by introducing the carbon atom, C, into the SiNTs by
diffusion. More recently, Tony et al. [9] synthetized SiCNTs by microwave heating of silicon
dioxide MWCNTs.

The reinforcement of composites for machinery parts by CNTs significantly improved
their performance and helped to reduce the weight of its components. Nevertheless, this
may not meet the requirements for numerous applications, such as high-temperature and
high-power electronics, systems with improved thermal conductivity and nanodevices
operating at high temperatures and in harsh environments. SiCNTs with optimum thermal
properties, high conductivity and promising prospects for mass production can be suitable
candidates to replace the CNTs. However, the silicon atom, Si, has a larger atomic radius,
lower electronegativity and weaker bonds, which leads to properties of SiCNTs that are
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different from those of CNTs [10]. Regarding the SiCNTs mechanical properties, few
studies have been conducted and existing studies have focused almost exclusively on
theoretical works. As in the determination of the mechanical properties of CNTs, three
classes of theoretical methods were used for this purpose in the case of SiCNTs, namely:
the atomistic approach, involving ab initio and molecular dynamics (MD); the continuum
mechanics (CM) approach; and the nanoscale continuum modelling (NCM), also called
the molecular structural mechanics (MSM) approach. Although the atomistic approach
provides good predictions of the mechanical properties, it requires a large computation
cost and a demanding mathematical formulation [11].

On atomistic approaches, in the work by Baumeier et al. [12], the surface Young’s
modulus (product of Young’s modulus by the nanotube wall thickness) of SiCNTs was
assessed by ab initio density functional theory (DFT) calculations. With respect to MD, the
key is to choose an appropriate potential, analytical or empirical, function to describe the
interactions between atoms in the nanotubes (NTs). Moon et al. [13], Setoodeh et al. [14], Pan
and Si [15] and Zhou et al. [16] used molecular dynamic simulations with Tersoff potential
to describe the interactions between silicon (Si) and carbon (C) atoms, which allow the
calculation of the Young’s modulus [13–16], studying the buckling behaviour under axial
compression [14] and the tensile behaviour [15]. Le [17] used MD simulation with harmonic
force fields to obtain an explicit expression for the SiCNTs surface Young’s modulus.

With regard to the CM approach, where the whole nanotube is replaced by a single
continuum structure, Mercan and Civalek [18] analyzed the buckling behaviour of SiCNTs,
using the continuum model based on the Euler-Bernoulli beam theory.

In contrast to CM, the NCM/MSM approach considers the bonds between Si and C
atoms as elastic beams, making use of the connection between the nanotube molecular
structure and solid mechanics. Genoese et al. [19] evaluated the surface Young’s and shear
moduli of SiCNTs, using a link between the “stick-and-spring” (NCM/MSM) and the
continuum thin shell Donnell (CM) models. Jiang and Guo [20] also used the “stick-and-
spring” model and suggested an analytical solution for the surface Young’s modulus of
SiCNTs. Ansari et al. [21] used the beam element to replace the Si-C bond, under the
NCM/MSM approach, to study the buckling behaviour of SiCNTs.

The goal of this study is to assess the Young’s and shear moduli of non-chiral single-
walled silicon carbide nanotubes (SWSiCNTs) with chiral indices and diameters in a broad
range, making use of the NCM/MSM approach, which employs beam elements. So far, the
NCM/MSM approach is the most commonly indicated for effective and fast computational
simulation of the N-CNTs mechanical response. To this end, a three-dimensional numer-
ical model was used, which allowed the determination of bending, tensile and torsional
rigidities, and, afterwards, the calculation of the elastic moduli of SWSiCNTs.

2. Materials and Methods
2.1. Atomic Structure of SWSiCNTs

As shown in Figure 1, the atomic structure of the hexagonal silicon carbide sheet
is characterized by the chiral vector, Ch, and the chiral angle, θ, given by the following
expressions, respectively:

Ch = na1 + ma2, (1)

θ = sin−1
√

3
2

m√
n2+nm + m2

, (2)

where n and m are the chiral indices, both with integers values; a1 and a2 are the unit
vectors of the hexagonal SiC lattice.

The SiC sheet can be rolled up into a cylinder in different ways, varying the chiral
angle, θ, from 0◦ to 30◦ (see, Figure 1), forming single-walled nanotubes (NTs). When
θ = 0◦ (m = 0) and θ = 30◦ (n = m), the resulting structures are called (n, 0) zigzag and (n, n)
armchair NTs, respectively. These two limiting cases, which are schematically presented in
Figure 2, constitute the group of non-chiral nanotubes. The configurations, which arise in
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the rest of the cases, when 0◦ < θ < 30◦ (n 6= m), belong to the symmetry group called (n, m)
chiral NTs.
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Figure 2. Configurations of (10, 0) zigzag and (6, 6) armchair SWSiCNTs, obtained using the software
Nanotube Modeler©. The Si atoms are shown in red; the C atoms in green.

NTs are characterized by the nanotube circumference, Lc, and the diameter, Dn, ex-
pressed as follows:

Lc = |Ch| = a
√

n2+nm + m2, (3)

Dn =
Lc

π
=

aSi-C

√
3
(
n2+nm + m2

)
π

, (4)
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where a is the length of the unit vector, a, of the SiC lattice, defined through the length of
the equilibrium Si-C covalent bond, aSi-C, as a =

√
3aSi-C. For the Si-C bond length, several

values can be found in the literature, such as 0.177 nm [22], 0.179 nm [13] and 0.185 nm [23].

2.2. Geometric Characteristics of the SWSiCNTs and FE Modelling

The nanoscale continuum modelling/molecular structural mechanics approach was
used, which substitutes the Si–C bonds of SWSiCNTs by equivalent beam elements. Li and
Chou [24] established relationships between the tensile, EbAb, bending, EbIb, and torsional,
GbJb, rigidities of beam elements, constituting the equivalent continuum structure, and the
bond stretching, kr, bond bending, kθ, and torsional resistance, kτ, force constants, which
describe the molecular structure:

EbAb = lkr, EbIb = lkθ, GbJb = lkτ, (5)

where l is the beam length.
Thus, Equation (5) is the basis for the analysis of the elastic behaviour of SWSiCNTs,

using the link between the continuum and molecular mechanics, which together with
the assumption of equivalence between the beam length, l, and the bond length, aSi-C,
constitute the input data for the FE model (Table 1).

Table 1. Input parameters for FE simulations of SWSiCNTs: geometrical and mechanical properties
of the beam elements.

Parameter Value Formulation

1 bond stretching force constant, kr [21] 417 nN/nm –
1 bond bending force constant, kθ [21] 0.842 nN·nm/rad2 –

1 torsional resistance force constant, kτ [21] 1.505 nN·nm/rad2 –
Si–C bond/beam lengths [22] 0.177 nm l = aSi-C

diameter, d 0.1797 nm d = 4
√

kθ/kr

Young’s modulus, Eb 2937 GPa Eb= k2
r l/4πkθ

shear modulus, Gb 2625 GPa Gb= k2
r kτl/8πk2

θ

Poisson’s ratio, νb 0.29 νb =
(
krl2−6kθ

)
/(k rl2+18kθ)

tensile rigidity, EbAb 74.5 nN EbAb= lkr

bending rigidity, EbIb 0.1504 nN·nm2 EbIb= lkθ

torsional rigidity, GbJb 0.2688 nN·nm2 GbJb= lkτ

1 The force field constants were obtained from DFT’s own calculations combined with molecular mechan-
ics expressions.

The FE models of the SiC nanotubes use the coordinates of the Si and C atoms to
create the nodes and the appropriate connections between the nodes to generate the beam
elements. The respective meshes were constructed using the Nanotube Modeler© software
(version 1.8.0, ©JCrystalSoft), which produces program database files. These files contain
the atom positions and interatomic connections, which serve as input to FE’s commercial
code, ABAQUS® (Abaqus 2020, Dassault Systèmes®). To transform the program database
files, provided by the Nanotube Modeler© software, to a format suitable to be used in the
commercial ABAQUS® code, the home programme InterfaceNanotubes.NM was used [25].
Table 2 shows the geometric parameters of the non-chiral (zigzag and armchair) SWSiCNTs
used in the present FE analyses. The length of nanotube was about 30 times greater than its
diameter; this ensures that the elastic behaviour of NTs does not depend on the NTs length.

The mechanical behaviour of SWSiCNTs under numerical bending, tensile and torsion
tests was studied with to the FE code ABAQUS®. Therefore, in the respective conventional
tests, the transverse force, Ft, the axial tensile force, Fa, and the torsional moment, T, were
applied to one edge of the NT, while the other edge is constrained. To carry out the torsion
test, the loaded nodes were prevented from moving in the radial direction.
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Table 2. Geometrical characteristics of the studied non-chiral SWSiCNTs.

NT Type (n, m) θ◦ Diameter, Dn, nm

zigzag (7, 0) 0 0.683
(11, 0) 1.073
(14, 0) 1.366
(17, 0) 1.659
(21, 0) 2.049
(26, 0) 2.537
(31, 0) 3.025
(36, 0) 3.513
(40, 0) 3.903
(43, 0) 4.196

armchair (4, 4) 30 0.676
(6, 6) 1.014
(8, 8) 1.352

(10, 10) 1.690
(12, 12) 2.028
(15, 15) 2.535
(18, 18) 3.042
(21, 21) 3.549
(23, 23) 3.888
(25, 25) 4.226

The axial displacement, ua, the transverse displacement, ut, and the twist angle, ϕ,
are obtained from the FE analysis of the tensile, bending and torsion tests, respectively.
Consequently, the tensile, EA, bending, EI, and torsional, GJ, rigidities of the SWSiCNTs
can be determined as follows, respectively:

EA =
FaLn

ua
, (6)

EI =
FtL3

n
3ut

, (7)

GJ =
TLn

ϕ
, (8)

where Ln is the NT’s length.

2.3. Young’s and Shear Moduli of SWSiCNTs

As for the single-walled carbon [26,27], boron nitride [25] and phosphide [28] nan-
otubes, the Young’s, E, and shear, G, moduli of SWSiCNTs can be evaluated resourcing
to the values of tensile, EA, bending, EI, and torsional, GJ, rigidities. The SWSiCNT can
be considered as an equivalent hollow cylinder with the mean diameter D and the wall
thickness, tn. Their cross-sectional area, A, moment of inertia, I, and the polar moment of
inertia, J, are given, respectively, by the following expressions:

A =
π

4

[(
D + tn

)2 −
(
D− tn

)2
]
= πDtn, (9)

I =
π

64

[(
D + tn

)4 −
(
D− tn

)4
]
=
πD3tn

8

[
1 +

(
tn

D

)2
]

, (10)

J =
π

32

[(
D + tn

)4 −
(
D− tn

)4
]
=
πD3tn

4

[
1 +

(
tn

D

)2
]

(11)
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Knowing the EA and EI rigidities and using Equations (9) and (10), the diameter D
can be calculated as follows:

EI
EA

=
1
8

(
D2

+ t2
n

)
=⇒ D

√
8
(

EI
EA

)
− t2

n. (12)

Subsequently, replacing the mean diameter, D, by expression (12) in Equations (9) and (11),
it is possible to calculate the E and G moduli using the following expressions, respectively:

E =
EA
A

=
EA

πtn

√
8
(

EI
EA

)
− t2

n

, (13)

G =
GJ
J

=
GJ

2πtn

(
EI
EA

)√
8
(

EI
EA

)
− t2

n

. (14)

As in the case of most N-CNTs [29], there is uncertainty with regard to the NT wall
thickness of SiCNTs. The multi-walled SiCNTs synthesized by Sun et al. [5] had the
interlayer spacing in the range of 0.35 to 0.45 nm, which is different from 0.34 nm, whose
value corresponds to the graphite interlayer spacing and is commonly used as the wall
thickness, tn, of the carbon and boron nitride NTs. Thus, in the present study, for the
purpose of comparison, the E and G moduli of the SWSiCNTs were calculated for tn = 0.34,
0.39, 0.45 nm.

As the determination of the SWSiCNTs Young’s, E, and shear, G, moduli, according to
Equations (13) and (14), requires reliable knowledge of the value of tn, several authors have
chosen to report the values of the surface Young’s (Es= Etn) and shear (Gs= Gtn) moduli,
Es and Gs of the SWSiCNTs, which can be assessed, respectively, as follows:

Es = Etn =
EA

π

√
8
(

EI
EA

)
− t2

n

, (15)

Gs = Gtn =
GJ

2π
(

EI
EA

)√
8
(

EI
EA

)
− t2

n

. (16)

The viability of Equations (15) and (16), to be used to evaluate the Es and Gs moduli,
is based on the fact that the value of t2

n is small and does not significantly influence the
results. Nevertheless, to verify that this assumption is correct, the reduced surface Young’s,
E∗s , and shear, G∗s , moduli were calculated, using the following expressions, respectively:

E∗S =
EA

π

√
8
(

EI
EA

) , (17)

G∗S =
GJ

2π
(

EI
EA

)√
8
(

EI
EA

) . (18)

3. Results and Discussion
3.1. Rigidities of SWSiCNTs

The tensile, EA, bending, EI, and torsional, GJ, rigidities of non-chiral SWSiCNTs,
from Table 2, calculated with Equations (6)–(8), are presented in Figure 3a,c,e, respectively,
as a function of the NT diameter, Dn. As it was already established by the authors for the
cases of the chiral and non-chiral single-walled carbon nanotubes (SWCNTs) [26,27], the



Materials 2022, 15, 8153 7 of 19

single-walled boron nitride nanotubes (SWBNNTs) [25], and the phosphide NTs [28], for
non-chiral SWSiCNTs, the EA values can be represented by a linear function of the NT
diameter, Dn (see, Figure 3b), and the EI and GJ values can be described with the help of a
linear function of D3

n (see, Figure 3d,f, respectively).
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n
for non-chiral SWSiCNTs. The results refer to the nanotubes in Table 2.

As previously established by the authors for the SWCNTs [26,27], SWBNNTs [25] and
phosphide NTs [28], as well as in the current case of SWSiCNTs, the behaviour is character-
ized by the straight lines in Figure 3b,d,f and can be described by the following expressions:

EA = αSiCDn, (19)

EI = βSiCDn
3, (20)

GJ = γSiCDn
3, (21)

where αSiC = 711.59 nN/nm, βSiC = 88.84 nN/nm and γSiC = 83.36 nN/nm are the
fitting parameters.
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It is worth noting that the linear function presented by Equation (19) and the cubic
functions expressed by Equations (20) and (21) can be comprehended based on the quasi
linear relationship of the cross-sectional area, A (Equation (9)), and the cubic relationships
between the moment of inertia, I (Equation (10)), and the polar moment of inertia, J
(Equation (11)) with the nanotube diameter, respectively.

To investigate the accuracy of the aforementioned analytical expressions for the eval-
uation of the three rigidities, Figure 4 compares the EA, EI and GJ rigidities obtained
from FE analysis, using Equations (6)–(8), and those evaluated by Equations (19)–(21). As
can be seen, the average difference between the EA, EI and GJ values acquired from FE
analyses and those calculated analytically are 0.20%, 0.21% and 0.32% for EA, EI and GJ
rigidities, respectively.
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Substituting, in Equations (15)–(18), the tensile, EA, bending, EI, and torsional, GJ,
rigidities by the respective expressions (19)–(21), and knowing the parameters αSiC, βSiC
and γSiC, the SWSiCNTs diameter, Dn, and the wall thickness, tn, it is possible to calculate
the Young’s and shear moduli:

E =
αSiCDn

πtn

√
8
(
βSiC
αSiC

)
D2

n−t2
n

, (22)

G =
γSiCDn

2π
(
βSiC
αSiC

)
tn

√
8
(
βSiC
αSiC

)
D2

n−t2
n

, (23)

and the reduced surface Young’s and shear moduli, which are independent from Dn:

E∗S =
αSiC

π

√
8
(
βSiC
αSiC

) , (24)

G∗S =
γSiC

π

√
32
(
βSiC
αSiC

)3
. (25)

As a result, Equations (22)–(25) allow the assessment of the SWSiCNTs elastic moduli
without resorting to numerical simulation.

3.2. Young’s Modulus of SWSiCNTs

First, the results of the non-chiral SWSiCNTs Young’s modulus, calculated with
Equations (13) and (22), for three different values of the NT wall thickness, tn, are ex-
amined. In Figure 5, the evolutions of the Young’s modulus, E, with the NT diameter, Dn,
for the cases of tn = 0.34, 0.39, 0.45 nm, are shown. Whatever the tn value and the NT
symmetry group, whether zigzag or armchair, the Young’s modulus initially decreases
with Dn and then tends to stabilize for the NT diameters Dn > 1.65 nm. This decrease
is more pronounced when the NT wall thickness is greater (see, Figure 5). It should be
noted that Equation (22) allows the evaluation of the Young’s modulus of SWSiCNTs with
satisfactory accuracy, regardless of the chiral indices and diameter, and without the need to
resort to numerical simulation. The values for which the E of the SWSiCNTs converges,
progressively decrease with the increase in tn, and are E = 0.670, 0.585 and 0.508 TPa, for
tn = 0.34, 0.39, 0.45 nm, respectively.
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The results related to the effect of the nanotube wall thickness, tn, on the Young’s
modulus, E, presented in Figure 5, put forward analyses of the evolutions of E as a function
of tn in the range of 0.34 nm to 0.60 nm, as it is shown in Figure 6 for selected SWSiCNTs
from Table 2.
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It can be concluded that the Young’s modulus, E, decreases when the wall thickness,
tn, increases, and the decreasing rate of E slows down when the SWSiCNTs diameter, Dn,
decreases. These results can be useful to facilitate the comparison with the values of E
available in the literature and to make assumptions about a viable value of the SWSiCNT
wall thickness. This approach was used to compare the current Young’s modulus results
with those assessed by other authors.

Figure 7 compares the current Young’s modulus results with those available in the
literature for SiCNTs (Figure 7a) and with those of SWCNTs obtained by the authors in
previous studies (Figure 7b). To our knowledge, the Young’s modulus values of SiCNTs
were reported in two studies [13,16], both employing MD simulations with Tersoff potential.
Moon et al. [13], who obtained a single trend for (n, n) and (n, 0) SWSiCNTs, found that
the Young’s modulus increases for small NTs diameter, Dn, and then tends to reach an
approximately constant value. On the other hand, according to Zhou et al. [16], the value
of E for monocrystalline SiCNTs decreases insignificantly at the beginning of the evolution
trend and then becomes stable when the Dn increases. Using data from Figure 6, better
agreement was obtained with the results from the literature for the Young’s modulus, E,
when the value of the NT wall thickness, tn, is equal to 0.37 nm (see, Figure 7a). Thus,
Equation (22) gives E at approximately 0.620 TPa for NTs with diameters in the range of
1.350 nm to 4.220 nm, which is comparable to the value of E obtained by of Moon et al. [13]
and Zhou et al. [16]. The comparison shown in Figure 7b illustrates that the Young’s mod-
ulus of the SWSiCNTs is approximately 37% lower than that calculated for the SWCNTs.
This should be taken into account when SiCNTs are considered to replace CNTs in applica-
tions and devices, especially those where high mechanical resistance of the components is
required, such as NTs-reinforced ceramics operating in aggressive environments.

As there is no reported accurate value of tn for SWSiCNTs, surface Young’s modulus,
ES, results are predominantly available in the literature; these were also calculated in the
present study. First, the ES values for zigzag and armchair nanotubes were evaluated by
Equation (15) as a function of the NT wall thickness and analyzed for tn in the range of
0.1 nm to 0.6 nm (Figure 8a,b). For SWSiCNTs with diameters Dn . 1.00 nm, the surface
Young’s modulus, ES, increases with the increasing wall thickness, tn, with the ES value
nearly constant at the beginning of the trend. For the SWSiCNTs with larger diameters,
ES remains approximately constant (i.e., is nearly independent of the wall thickness) for
higher tn values. The larger the NT diameter, Dn, the larger the value of tn for which the
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surface Young’s modulus starts to increase and becomes dependent on the wall thickness
(see, Figure 8a,b). From Figure 8a,b it can be concluded that the mechanical behaviour of
SWSiCNTs with a wall thickness in the range tn & Dn/5 can be understood as that of solid
cylinders and not as hollow thin-walled tubes. This explains the Young’s modulus results
showed in Figure 5, i.e., the increase in the Young’s modulus, E, of the SWSiCNTs with
small diameters Dn < 1.35 becomes more pronounced for larger values of tn.
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The results presented in Figure 8 were used as the base of the method to assess
the surface Young’s modulus, ES, of the non-chiral SWSiCNTs. For the analyses, only
the horizontal portions of the evolutions ES= f (tn), plotted in Figure 8, were taken into
consideration. Throughout these horizontal portions, which approximately correspond to
the nanotube wall thickness range tn . Dn/5, ES remains nearly constant and independent
from tn. In this way, the average ES value, calculated based on those of the horizontal
portion of the evolution ES= f (tn), defines the surface Young’s modulus for each SWSiCNT
under study. Looking at Figure 8a,b, it should be noted that the methodology described
is less accurate when it is required to evaluate the surface Young’s modulus of NTs with
small diameters.
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Figure 8. Evolution of the surface Young’s modulus, ES, calculated with help of Equation (15), as a
function of the wall thickness, tn, for (a) zigzag and (b) armchair SWSiCNTs.

Figure 9a presents the evolution of the surface Young’s modulus, ES, obtained by
the methodology described above, and the reduced surface of the Young’s modulus, E∗S,
determined using the Equation (17), with the NT diameter, Dn, for zigzag and armchair
SWSiCNTs. The reduced surface of the Young’s modulus, E∗S, calculated by Equation (24),
is also shown for the purpose of comparison.
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modulus, E∗S, and (b) the ratio ES/E∗S as a function of the NT diameter, Dn, for zigzag and armchair
SWSiCNTs (Table 2).
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The surface Young’s modulus, ES, assessed by the methodology proposed, is approxi-
mately constant over the entire range of diameters of the non-chiral SWSiCNTs studied.
The reduced surface of the Young’s modulus, E∗S, computed by Equation (17), slightly
increases for small NTs diameters, Dn, and then the E∗S value is practically stable with
the increase in Dn. At the beginning of the trend, the values of ES are higher than those
calculated for E∗S, then with the increase in the NT diameter, both the surface and the
reduced surface of the Young’s moduli tend to possess nearly the same value, equal to
that assessed by Equation (24) (see, Figure 9a). The latter is independent of the nanotube
diameter and is defined only by the fitting parameters of Equations (19)–(21). It can be
concluded that Equation (24) allows for the obtaining of accurate values of the surface of
the Young’s modulus of the non-chiral SWSiCNTs with Dn > 1.65 nm, without resorting to
numerical simulation. The dissimilarity of the trends in the evolutions of the surface and
the reduced surface of the Young’s moduli found for small NT diameters can be explained
by the insufficient accuracy of the methodology proposed to evaluate ES for SWSiCNTs
with Dn . 1.00 nm. As Figure 9b shows, the mean difference between the SWSiCNTs
surface of the Young’s modulus, ES, and their reduced surface of the Young’s modulus,
E∗S, is approximately 1.15% for NTs with diameters in range 0.676 nm . Dn . 1.073
nm. After that, as the Dn increases, the mean difference between ES and E∗S decreases
and attains ≈ 0.31% for SWSiCNTs with Dn & 2.50 nm. Taking into account the results in
Figure 9b, it can be noted that Equation (17), for the reduced Young’s modulus, E∗S, permits
the calculation of the SWSiCNTs surface of the Young’s modulus, ES, with satisfactory
accuracy over the entire Dn range. The lower precision in the determination of ES values
for nanotubes with Dn . 1.073 nm originates from the limitation of the proposed model
for SWSiCNTs with small diameters. Thus, the surface of the Young’s modulus computed
by Equation (17) was used hereinafter for comparison with literature results.

Figure 10 compares the current surface of the Young’s modulus results with those
available in the literature. A considerable scattering of the ES values can be noticed in
Figure 10. As already reported for CNNs [11] and N-CNTs [29], significant discrepancies
in the elastic constants results occur due to different modelling approaches, potential
functions used, and calculation methods employed. The surface of the Young’s modulus
values reported so far are in the range 0.14 TPa·nm [17] . ES . 0.18 TPa·nm [14] which are
between 52% and 22%, respectively, lower than the ES value calculated by Equation (17)
in the present study. Regard the literature results from Figure 10, there is a very good
concordance between ES assessed by Baumeier et al. [12], using ab initio DFT calculations,
and Jiang and Guo [20], who employed an analytical solution, based on the “stick-and-
spring” model under NCM/MSM approach, for this end. On the other hand, the ES
values of Baumeier et al. [12] and Jiang and Guo [20] are at approximately 7% lower
than the surface of the Young’s modulus of Setoodeh et al. [14], calculated using MD
simulation. In turn, the value of ES evaluated in the MD simulation work of Le [17] is
approximately 11% lower than that of Baumeier et al. [12] and Jiang and Guo [20]. Despite
the studies of Genoese et al. [19] and Jiang and Guo [20] sharing the modelling approach,
Genoese et al. [19] reported a surface of the Young’s modulus approximately 7% lower
than that of Jiang and Guo [20], most likely due to the different force field constants and
calculation methods used.

The discrepancy of the ES results presented in Figure 10 is due to the different mod-
elling and calculation approaches used to evaluate the SWSiCNTs surface of the Young’s
modulus. In order to facilitate comparative analyses, the results from Figure 10 are resumed
in Table 3.
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Table 3. Comparison of the surface Young’s modulus results obtained in the present study with those
available in the literature.

Reference Method NT Type ES, TPa·nm 1

Baumeier et al. [12] ab initio
(n, n) 0.167
(n, 0) 0.162

Setoodeh et al. [14] MD: Tersoff potential (n, n) 0.182
(n, 0) 0.180

Le [17] MD: harmonic force fields
(n, n) 0.148
(n, 0) 0.145

Genoese et al. [19] NCM/MSM + CM: “stick-and-spring”
+ thin shell models

(n, n) 0.152
(n, 0) 0.149

Jiang and Guo [20] NCM/MSM: “stick-and-spring”
model + analytical

(n, n) 0.169
(n, 0) 0.168

Present study NCM/MSM: beams
(n, n)

0.227(n, 0)
1 Converged average value of ES is considered.

3.3. Shear Modulus of SWSiCNTs

In this section, the results of the shear modulus, G, and the surface shear modulus, GS,
of the non-chiral SWSiCNTs are analyzed within the same type of framework established
for the Young’s and surface Young’s moduli in Section 3.2. To the best of our knowledge,
studies to evaluate the SiCNTs shear modulus are uncommon and so far, GS values were
reported only by Genoese et al. [19].

Figure 11 presents the evolution of the shear modulus, G, computed with help of
Equations (14) and (23) as a function the NT diameter, Dn, for three different values of wall
thickness, tn = 0.34, 0.39, 0.45 nm.

The shear modulus, G, of the non-chiral SWSiCNTs increases for NT diameters,
Dn . 1.1 nm, and for high Dn, G tends to attain a stable value, equal to that calculated
by Equation (23). The converged average value of the shear modulus decreases when
the wall thickness increases: the G value is 0.315, 0.275 and 0.239 TPa for tn = 0.34, 0.39,
0.45 nm, respectively. The G values for (n, n) armchair and (n, 0) zigzag are almost equal
for Dn > 1.6 nm, but for NT diameters in the range 0.67 . Dn . 1.36 nm, the trends for the
shear modulus evolution are clearly influenced by the chiral angle, θ, and differ between
(n, 0) and (n, n) nanotubes. As can be seen in Figure 11, Equation (23) does not allow the
calculation of accurate values of G of the (n, n) armchair SWSiCNTs with the diameters
Dn< 1.6 nm.
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Similar to the case of the surface of the Young’s modulus, the non-chiral SWSiCNTs
surface of the shear modulus, GS, calculated by Equation (16) was plotted as a function of
the NT wall thickness, tn, in the range of 0.1 nm to 0.6 nm, as shown in Figure 11a,b.

The GS values calculated by Equation (16) are almost independent from the wall-
thickness tn . Dn/5, and with increasing of tn, the surface shear modulus increases. This
trend in the evolution of GS as a function of the wall thickness is much less pronounced
for the SWSiCNTs with small diameters Dn . 1.00 nm (see, Figure 12a,b). Thus, it can be
concluded that the mechanical behaviour of the NTs deviates from that of the hollow tube
when the value of tn is equal to one-fifth of the NT diameter. Similar to the case of the surface
of the Young’s modulus, the methodology to assess the surface shear modulus consists of
the calculation of the average GS value from those corresponding to the horizontal portions
of the evolutions GS= f (tn) as shown in Figure 11a,b.

Figure 13a shows the evolutions of the surface of the shear modulus, GS, evaluated
with help of the methodology proposed and the reduced shear modulus, G∗S, calculated by
Equation (18), with the nanotube diameter, Dn. The evolutions of both surface and reduced
surface of the shear moduli follow different trends when comparing the (n, 0) zigzag with
the (n, n) armchair NTs.
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Figure 13. Evolutions of (a) the surface shear modulus, GS, and the reduced surface shear´s modulus,
G∗S, and (b) the ratio GS/G∗S as a function of the NT diameter, Dn, for zigzag and armchair SWSiCNTs
(Table 2).

The GS and G∗S values of the (n, 0) SWSiCNTs decrease for NT diameters Dn . 1.65 nm
and both moduli stabilize with the increasing Dn and converge to the value of G∗S, calculated
by Equation (25), which is independent to the NT diameter. For (n, n) SWSiCNTs, GS and
G∗S increase for Dn . 1.65 nm and with of the increase in the NT diameter, the GS and G∗S
values become nearly constant and, as in the case of (n, 0) NTs, converge to the reduced
surface of the shear modulus, G∗S, assessed by Equation (25). Thus, it can be concluded that
Equation (25) permits the calculation of the surface of the shear modulus of SWSiCNTs with
diameters Dn > 1.65 nm, without resourcing to numerical simulation. It is worth noting that
the values of GS and G∗S for (n, 0) NTs are greater than those for (n, n) NTs with diameters
Dn . 2.00 nm; the greatest difference occurs for small diameters (Dn . 1.00 nm). These
results are in agreement with the GS evolutions as a function of the NT wall thickness,
shown in Figure 12a,b.

As can be seen from Figure 13b, the largest mean difference between GS evaluated
by the methodology proposed and G∗S calculated by Equation (18), of 1.64%, occurs for
the SWSiNTs with small diameters Dn < 1.00 nm. The value of the ratio GS/G∗S decreases
with increasing Dn, and becomes equal to 0.13% for diameters Dn & 2.028 nm. As a result,
Equation (18), for the reduced surface of the shear modulus, G∗S, can be reliably used to
calculate the surface of the shear modulus, GS, giving accurate GS values, with the exception
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of the NTs with the diameters under 1.00 nm, for which the precision of Equation (18) is
smaller but still acceptable.

Figure 14 compares the current shear modulus results, obtained by Equation (18), and
those available in the literature for SWSiCNTs [19] and SWCNTs [25].
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NTs with those reported in the literature for SWSiCNTs [19] and SWCNTs [25]. In the case of the
SWCNTs, GS was calculated using the shear modulus, G, results and assuming tn = 0.34 nm.

The average value to which the surface of the shear modulus of the non-chiral SWSiC-
NTs converges is approximately 36% lower than that evaluated for the SWCNTs. This
should be taken into account in the design and construction of NTs-based devices and
systems, where SiCNTs are considered a replacement for CNTs. Regarding the GS results
available in literature for the SWSiCNTs, the only possible comparison can be made with
those of Genoese et al. [19]. Reasonable agreement is observed when the trends of the
evolutions of the surface of the shear modulus for (n, 0) and (n, n) nanotubes are considered.
Similar to the present study, Genoese et al. [19] reported the values of GS of (n, 0) zigzag NTs
higher than those of (n, n) armchair NTs for diameters Dn < 1.00 nm; with the increasing
Dn, the surface shear modulus converges to a unique value in both cases (see, Figure 14).
However, this converged average value is approximately 40% lower than the GS currently
calculated. Despite the study of Genoese et al. [19], which used the NCM/MSM modelling
approach with a “stick-and-spring” model and nearly the same force field constants, the
methods for assessing GS differ, as Genoese et al. [19] assumed a continuum thin shell
model to calculate the surface of the shear modulus.

4. Conclusions

The Young’s and shear moduli of non-chiral SWSiCNTs were assessed using numerical
simulation, based on the NCM/MSM approach. The main achievements of the present
study are presented in the following paragraphs.

Equations establishing the relationship between each of the three rigidities—tensile,
bending and torsional—and the NT diameter were obtained. The fitting parameters of
Equations (19)–(21), which permit the assessment of the rigidities of the SiC nanotubes—
regardless of the symmetry group: zigzag or armchair—were calculated. In this way, the
previously established method for calculating the three rigidities without resourcing to
numerical simulation, is extended to silicon carbide NTs.

The evolutions of the Young’s modulus with the nanotube wall thickness were used
to make assumptions regarding the realistic value of tn, and to enable comparison with the
results available in the literature.
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The accuracy of Equations (17) and (18), for the evaluation of the surface of the Young’s
and shear moduli, respectively, was demonstrated. In our view, these equations are suitable
to calculate the surface of the Young’s and shear moduli of the N-CNTs, for which there is
no appropriate value of the NT wall thickness reported in the literature.

The results obtained contribute considerably to a benchmark in the evaluation of the
elastic constants of the silicon carbide nanotubes by theoretical methods.
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