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Abstract: Prestressed concrete sleepers are an important track component that is widely used in
railway ballast track. Prestressed concrete sleepers have high strength, strong stability, and good
durability; thus, their operation and use in railways are beneficial. However, in different countries
and regions, certain damage to sleepers typically appears. Existing research on concrete sleepers
focuses primarily on the structural design method, the application of new materials, theoretical
analysis, and bearing strength test research, while ignoring sleeper damage. There are a few sleeper
damage studies, but they look at only one type of damage; thus, there is no comprehensive study
of prestressed concrete sleeper damage. The damage forms of prestressed concrete sleeper damage
are thus summarized in this study, and the theory of the causes of prestressed concrete sleepers is
analyzed based on the limit state method for the first time. The findings indicate that sleeper structure
design is the primary cause of its operation and use status, and that special measures should be
considered based on sleeper use conditions. In addition to meeting design requirements, materials,
curing systems, product inspection, and other factors must be considered during manufacturing to
improve the sleepers’ long-term performance. Keeping the track in good condition, including but
not limited to the state of fasteners, ballast bed, and track geometry is also an important aspect of
preventing sleeper damage. The outcomes of this study provide better insights into the influences of
damage to railway prestressed concrete sleepers and can be used to improve track maintenance and
inspection criteria.

Keywords: concrete sleeper; damage form; damage mechanisms; longitudinal crack; transversal
crack; limit state method

1. Introduction

Railways are one of the most important modes of transportation for both passengers
and freight worldwide. Railway traffic is increasing due to the widespread use of high-
speed lines, and new railway lines are being built in many countries. Parallel to these
developments, the production and the use of railway sleepers are increasing. Railway
sleepers are key components in railway tracks that carry the loads transferred from vehicles
to the rails, support the rails, protect the gauge, and withstand horizontal and vertical
rail movement [1–4]. Sleepers can be made from a variety of materials, including wood,
concrete, steel, and composites [5–9].

The use of prestressed concrete sleepers has grown in recent years due to their high
quality. Furthermore, prestressed concrete sleepers are more environmentally friendly than
creosote-treated wooden sleepers [5,8,10]. Currently, approximately 500 million prestressed
concrete sleepers are required every year in railway networks all over the world [11].

Most prestressed concrete sleepers are in good operating condition, but some are
damaged in different ways [12,13]. Many studies have been performed on prestressed
concrete sleepers, primarily focusing on dynamic load [14,15], bearing capacity [10,16],
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and structural design [17,18]. However, systematic research on the damage form and
mechanism of railway prestressed concrete sleepers is currently limited.

Berntsson and Chandra investigated calcium chloride damage in concrete sleepers
and concluded that calcium chloride is harmful to concrete [19]. Pawluk et al. researched
the durability of prestressed concrete sleepers [20]. Ravindrarajah and White investigated
the effect of non-delayed heat application on prestressed concrete sleeper strength [21].
Shojaei et al. conducted a study on the application of alkali-activated slag (AAS) concrete
in the production of prestressed reinforced concrete sleepers [22]. Rezaie et al. performed
a study on the factors affecting longitudinal crack propagation in prestressed concrete
sleepers [23]. Zeman et al. investigated the mechanism of rail-seat abrasion of prestressed
concrete sleepers in North America [24]. Zakeri et al. study on the variation of loading
pattern of concrete sleeper due to ballast sandy contamination in sandy desert areas and the
failures of railway concrete sleepers during service life [25,26]. These studies only analyze
a single type of damage in prestressed concrete sleepers, but the damage mechanism and
analysis methods were not investigated. to date. Thus, the various types of damage in
prestressed concrete sleeper damage are summarized in detail in this study. In addition, for
the first time, the theory of the causes of prestressed concrete sleepers is analyzed using
the limit state method. The findings of this study provide a clearer picture of the effects
of damage to railway prestressed concrete sleepers and improve track maintenance and
inspection criteria.

2. Typical Form and Influence of Prestressed Concrete Sleeper Damage
2.1. Transverse Cracks

Transverse cracks are perpendicular to the long axis of the concrete sleeper. Because
of the change in the ballasted bed support state and the randomness of the trainload, the
concrete sleeper may experience a load-bending moment that exceeds its strength during
service, resulting in transverse cracks. According to the appearance position, the transverse
crack of the concrete sleeper can be classified into two types: a transverse crack of the rail
seat section and a transverse crack of the central section.

The transverse crack of the rail seat section can be divided into the lower part crack
and upper part crack, as shown in Figure 1; these cracks are caused by the positive and
negative bending moments of the lower section of the sleeper exceeding its bearing strength,
respectively. Typically, the width of the transverse crack is narrow, but if the load bending
moment is too large, a crack will develop, and the sleeper will fail.
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Figure 1. Transverse crack in a rail seat section: (a) lower part crack in the rail seat section; (b) upper
part crack in the rail seat section.

A transverse crack of the central section can be divided into a lower part crack and
upper part crack, as shown in Figure 2. These cracks are caused by the positive and
negative bending moments of the lower section of the sleeper exceeding its bearing strength,
respectively. Typically, cracks in the upper part of the central section of the concrete sleeper
due to the negative moment being too large are more common.
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2.2. Longitudinal Crack

Cracks along the long axis of the sleeper are collectively referred to as longitudinal
cracks. For the prestressed concrete sleeper, stress was applied to the concrete in the design,
manufacturing, construction and maintenance links of improper treatment, which may
lead to the occurrence and development of longitudinal cracks. A longitudinal crack in a
sleeper is generally categorized as an end surface crack, a longitudinal crack on the upper
surface, a horizontal longitudinal crack on the side, a longitudinal crack at the embedded
parts and a longitudinal crack through the sleeper (as shown in Figure 3).
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Figure 3. Longitudinal crack: (a) end surface crack; (b) longitudinal cracks on the upper surface of
the end part (c) longitudinal crack at the embedded parts; (d) horizontal and longitudinal crack on
the side; (e) the through longitudinal crack of the sleeper.

Longitudinal cracks in prestressed concrete sleepers have long been a source of concern.
After the longitudinal crack appears, the sleeper’s strength and durability decrease, as does
its ability to maintain track geometry; thus, longitudinal cracks must be prioritize during
maintenance work.

2.3. Inclined Crack

Inclined cracks on the sleeper’s surface become oblique cracks and typically appear at the
bottom corner of the retaining shoulder or on the surface of the sleeper, as shown in Figure 4.
The former is generally caused by the excessive shear load of the sleeper, while the latter may
be caused by improper tamping and repair operations in the maintenance process.

Materials 2022, 15, x FOR PEER REVIEW 4 of 16 
 

 

  
(a) (b) 

Figure 4. Inclined crack: (a) inclined crack at the base corner of the sleeper shoulder; (b) inclined 

crack in the middle of the sleeper. 

2.4. Map-Like Crack 

An irregular mesh of cracks on the surface of a sleeper is also called sleeper map-like 

cracks, as shown in Figure 5. Typically, a sleeper map-like crack is related to the materials, 

the manufacturing process and the environmental conditions used of the concrete sleeper. 

When a map-like crack appears in the early stage of sleeper curing process, the crack 

width is small and generally appears on the sleeper’s surface. With the extension of the 

width and range of the crack, it will continue to develop and eventually lead to the 

sleeper’s life being markedly reduced. 

 

Figure 5. Map-like crack of a concrete sleeper. 

2.5. Rail Seat Abrasion 

Abrasion refers to the use of a sleeper during interaction with the connected rail parts 

for a long time, resulting in damage to the connection site. The abrasion form of the sleeper 

is primarily the wear of the rail seat area, as shown in Figure 6, which is primarily caused 

by the long-term impact friction between the under-rail pad and the bearing surface. The 

geometry of the track is altered and the bearing capacity of the sleeper is weakened by the 

abrasion of the rail seat region, which worsens the state of the railway track. 

 

Figure 6. Rail seat abrasion of the concrete sleeper. 

2.6. Break Damage and Block Dropped 

Break damage and drop blocks generally appear in the shoulder and the upper sur-

face of the concrete sleeper, as shown in Figure 7. Typically, breaks and drops are caused 

by external loads that are too large, such as in the process of transportation and unloading 

and the process of trackbed tamping. The accidental improper external loads will also lead 

to the sleeper knock block in the small radius curve section because the large lateral load 

of the train will also lead to the phenomenon of shoulder damage. The stress condition of 

the sleeper, which is vulnerable to stress concentration and other damage, will get worse 

with loss and block drop, and the stability of the track construction will also suffer. 

  

Figure 4. Inclined crack: (a) inclined crack at the base corner of the sleeper shoulder; (b) inclined
crack in the middle of the sleeper.

2.4. Map-Like Crack

An irregular mesh of cracks on the surface of a sleeper is also called sleeper map-like
cracks, as shown in Figure 5. Typically, a sleeper map-like crack is related to the materials,
the manufacturing process and the environmental conditions used of the concrete sleeper.
When a map-like crack appears in the early stage of sleeper curing process, the crack width
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is small and generally appears on the sleeper’s surface. With the extension of the width
and range of the crack, it will continue to develop and eventually lead to the sleeper’s life
being markedly reduced.
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2.5. Rail Seat Abrasion

Abrasion refers to the use of a sleeper during interaction with the connected rail parts
for a long time, resulting in damage to the connection site. The abrasion form of the sleeper
is primarily the wear of the rail seat area, as shown in Figure 6, which is primarily caused
by the long-term impact friction between the under-rail pad and the bearing surface. The
geometry of the track is altered and the bearing capacity of the sleeper is weakened by the
abrasion of the rail seat region, which worsens the state of the railway track.
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2.6. Break Damage and Block Dropped

Break damage and drop blocks generally appear in the shoulder and the upper surface
of the concrete sleeper, as shown in Figure 7. Typically, breaks and drops are caused by
external loads that are too large, such as in the process of transportation and unloading
and the process of trackbed tamping. The accidental improper external loads will also lead
to the sleeper knock block in the small radius curve section because the large lateral load of
the train will also lead to the phenomenon of shoulder damage. The stress condition of the
sleeper, which is vulnerable to stress concentration and other damage, will get worse with
loss and block drop, and the stability of the track construction will also suffer.
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Figure 7. Break damage and block dropped: (a) block dropped off the shoulder; (b) break damage in
the middle part of the sleeper.

2.7. Comprehensive Injury

Sleeper damage to a railroad track often consists of two or more types of damage
occurring at the same time rather than just one. For instance, the simultaneous appearance of
a transverse fracture and collapse, a longitudinal crack and a surface crack, and a shoulder
oblique crack and knock are frequent. Different types of harm will result from the sources of
these simultaneous incidences of injury, or the “inducing variables.” On the other hand, one
kind of damage might potentially cause another kind of harm to occur. The bearing capacity
of the sleeper and the stability of the track structure are more severely affected when various
types of damage take place at the same time. It is important to identify the precise causes of
damage during maintenance and to suggest early preventive solutions.
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3. Analysis of the Damage Mechanism of Prestressed Concrete Sleepers
3.1. Analysis Method

The essence of the damage of a prestressed concrete sleeper is that the external load effect
exceeds its resistance; thus, damage analysis can be evaluated using the limit state method.

The limit state method is commonly used in the structure design. This method uses
failure probability or a reliable index to measure structure reliability and to establish a
relationship between the structure limit equation of state and the probability theory of
structural reliability [27]. When designed by the limit state method, the structural resistance
uses the strength R of the material multiplied by a load factor; this value shall not be any less
than the total load effect of each load effect S of the structure multiplied by the respective
load factor S, as shown in Equation (1):

Σ(γ · S) ≤ ΦR (1)

The damage phenomenon of prestressed concrete sleepers is contrary to the working
condition considered in the design process due to the external load effect exceeding its
resistance; however, the concept of its analysis is the same. The probability distribution
curve of the total load effect, structural resistance and sleeper damage failure is shown
in Figure 8. Therefore, the damage mechanism of prestressed concrete sleepers can be
analyzed from the total load effect, internal resistance and comprehensive factors.
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3.2. External Load Effect
3.2.1. Design Load Effect

When designing a prestressed concrete sleeper, the load moment produced by the
train dynamic load in the sleeper is primarily considered. The designed load moment
primarily includes the lower section of the sleeper and the positive load bending moment
of the section in the sleeper.

Because the load bending moment of the sleeper is directly related to the dynamic
load of the train and the support state of the sleeper itself, if the above factors exceed the
design range, an excessive load bending moment will lead to sleeper damage.

Queensland University of Technology in Australia tested the impact force of two
separate sites, Braeside and Raglan [10,17]. At these two sites, the maximum static axle
load of the operational vehicles is 28 tons. The field measurement data in Braeside is shown
in Figure 9. The trainload of the sleeper has a wide fluctuation range.
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Figure 9. Typical impact force statistical data on the track at Braeside. Note: Impact factor (IF) =
1+ (impact force)/(static wheel load).

The bottom compression stress of the sleeper in various bed states is varied according
to the measured findings of the compression stress at the bottom of the sleeper in those
beds [26,28]; thus, the load-bending moment of the sleeper will differ appropriately., as
shown in Figure 10.
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3.2.2. Environmental Effect

Environmental utility primarily refers to the external environmental effects of moisture,
temperature, chemical erosion, and freezing and thawing during the operation of the
concrete sleeper. The AAR and DEF that often occur in concrete sleepers are typical
damages caused by environmental effects.

Alkali-Aggregate Reaction

The alkaline-aggregate reaction (AAR) refers to the concrete hole solution by cement or
alkali admixture, mineral admixture, and the environment released Na+, K+, OH− and the
aggregate of harmful active minerals in the expansion reaction, resulting in concrete expansion
and cracking phenomenon [29]. Figure 11 shows the concrete sleeper’s AAR damage.
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There are three conditions for AAR occurrence:

• The aggregate in the concrete has alkali activity;
• There is a certain amount of soluble alkali in concrete;
• Sufficient water or wet environmental conditions are present.

The alkali-aggregate reaction can primarily be divided into two types of reaction types:
alkali-silicic acid reaction (ASR) and alkali-carbonate reaction (ACR).

ASR is the chemical reaction between the alkali in concrete and the active SiO2 in the
aggregate to form the alkali silicate gel. The gel volume is greater than the SiO2 volume before
the reaction (as shown in Equation (2)). The gel water absorption causes concrete expansion
and cracking, and the internal reaction mechanism is shown as follows. The ASR generally
has a large swelling area that accounts for cracking within 10–20 years after the construction
of the concrete structure and can further develop damage to the entire structure:

Na+(K+) + SiO2 + OH− → Na(K) - Si − Hgel (2)

ACR is the reaction of the alkali in the concrete with the dolomite crystals contained
in the active carbonate aggregate, producing concrete expansion and cracking, as shown in
Equations (2) and (3). Studies have shown that LiOH can be used to distinguish ASR from
ACR. The ACR reaction development speed is fast, and the general concrete project is built
in 2~3 years of expansion and cracking, and cannot be repaired and reinforced:

CaMg(CO3)2 + 2ROH = Mg(OH)2 + CaCO3 + R2CO3 (3)

R2CO3 + Ca(OH)2 = 2ROH + CaCO3 (4)
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Delayed Ettringite Formation

The Delayed Ettringite Formation (DEF) is a form of sulfate erosion in cement concrete
with sulfate ions from the inside of cement concrete. Therefore, the definition of delayed
alum rock can be considered as follows: in hardened cement concrete, not from the process
of sulfate outside the cement concrete, the harm caused by delayed alum rock often appears
only months or years later. The delay of slurry expansion caused by ettringite formation will
cause cracks in the interface between the cement slurry and aggregate-cement slurry [30],
which leads to cracks in the concrete sleeper (as shown in Figure 12).
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Results show that the primary characteristics of delayed calcium generation are as follows:

• Typically, delaying the formation of ettringite occurs when the cement concrete experi-
ences a temperature of 70 ◦C and causes serious expansion cracking in an environment
of high relative humidity. Between 70 ◦C and 100 ◦C, the higher the temperature is,
the more severely inflated;

• The expansion and development of cement concrete in wet air are slower than those
in water, but its macrocracks are larger;

• The expansion caused by delayed ettringite begins from the outside of the cement
concrete and gradually expands to the inside;

• The expansion caused by delayed calcium ettringite is affected by the nature and size
of the aggregate used;

• When the concrete structure has been damaged, delayed calcium damage is typically
accompanied by an AAR.

There are still some disputes about the mechanism of DEF caused by concrete structure
damage, which primarily includes the following aspects. First, a real concrete structure
engineering environment is diverse, and the causes of concrete damage are complex. For
example, AAR consumes the alkali in the liquid phase, which causes the solubility of calcium
in the liquid phase to decline and precipitate out. Therefore, when concrete experiences
cracking failure, it is often considered the joint action of AAR and DEF, and the reaction
of AAR occurs before DEF. In addition, other factors can also affect DEF, which cannot
show whether the primary cause of concrete destruction is DEF. Second, calcium ettringite
is widely used as an indispensable component of concrete shrinkage compensation and
cement early strong and fast hard, even if the discovery of calcium ettringite cannot prove its
real impact on the performance of concrete.. Third, laboratory small size test blocks can be
observed in the water after several days of the new formation of ettringite, marginally larger
mortar test blocks can see the delayed formation of ettringite, and the real engineering of
large size concrete to several years to see this phenomenon. Therefore, the action mechanism
and destruction process must be investigated in more detail.
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3.2.3. Accidental Load Effect

The load effect under accidental conditions must be taken into account in the sleeper
design in addition to bearing the operating load of the design. In rare circumstances,
these unintended load effects can harm the sleeper. When a train is derailed [31], the
sleeper receives a very large impact load and may become damaged or even fail, as
shown in Figure 13. Excessive bolt torque on the fasteners can also cause damage during
sleeper laying and maintenance [32] (as shown in Figure 14). During sleeper laying and
maintenance, the sleeper can also be knocked and damaged, as shown in Figure 15.
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For sleeper damage with an accidental load effect, the proportion of damaged sleepers
is not large, and the characteristics are important. Combined with the situation on the site,
it is easier to judge the cause of the damage.
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3.2.4. Poor Track Structure Status

Sleepers are a track component in the ballast track structure when the track structure is
in poor condition (e.g., the line appears empty hanging phenomenon, trackbed hardening,
trackbed frost boiling) will also lead to sleeper damage or even failure, as shown in
Figures 16 and 17.
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Figure 17. Track bed frost boiling damages the concrete sleeper.

Sleeper damage and poor railway conditions have an interaction. Inadequate railroad
conditions can cause sleeper damage, and in the other direction, poor track conditions can
be made worse by sleeper damage [33]. Examples of this include the mutual impact and
aggravation between the track’s geometric condition and the wear surface of the sleeper,
as shown in Figure 18. Therefore, sections with poor track conditions should be rapidly
repaired during track structure operation to prevent further degradation of the track state
and escalation of track component damage.

3.3. Structural Self-Resistance
3.3.1. Structural Design Strength

When prestressed concrete sleepers are used in a track design, if the strength is
insufficient, damage will occur during its service life. For one type of sleeper, the same
damage form usually occurs in different lines, different manufacturers and under similar
operating conditions. The design strength of the sleeper structure is insufficient; typically,
the reasons for this phenomenon are a small concrete sleeper section, an unreasonable
prestressed steel wire configuration, insufficient configuration or no stirrups.

Typical sleeper damage caused by insufficient structural design strength is a transverse
crack at the rail seat section, as shown in Figure 19, where a transverse crack in the sleeper
(Figure 20) and a horizontal crack on the side of the sleeper occur (Figure 21).
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3.3.2. Manufacturing Quality

In addition to the structural design leading to the insufficient structural resistance of
prestressed concrete sleepers, the production quality also has an important impact on the
structural resistance of sleepers, and the general production quality of sleeper damage will
appear in different external load superposition forms. In the production and manufacturing
process, the resistance of sleepers is primarily affected by the material quality and curing process.

(1) Raw material quality

Under the action of the sleeper mentioned above, the AAR will lead to damage, which
is closely related to the raw material quality of the sleeper. An important indicator of
high-quality materials is not to produce or cause AAR damage to concrete. Steps to prevent
AAR are typically required to eliminate the reaction:

• Select the inactive aggregate;
• Control the alkali content of cement (Na2O+0.658K2O), which should not exceed 0.6%;
• Appropriate incorporation of mineral fine admixture reduces the amount of cement to reduce

the temperature difference stress in the concrete caused by the heat of cement hydration.

(2) Curing process

A prestressed concrete sleeper is typically made using steam curing, as shown in
Figure 22. Steam curing is a type of hardening process that accelerates the development of
concrete strength. During hardening, the hydration reaction of cement produces a large
amount of hydration heat. Sleeper curing in the early stage is the most important period
of health preservation. If the temperature in the curing pool is high, the temperature in
the pool is higher than that inside the sleeper, and thermal hydration accumulation inside
the pool is not easy to distribute. The gas and moisture inside the concrete mixture are
heated and expanded. At this time, the concrete strength is low, and there is no resistance.
However, internal stress causes concrete deformation and can even produce microfine
cracks. This situation will lead to lower sleeper structural resistance. Thus, damage during
operation affects a sleeper’s service life. A reasonable sleeper curing system includes the
following points:

• Determine the relationship between the temperature of the sleeper concrete and the
surrounding air temperature throughout the process of the sleeper life cycle, and avoid
a large temperature difference between the temperature of the sleeper concrete and
the surrounding air temperature;

• The temperature change of the sleeper core should not exceed 15 ◦C/h, and the cooling
rate should not exceed 15 ◦C/h;

• The difference between the temperature of the sleeper surface and the outside envi-
ronment when leaving the curing pool should not exceed 15 ◦C.
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3.4. Multiple Factors

The external load effect and the structure’s resistance are used to analyze the primary
causes of prestressed concrete sleeper damage. However, the causes of sleeper damage
during operation are frequently caused by multiple factors rather than a single factor. For
example, the quality control of sleeper manufacturing lax alkali activity of materials exceeds
the standard. This sleeper is used in a humid environment and certain acidic medium,
and it is likely to exhibit sleeper surface cracking damage caused by AAR, which is the
comprehensive factor of manufacturing quality and environmental effect.

In addition, the comprehensive sleeper damage mentioned above can also be caused
by the comprehensive superposition of multiple factors.

4. Conclusions

This paper summarizes the damage forms of concrete sleepers and analyzes the
damage mechanism of prestressed concrete sleepers from the three aspects of the external
load effect, structural self-resistance and comprehensive factors. Based on the results of
this paper, prestressed concrete sleepers can prevent damage and improve the quality level
from the following aspects:

(1) Structural design guarantee of prestressed concrete sleeper

Sleeper structure design is the fundamental cause of its operation and use status. An
excellent structural design can avoid damage to a large extent and should consider the
appearance size, reinforcement design, manufacturing, operation, maintenance systems
and environmental conditions of the sleeper. Therefore, the prevention of concrete sleeper
damage starts with improving the design quality of the sleeper structure.

(2) Manufacturing quality control

In addition to structural design, the production quality is also an important factor to
prevent concrete sleeper damage. During manufacturing, in addition to meeting design
requirements, materials, curing systems, product inspection and other aspects must be
considered to improve the long-term sleeper performance.

(3) Use of environmental condition adaptability

Temperature, humidity and chemical erosion in the use environment are also important
factors that can lead to sleeper damage. Therefore, in the sleeper design process, special
measures should be considered based on these use conditions. For example, when used in
cold areas, sleeper design must consider the ability to resist freezing and thawing; in acid
rain or sea regions, sleeper design must consider resistance to chemicals.

(4) Track status improvement

A concrete sleeper is a portion of the railway track, and the deterioration of the overall
state of the track will inevitably lead to a sleeper bearing a greater load effect, which can
lead to damage. Therefore, an important aspect of preventing sleeper damage is to keep
the track in good condition, including but not limited to the state of fasteners, the ballast
bed and track geometry.
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