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Abstract: In this paper, thin layers of NiTi shape memory alloy (SMA) triply periodic minimal surface
lattices (TPMS) are fabricated using laser powder bed fusion (LPBF), considering different laser
scanning strategies and relative densities. The obtained architected samples are studied using experi-
mental methods to characterize their microstructural features, including the formation of cracks and
balling imperfections. It is observed that balling is not only affected by the parameters of the fabrica-
tion process but also by structural characteristics, including the effective densities of the fabricated
samples. In particular, it is reported here that higher densities of the TPMS geometries considered
are generally associated with increased dimensions of balling imperfections. Moreover, scanning
strategies at 45◦ angle with respect to the principal axes of the samples resulted in increased balling.

Keywords: shape memory alloys; additive manufacturing; triply periodic minimal surfaces; architected
materials; laser powder bed fusion

1. Introduction

NiTi shape memory alloys belong to the class of smart materials with a wide range
of applications in the field of biomedical [1], aerospace [2], robotics [3], and automotive
engineering [4]. Among other SMAs, NiTi remains the most widely used, owing to its high
actuation energy density [5], superior functional properties, high ductility, low corrosion
rate [6], biocompatibility [7], and high damping ratio [8]. Additive manufacturing (AM) has
recently gained popularity in relation to the fabrication of NiTi intricate parts [9–12] because
it naturally overcomes long-standing issues with conventional NiTi manufacturing tech-
niques, including poor weldability [13] and machinability [14]. In comparison with other
AM techniques, such as direct energy deposition [15], wire and arc additive manufactur-
ing [16], laser powder bed fusion (LPBF) can provide better dimensional accuracy, generally
denser parts, and the ability to fabricate more complex geometries with better surface fin-
ish [15]. Consequently, LPBF is one of the most utilized AM techniques for fabricating
architected parts made of NiTi [17–19] as well as many other materials [20–22]. Archi-
tected porous NiTi constructs are attractive because they achieve low specific weight [23]
combined with high specific stiffness and strength [24–26]. Moreover, porous/cellular
structures may well be engineered for good fluid permeability [27,28], enhanced heat dissi-
pation [29], and improved electrical properties [30]. They may further be used for artificial
tissue engineering [31] and impact energy absorption [32]. Among porous structures, those
featuring triply periodic minimal surface (TPMS) architectures have been gaining increased
attention in parallel with the democratization of AM solutions [33–35]. These periodic
three-dimensional architectures feature zero mean curvature and allow the segregation of
space into two or more intertwined but non-connecting sub-domains. Moreover, TPMS
structures have a large surface-to-volume ratio and are free of self-intersections.
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In the literature, very few references [36–39] have addressed the fabrication of NiTi
TPMS structures. In these papers, the properties of the printed TPMS structures are found
to be significantly affected by fabrication process parameters, such as laser power, scan
speed, energy density, layer thickness, hatch spacing, and scan strategy. The influence of
scan strategy on the outcome of LPBF fabrication has received relatively little attention
compared to parameters, such as laser power, scanning speed, hatch spacing, and layer
thickness, which influence the rate at which energy is supplied to the powder bed. In this
respect, Amirjan et al. [40] reported that rotating the scan vector between successive layers
was more advantageous to obtain uniform temperature distribution during AM. Such
rotation was found to gradually alter the direction of heat flux in-between layers, resulting
in a more uniform temperature distribution. Therefore, the scan strategy was proposed
to have the potential for printing isotropic materials with better mechanical properties. In
contrast, the island scanning strategy, fractal scanning strategy, and spiral/helix scanning
strategy usually involve shorter scan vectors. It was observed [41–43] that shorter scan
vector lengths may help reduce residual stress and, thereby, improve mechanical properties.
Ali et al. [44] highlighted an improvement in superelasticity in tension in SMAs due to
alternating x/y axes scanning strategies. It was further concluded that scanning strategies
played a significant role in microstructural evolution during solidification and thereby
affecting mechanical as well as functional properties in SMAs. Kruth et al. [45] found that
the greatest residual stress was developed perpendicular to the scan direction. However,
other studies [46,47] contradicted the former finding and observed that the greatest stress
was generated parallel to the scan direction. Ramos et al. [48] confirmed the influence of
scanning strategies on residual stresses and deformation of the component and observed
lower residual stress generation due to shorter scan vector length. It was also observed that
sequences of scan vectors proved more effective in reducing the deformation of printed
parts. In parallel, a combination of lower hatch spacing, higher power, and scan speed or,
alternatively, moderate power and lower scan speed, was found to increase the density of
AM fabricated parts.

In the present study, the influence of relative sample density and laser scanning strat-
egy on the microstructure of NiTi TPMS layers is investigated for the first time. The results
help address a gap in current research in relation to the influence of process parameters
and structural design features on the behavior of NiTi TPMS lattices.

2. Materials and Methods
2.1. NiTi Powder

Gas-atomized pre-alloyed NiTi powder (Figure 1) was procured from TLS Technik
GmbH & Co., Bitterfeld-Wolfen, Germany, with varying average particle sizes between
15 and 46 µm. The spherical particles were argon atomized and were packed in air-tight
containers to avoid oxidation.

2.2. Design of TPMS Lattice Structures

In the present study, the Schwartz primitive TPMS topology was selected for the
morphological investigation of additively printed structures. The geometries of the samples
were generated considering approximate surface equations of the form shown in the
Equation (1).

cos(x) + cos(y) + cos(z) = c (1)

where x, y, z are Cartesian coordinates, and c is a level-set iso-value constant.
MSLattice [49] was employed to plot the TPMS structures, as shown in Figure 2. The

samples consisted of cubic Schwartz primitive cells of length 25 mm and relative density in
the range of 30% to 60%. The relative density (ρR) is calculated based on the CAD model by
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dividing the volume filled by the sample by the volume of a cube with similar dimensions
(reference cube), as follows (Equation (2)):

ρR =
VS

V
(2)

where VS is the volume of the solid part of the cell and V is its total volume.
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Figure 1. Electron micrograph showing NiTi powder, sum spectrum depicting the presence of nickel
and titanium as constituents of the powder, and x-ray diffraction plot of NiTi powder depicting
monoclinic intermetallic NiTi phase peaks denoted by *.

The surface area per unit cell of the primitive lattice with 30% relative density was
calculated to be 61.1 mm2. The surface area plays an important role in relation to the
structural heat balance during AM. It affects the melt pool dynamics during solidification,
thereby influencing the overall mechanical and functional properties of the fabricated
samples. The strut thickness of primitive unit cell was 1.21 mm. The varying strut thickness
and its geometry play a significant role during the solidification of the melt.
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cell (b). The thin TPMS layer was fabricated on a titanium-alloy base plate (c). 
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2.3. Additive Manufacturing of the NiTi Samples 
An EOS-M400 3D metal printer was used for additive manufacturing of the NiTi 

samples. The build chamber was preheated to 85 °C and maintained at the same temper-
ature during fabrication, and a Ti-alloy-based plate was utilized. Preheating to 85 °C was 
the highest preheating temperature that could be achieved for our experiment with the 
EOS M400-4. Reaching this temperature took almost 24 h, and it could not be increased 
further. One issue here is that the printer does not allow for preheating the inert gas flow, 

Figure 2. CAD model of the TPMS lattice showing a primitive lattice (a) and its corresponding unit
cell (b). The thin TPMS layer was fabricated on a titanium-alloy base plate (c).

Figure 3 further illustrates the sectioning of the CAD model to obtain the studied
primitive lattices.
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2.3. Additive Manufacturing of the NiTi Samples

An EOS-M400 3D metal printer was used for additive manufacturing of the NiTi sam-
ples. The build chamber was preheated to 85 ◦C and maintained at the same temperature
during fabrication, and a Ti-alloy-based plate was utilized. Preheating to 85 ◦C was the
highest preheating temperature that could be achieved for our experiment with the EOS
M400-4. Reaching this temperature took almost 24 h, and it could not be increased further.
One issue here is that the printer does not allow for preheating the inert gas flow, which
results in convective heat loss in the build chamber. Higher preheating temperatures will
likely be beneficial in moderating residual stress fields that may arise during the building
process because of severe temperature gradients and metallurgical interactions. The printer
has four Ytterbium-fiber lasers of 400 W maximum power each, a scanning speed of up to
7.0 m/s, and a build volume of 400 × 400 × 400 mm3. The focus diameter of the laser beam
was around 90 µm with an arrangement of precision optics F-theta-lens. The atmosphere
inside the build chamber was stringently maintained inert by the circulation of argon. The
samples were fabricated using a layer thickness of 30 µm and a hatch spacing of 90 µm
using a variety of scanning strategy, as shown in Figure 4.
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Figure 4. Various scan strategies used for the fabrication of primitive lattice layers: (a) Parallel with
90◦ rotation, (b) parallel with 0◦ rotation, (c) inclined at 45◦, and (d) spiral.

The samples were fabricated using a constant scan speed of 425 mm/s and a laser
power of 85 W. These parameters were chosen following an extensive review work [44].
Thin-layered samples of approximately 1.0 to 1.5 mm thickness in the build direction were
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fabricated against the proposed thickness of 25 mm. The printed samples were separated
from the build plate by applying shear force at the base of prints using a scrapper and
gentle tapping. However, issues with delamination and excessive warping (caused due
to residual internal stresses owing to uneven cooling of printed samples) prevented the
fabrication of thicker samples.

2.4. Metallographic Preparation

A Struers automatic grinder and polisher were used to grind and polish the primitive
structures. The samples were hot-mounted before grinding at a pressure of 30 N and
temperature of 180 ◦C in a Struers hot press using phenolic resin for 7 min. Silicon carbide
grinding paper of successively decreasing grit sizes was used to fine grind the mounted
samples. Using the slurry of suspended diamond abrasives of varying sizes (3–0.04 µm),
the ground samples were finely polished. Colloidal silica suspension (0.02 µm) slurry
was used at the final stage in order to obtain mirror-like surface polish. Sonication and
plasma cleaning methods were used to remove the debris and contaminants on the surface
of the polished samples. In order to obtain clear micrographs, contrast in the different
microstructural features present in the samples was created using an etchant consisting of
a diluted solution of hydrofluoric acid and nitric acid.

2.5. Microstructural Characterization

The microstructure of the powder and the printed samples was observed using a
Schottky field emission SEM (JEOL JSM 7610F) at room temperature. Accelerating voltages
of 3–10 keV were used for imaging. X-ray spectroscopy (EDX) of the powder and other
samples was performed using an Oxford Instrument device at an accelerating voltage of
30 keV. The phase composition of the samples was determined using a Bruker Phase D2
diffractometer with Cu Kα radiation filter and an operating voltage of 30 kV. A step size of
0.5◦ was used for scanning with a 2θ variation from 5◦ to 90◦ at room temperature. The
PDF-4 database was used to analyze the X-ray diffraction patterns.

3. Results and Discussion

AM of the NiTi primitive lattices was carried out using different sets of laser process
parameters, as listed in Table 1.

Table 1. Laser process parameters used during LPBF of primitive lattice structures.

Relative
Density (%) Scan Strategy Laser Power (W) Scan Speed

(mm/s)
Hatch Spacing

(µm)
Layer Thickness

(µm)

RD30 30 Parallel with
90◦ rotation 85 425 90 30

RD40 40 Parallel with
90◦ rotation 85 425 90 30

RD50 50 Parallel with
90◦ rotation 85 425 90 30

RD60 60 Parallel with
90◦ rotation 85 425 90 30

S1 30 Parallel with
90◦ rotation 85 425 90 30

S2 30 Parallel with
0◦ rotation 85 425 90 30

S3 30 Inclined at 45◦ 85 425 90 30

S4 30 Spiral 85 425 90 30
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Variation in relative density and scan strategy was investigated, maintaining fixed
values for the process parameters.

3.1. Macroscopic Analysis

Figure 5 shows the scanning electron micrographs (SEM) of LPBF fabricated primitive
TPMS structures with varying relative densities.
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Preliminary macroscopic analysis shows the formation of spherical balls on the surface
of the samples, as well as the presence of cracks. The laser tracks can also be clearly
observed on the top surface of the samples, which have been marked in the figure for
illustration. Several theories have been proposed in the literature [50–52] to explain the
balling phenomenon commonly observed in samples fabricated using LPBF. In particular,
the small size of the molten pool during laser melting is reported to cause solidification
into spherical imperfections rather than forming a continuous surface. The presence of
oxygen also promotes balling as it affects the wetting of the molten pool to the previous
layer, thereby favoring ball formation rather than continuous lines over sublayers. Different
shapes and sizes of balls have been reported, such as ellipsoidal balls and spherical balls [50].
The spattering of melt pool may also contribute to balling on the surfaces of the printed
surfaces. In the present study, primarily spherical balls of varying sizes have been found,
as shown in Figure 6.
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With the increase in relative density, balling was found to increase. Sample RD60 shows
the formation of balls of higher average sizes compared to the other samples, implying that
higher relative densities may favor the formation of larger balls (greater than 50–60 µm).
In contrast, the sample of 30% relative density showed the formation of small balls of
average sizes less than 50–60 µm. In addition to balling, small cracks of various lengths
and densities were observed in the samples. These are likely due to the rapid melting and
solidification of the metal powder during LPBF, in which the cooling rate of the molten
pool may reach up to 108 K/s. Such a high rate results in large temperature gradients in
the solidified part, which, in turn, leads to potentially high residual stress [53,54]. The
combination of high residual stress and large temperature gradient leads to the initiation
and propagation of cracks in the fabricated parts. It was observed that samples with relative
densities between 40% and 50% were less prone to cracking compared to those with 30%
or 60% density. The correlation between density and propensity for cracking, therefore,
appears to be a non-monotonic trend.

In terms of scan strategy, variations can be affected by controlling a range of process
variables, including scan time, hatch spacing, scanning directions, scanning vector length,
scanning vector rotation angle, and scanning sequence. In the present study, the scanning
vector rotation angles of 0◦, 45◦, and 90◦ were selected to investigate their influence on the
microstructure of the fabricated NiTi TPMS structures.
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Figure 7 shows the electron micrographs of the primitive lattice samples fabricated
using different scanning strategies. The macroscopic observation reveals the presence of
balls and cracks on the external surfaces of the produced parts. As discussed earlier, balling
imperfections are typically associated with the LPBF methods and can be found often.
Laser process parameters optimization can be one of the methods to reduce or eliminate
the balling. All samples, printed with different scan strategies, showed crack formation, as
shown in Figure 8. However, scan strategies could influence the crack formation and their
characteristics in LPBF-manufactured samples, as reported elsewhere [43,55]. As evident
from Figures 7 and 8, the inclined scan strategy has increased the balling in the fabricated
parts as compared to other scan strategies. However, the average particle sizes remained
between 40 and 60 µm.
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3.2. Microscopic Analysis

Figure 9 shows the SEM images of LPBF manufactured NiTi TPMS lattice samples.
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Figure 9a,b shows the fabricated samples with relative densities of 30% and 60%,
respectively. Figure 9c,d shows the samples fabricated using different scan strategies,
namely parallel strategies with 90◦ and 0◦ rotation, respectively. The microstructures show
a wide range of grain shapes, sizes, and orientations.

In Figure 9b,d, cracks are seen to form along grain boundaries with crack lengths
and opening significantly higher in Figure 9b. The formation of cracks, in Figure 9d in
particular, is accompanied by strong grain size gradients. Such variation is indicative of
non-uniform solidification during the fabrication processes. Changes in grain morphology,
in addition to size, are also clearly visible in Figure 9c, with elongated grains near the
bottom right transitioning toward more regular configurations into the bulk. Further
transition from regular equiaxed grains to larger grains can be observed near the top
left of the same micrograph. The inhomogeneity in the grain structures indicates a non-
uniform cooling rate during solidification of the molten pool and has a strong influence
on the mechanical properties of the fabricated samples. Improved homogeneity may be
achievable through the optimization of the LPBF process parameters. The imperfections
such as balling, cracks, and heterogenous microstructure can be deleterious to mechanical
behaviors of the AM products and, therefore, need to be thoroughly investigated in order
to inhibit their formations.

4. Conclusions

NiTi Schwarz primitive TPMS sample layers were manufactured using LPBF. The
samples were fabricated considering varying relative densities and scanning strategies
in order to study the microstructure of the built parts. Other laser process parameters,
namely scan speed, hatch spacing, layer thickness, and laser power, were not varied
during fabrication. The obtained samples were metallographically prepared, and their
microstructural features were examined using SEM. Balling was observed in all the samples.
However, it was most pronounced at the highest density of 60% without following a
monotonic trend over the range of densities considered in this work. Moreover, balling was
most noticeable in samples printed using an inclined scan strategy, and it was accompanied
by a considerable formation of mostly intergranular cracks. No uniformly increasing or
decreasing pattern was noted in the balling phenomenon vis-à-vis scan strategies. However,
the parallel scanning strategy with interlayer rotation of 90◦ is considered more beneficial
for obtaining even temperature distribution during AM, resulting in less residual stresses.
Microstructure, on the other hand, indicated a non-uniform solidification rate, however,
strict trends with relative density and scanning strategy could not be demonstrated. Balling
on the surface of printed structures can also be due to the spattering of melt pool. The
present work, therefore, suggests that the most commonly reported approach for optimizing
LPBF parameters for fabricating nitinol, which relies on considering those parameters
immediately influencing the laser energy density supplied to the powder, may need to be
enriched with considerations of scan angle and overall structural topology and density
when seeking LPBF fabricated parts of optimal quality.
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