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Abstract: Superrepellent surfaces, such as micro/nanostructured surfaces, are of key importance in
both academia and industry for emerging applications in areas such as self-cleaning, drag reduction,
and oil repellence. Engineering these surfaces is achieved through the combination of the required
surface topography, such as porosity, with low-surface-energy materials. The surface topography is
crucial for achieving high liquid repellence and low roll-off angles. In general, the combination of
micro- and nanostructures is most promising in achieving high repellence. In this work, we report
the enhancement of wetting properties of porous polymers by replication from wrinkled Parylene
F (PF)-coated polydimethylsiloxane (PDMS). Fluorinated polymer foam “Fluoropor” serves as the
low-surface-energy polymer. The wrinkled molds are achieved via the deposition of a thin PF layer
onto the soft PDMS substrates. Through consecutive supercritical drying, superrepellent surfaces
with a high surface porosity and a high water contact angle (CA) of >165◦ are achieved. The replicated
surfaces show low roll-off angles (ROA) <10◦ for water and <21◦ for ethylene glycol. Moreover, the
introduction of the micro-wrinkles to Fluoropor not only enhances its liquid repellence for water and
ethylene glycol but also for liquids with low surface tension, such as n-hexadecane.

Keywords: surface patterning; polydimethylsiloxane; superhydrophobicity; porous materials

1. Introduction

Inspired by the lotus leaves and their natural repellent structures, superhydrophobic
surfaces with high water repellence have attracted broad attention from both fundamental
research and industrial application perspectives with their applications in various fields,
such as self-cleaning [1], drag reduction, anti-icing [2], antifouling [3], anti-corrosion [4,5],
and water oil separation [6,7]. Superhydrophobic surfaces are typically identified with
a high contact angle (CA) of >150◦ and a low roll-off angle (ROA) and are achieved by
combining the required surface topography (surface roughness with a combination of
micro- and nanoscale) with low-surface-energy materials. The repellence properties result
from the air pockets trapped in the micro-/nanostructure, which prevents liquids from
spreading and reduces the contact between the surface and the liquid. This is known
as the Cassie–Baxter state [8,9]. Numerous approaches to fabricate superhydrophobic
materials have been reported. These include plasma treatments [10], self-assembly [11],
chemical vapor deposition [12], layer-by-layer procedures, sol-gel methods [13,14], and
lithography [15]. However, these approaches have many drawbacks as they are typically
sophisticated techniques requiring multi-step procedures, featuring long fabrication times
and producing fragile hierarchical-surface-roughness structures. Porous materials with
bulk porosity were presented to overcome the drawback of fragility. When the micro-
/nanostructure is introduced throughout the bulk, the superhydrophobicity is preserved
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after abrasion, as the material removal exposes a similar surface structure [16,17]. Fluoropor,
which was pioneered by our group, is a micro-/nanoporous fluoropolymer with a bulk
porosity that makes it insensitive to abrasion [18–22]. The bulk porosity is achieved by
using a porogen mixture that contains an emulsifier and a nonsolvent. Fluoropor is a
superhydrophobic material with a large contact angle (CA) > 163◦ for water. Achieving an
open, porous, superhydrophobic surface requires supercritical drying of the material, as
capillary forces lead to the closing of small nanopores upon drying [23–25]. Due to surface
tension effects, very small capillary structures such as pores can close up upon drying of the
material [23,25]. Therefore, the porosity of the material has to be exposed by opening the
surface, which is usually achieved by mechanical force, such as sandpaper treatment [18]
or peeling-off using adhesive tape [26]. Recently, supercritical drying has emerged as a
valuable technology for retaining the porous structure without the need for mechanical
abrasion [27–29]. The open porous structure on the surface is crucial for generating the
required roughness. On these rough surfaces, liquid droplets will rest on the outermost
material points, which retain an air layer between the drop and the substrate, thereby
giving rise to the repellent effect. The most stable effect can be obtained by combining
micro- and nanostructured substrates, i.e., pores in the corresponding length scales. The
influence of the surface roughness on wetting has been thoroughly studied in the past
decades [9,26,30–33]. A concise summary of the physics of wetting was reported in a
review of Quéré [34]. Moreover, the introduction of a second roughness hierarchy with
features larger than the micro/nanostructure enhances the liquid repellence as it reduces
the solid–liquid interface [21,35,36].

Several methods can be used to introduce a structure on a surface; one of the most
common strategies is direct replication. Replication relies on the use of templates to
create replicates having the desired micro-/nanostructure. In addition to its ease, direct
replication reduces the fabrication time, ensures reproducibility, and is also a method
widely acceptable in industry as it offers the possibility of mass production. Numerous
replicated structures have been reported to fabricate superhydrophobic surfaces. These
include pillars [37,38], re-entrant structures [39], and wrinkled structures [40]. Due to its low
cost, versatility, and the ability to realize large area patterns, surface wrinkling has shown
many advantages in comparison to conventional processes. Wrinkled surfaces are widely
used in flexible electronics [41,42] for generating surfaces with special wetting properties
and in medicine [43–45]. The wrinkling arises when a bilayer system (thin rigid film and
elastomeric substrate) is exposed to an extrinsic or intrinsic stress, for example, swelling,
thermal expansion, vacuum expansion, or mechanical stretching. Once relieved from the
applied stress, surface compression occurs, generating the wrinkled structures [46–48].
These vary from simple periodic layers to complex patterned structures depending on
many parameters such as the substrate softness, the thickness of the top layer, and the
applied stress. Wrinkled surfaces are frequently generated by chemically modifying the
surface of a soft material such as PDMS, e.g., by deposition of metals [49], oxidation via
exposure to oxygen plasma [50], UV/ozone treatment [51,52], the focused ion beam [53,54],
or through vapor deposition of a rigid film (such as hydrocarbon or fluorocarbon) onto a soft
substrate [55–57]. One of the mostly recent used rigid films are parylene thin films [42,58].

Here, we present the fabrication of superhydrophobic surfaces with a stable open
porous network by direct replication from wrinkled molds. To prepare the wrinkled molds,
PDMS substrates with different softness were prepared and coated with a thin layer of
a fluorinated parylene, i.e., PF (37 ± 10 nm), by chemical vapor deposition (CVD). The
softness of PDMS substrates was in the range of 7–57 kPa and was easily adjusted by
varying the amount of the crosslinking agent. The generated wrinkles showed different
wrinkle dimensions/geometries, which resulted from the different PDMS softness. The
softer the PDMS was, the longer the wrinkle’s wavelength and the lower the amplitude of
the surface topography.

The wrinkled superhydrophobic Fluoropor replicas showed high repellence with a
CA of >165◦ and a roll-off angle (ROA) < 10◦ for water. When supercritically dried, the
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porous network at the surfaces was preserved and the surfaces showed a directly exposed
micro-/nanostructure (open surface porosity), and no additional surface treatment was
required to expose the micro-nanoporous structure of the replicated surfaces. The introduc-
tion of surface wrinkles significantly enhanced the liquid repellence of Fluoropor surfaces.

2. Materials and Methods
2.1. Materials

(Vinylmethylsiloxane)-dimethylsiloxane copolymer trimethylsiloxane terminated (XG
0677), poly(dimethylsiloxane) vinyldimethylsiloxy terminated (DMS V31), (Methylhy-
drosiloxane) dimethylsiloxane copolymer trimethylsiloxy terminated (HMS 151), and
platinum-divinyltetramethylsiloxane complex in xylene (SIP 6831.1 4) were purchased
from abcr (Karlsruhe, Germany). SF00 2k-Silikon (SF) was purchased from SILIKON-
FABRIK (Bad Schwartau, Germany). Parylene F dimer (PF) was purchased from Fluo-
rochem (Glossop, UK). Ethylene glycol, diiodomethane, n-hexadecane, and phenylbis(2,4,6-
trimethylbenzoyl) phosphine oxide (PPO) were purchased from Sigma Aldrich (Taufkirchen,
Germany). Fluorolink MD700 (MD700) was purchased from Acota (Oswestry, UK).
1H,1H,2H,2H-perfluorooctanol (13FOOl) was purchased from BLDpharma (Kaiserslautern,
Germany). Cyclohexanol was purchased from Carl Roth (Karlsruhe, Germany).

2.2. Methods

Preparation of soft PDMS coatings. Bioclear soft substrates were prepared following
the procedure reported by Lovchik et al. [59]. The vinylsiloxane prepolymer base (XG 0677,
DMS V31) was blended with the catalyst and mixed vigorously. The hydrosiloxane curing
agent (HMS 151) was then added to the mixture. All the mixtures contained 5 µL of the
catalyst per 5 g of the PDMS (see Table 1). The mixture was then mixed vigorously, and
the created air bubbles were degassed under vacuum. The chemical structures of the used
prepolymer base, curing agent and catalyst are shown in Scheme 1. Soft PDMS substrates
using commercially available two-component PDMS SF was prepared by blending the
pre-polymer base and curing agent at ratios of 50:1 by weight (pre-polymer base: curing
agent) The mixture was degassed under vacuum. PDMS films with a thickness of 50 µm
were prepared via spin-coating onto glass slides. Thicker PDMS films with a thickness of
250 µm were prepared via the casting method.
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Table 1. Reactants used for the preparation of Bioclear PDMS.

PDMS Substrates Weight (g)

XG 0677 DMS V31 HMS 151
Bioclear-B 9.0 4.5 1.5
Bioclear-C 6.4 - 2.2

Softness measurements. The elastic modulus of the PDMS substrates was measured
via shear rheology measurements using the HAAKE Modular Advanced Rheometer System
of type MARS 2 (Thermo Scientific, Dreieich, Germany). For this purpose, PDMS discs of
2 mm in thickness and 36 mm in diameter were prepared, and the shear elastic modulus
(G) was measured to a strain of 0.1% in a frequency range of 0.01 to 10 Hz at 23 ◦C.

Chemical Vapor Deposition (CVD) of Parylene. PF thin layers were deposited on
the prepared soft PDMS substrates using a parylene deposition System of type PDS 2010
Labcoater (Specialty Coating System (SCS), Woking, UK). The vaporizer was set to a
temperature of 150 ◦C and the pyrolysis oven was set to 650 ◦C. The deposition of PF on
the PDMS substrates was conducted at room temperature and a pressure of 8–15 mbar.

Optical Microscopy: Optical microscopy was performed using a microscope of type
VHX 6000 (Keyence Corporation, Japan) with a 20–100 magnification lens.

White-Light Interferometry (WLI). The thickness of the thin PDMS coatings, surface
morphology, and roughness was measured using a White-Light Interferometer (WLI) of
type NewView 9000 (Zygo, Middlefield, CT, USA).

Ellipsometry. The thickness of the deposited PF layers was determined using an
ellipsometer of type SE 400adv (Sentech Instruments GmbH, Berlin, Germany). For this, PF
was deposited on silicon wafers by CVD.

Wetting characterization. CA and ROA measurements were performed using the
optical contact angle measurement system OCA 15 (Data Physics, Charlotte, NC, USA).
Amounts of 5 µL and 10 µL of liquid droplets were used to measure the CAs and ROA,
respectively. For the dewetting behavior characterization, the tilting was set at a speed of
1.24◦s−1. The average of three measurements was used for both CA and ROA values.

Preparation of Fluoropor mixture. MD700 (30 wt%) was blended with a porogen mix-
ture consisting of an emulsifier 13FOOl (35 wt%) and a nonsolvent cyclohexanol (35 wt%).
The monomer–porogen mixture was then blended with 2 wt% of the photoinitiator PPO.

Direct replication. Fluoropor 35-70 replicas (with 70 referring to the porogen ratio
in the mixture and 35 referring to the amount of the nonsolvent in the porogen mixture)
were fabricated by pipetting the mixture onto the smooth PDMS and PF-PDMS molds. For
comparison, a standard surface was prepared via open-air polymerization. The Fluoropor
35-70 mixture was pipetted onto a supporting substrate. The samples were cured for
5 min (λ = 360–400 nm) with the Hellas UV exposure unit (Bungard, Germany). After the
polymerization, the replicas were peeled off the master molds and immersed in acetone for
24 h for cleaning.

Supercritical drying. Fluoropor 35-70 replicas and the standard open-air polymerized
surface were supercritically dried to avoid the collapse of the nanoporous structures. The
samples were immersed in acetone for 24 h and then transferred to the chamber of the
supercritical drying system (Leica EM CPD300). Acetone was replaced by liquid CO2 by
repeatedly flushing with liquid CO2 and releasing the acetone. Afterward, the chamber
temperature and pressure were increased to 35 ◦C and 72 bar, respectively, to maintain the
CO2 in supercritical condition. Finally, the chamber pressure was dropped gradually to
atmospheric pressure to release the CO2.
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Scanning electron microscopy (SEM). Surfaces to be analyzed were first sputtered with
a 10–20 nm gold layer under an argon atmosphere and then visualized by SEM of type
Tescan Amber X (Tescan, Dortmund, Germany). The surface porous area was processed
by image analysis using Image-J. The SEM images were loaded into Image-J, followed by
adjusting the threshold until the voids/pores were completely outlined. The binary image
was then analyzed using the function “analyze particles” and the porosity percentage was
calculated (See Figure A3).

3. Results and Discussion
3.1. Soft PDMS Coatings

Soft PDMS coatings were prepared using self-mixed Bioclear [59] and commercially
available two-component PDMS (SF). The softness of all PDMS coatings was determined
by shear rheology measurements. Bioclear was prepared in two different softnesses by
varying the amount of crosslinking agent.

Bioclear B substrates were successfully prepared following Lovchick et al. by blending
the low-vinyl-content (XG0677) and the vinyl-terminated dimethylsiloxane (DMS V31)
with the low-functionality hydrosiloxane component (HMS151) (see Table 1). The resulting
substrate showed a Young’s modulus of 56 ± 6 kPa. Bioclear C was prepared using only
XG0677 and HMS151, which resulted in a reduced Young’s modulus of 14 ± 1 kPa. SF
(50:1) showed the lowest modulus (7 ± 0.2 kPa), which was achieved by varying the
pre-polymer-to-crosslinker ratio.

3.2. Properties of Parylene-F-Coated Wrinkled PDMS Thin Layers

To achieve wrinkled surfaces, PF was deposited onto the PDMS surfaces via CVD. The
deposited layer shows a thickness of 37 ± 10 nm as determined by ellipsometry. Standard
PDMS surfaces exhibit a smooth flat surface, while the substrates coated with PF (PF-PDMS)
show a wrinkled surface. The formed wrinkles on the surfaces are a primary result from
the difference between the elastic modulus of PDMS and PF. This isotropic wrinkling type
often occurs in thermal processes [46]. During the deposition process, the decrease in the
vacuum pressure leads to the substrates expansion and the PF thin layer is then deposited
onto the expanded substrate. Once the process is finished and the deposition chamber is
vented, the substrates contract and generate a large stress at the interface, which creates the
surface wrinkles. The compression seemingly points orthogonal onto the substrate edges,
leading to this random morphology of the wrinkles with no preferred direction.

The generated wrinkles differ in terms of their periodicity and amplitude. PF-SF
shows wrinkles with a longer period and lower amplitude, whereas both Bioclear types
show a shorter wrinkle’s period and higher wrinkle amplitude. A decrease in the material’s
softness results in larger lateral wrinkle dimensions and a decrease in wrinkle depth (see
Figure 1). To quantify the formation of wrinkles, Rq values were determined. It was
observed that harder PDMS types show an increase in the surface roughness as expected
from the images in Figure 1 (see Table 2). It is well-known that material moduli are
dependent on material thickness [60,61]. Therefore, the influence on the PDMS thickness
on the wrinkle formation was tested with layers of two different thicknesses of 50 µm
and 250 µm. WLI images of the generated wrinkles on 250 µm PDMS layers are shown
in Figure A1. As can be observed from Table 2, the Rq of very soft SF was not influenced
by the layer thickness, whereas the harder Bioclear PDMS types showed a decrease in Rq
values when the thickness was increased from 50 to 250 µm This indicates a change in
wrinkle structure for the Bioclear PDMS types upon a change in thickness.



Materials 2022, 15, 7903 6 of 13Materials 2022, 15, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 1. Visualization of the wrinkles on 50 μm PDMS layers. (A) Optical microscopy images of 
the generated wrinkles on SF, Bioclear B, and Bioclear C. (B) WLI image of the generated wrinkles 
and their corresponding profile. SF shows wider yet smaller wrinkles in comparison to Bioclear, 
which shows thinner and elongated wrinkles. 

Table 2. Measured roughness values of the PDMS and PF-PDMS surfaces with different thicknesses. 

 Rq (nm) 
 PDMS PF-PDMS (50 μm) PF-PDMS (250 μm) 

SF (50:1) 7 103 ± 7 110 ± 23 
Bioclear-B 5 657 ± 34 487 ± 17 
Bioclear-C 11 915 ± 25 815 ± 13 

3.3. Superrepellent Wrinkled Porous Polymers 
The preparation of repellent surfaces was achieved based on a modified preparation 

of previously reported Fluoropor foams [18–22]. Fluoropor is based on fluorinated meth-
acrylates mixed with porogens. During the polymerization, Fluoropor forms a highly 
crosslinked polymer network with a micro-/nanostructure, which is achieved due to a 
phase-separation of the mix during the polymerization process. The micro-/nanostructure 
is distributed throughout the bulk. For the purpose of polymer replication, a novel 

Figure 1. Visualization of the wrinkles on 50 µm PDMS layers. (A) Optical microscopy images of the
generated wrinkles on SF, Bioclear B, and Bioclear C. (B) WLI image of the generated wrinkles and
their corresponding profile. SF shows wider yet smaller wrinkles in comparison to Bioclear, which
shows thinner and elongated wrinkles.

Table 2. Measured roughness values of the PDMS and PF-PDMS surfaces with different thicknesses.

Rq (nm)

PDMS PF-PDMS (50 µm) PF-PDMS (250 µm)
SF (50:1) 7 103 ± 7 110 ± 23

Bioclear-B 5 657 ± 34 487 ± 17
Bioclear-C 11 915 ± 25 815 ± 13

3.3. Superrepellent Wrinkled Porous Polymers

The preparation of repellent surfaces was achieved based on a modified prepara-
tion of previously reported Fluoropor foams [18–22]. Fluoropor is based on fluorinated
methacrylates mixed with porogens. During the polymerization, Fluoropor forms a highly
crosslinked polymer network with a micro-/nanostructure, which is achieved due to a
phase-separation of the mix during the polymerization process. The micro-/nanostructure
is distributed throughout the bulk. For the purpose of polymer replication, a novel Fluo-
ropor mixture was formulated, which we term Fluoropor 35-70. In this formulation, the
porogen amount was enhanced compared to previously reported materials to ensure the
achievement of an open porous surface. Fluoropor foams have to be dried after polymer-
ization to remove the solvents. When dried in air, the pores at the surface collapse due to
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surface tension effects, resulting in a nonporous surface (see Figure A2). To prevent this,
supercritical drying was used. The drying process took about 3 h.

Prior to the replication process, the surface free energy of the fabricated PF-PDMS
molds was calculated (see Table A1). It is well known that a similarity in the surface free
energy of the micro-mold and the replicated material can lead to filling the small features
of the mold. However, the fabricated PF-PDMS have low-aspect-ratio micro-wrinkles; thus,
no complication in the replication is noticed. To test the effect of the wrinkle structure on
the wetting properties of the Fluoropor 35-70 surface, the wetting properties of different
surfaces were analyzed (see Figure 2) on open-air-polymerized surfaces, surfaces replicated
from soft PDMS, and surfaces replicated from wrinkled PF-PDMS structures. The open-
air-polymerized surface was prepared by pouring the Fluoropor 35-70 mixture onto a
PDMS mold frame. The wetting and dewetting behaviors were characterized using water,
ethylene glycol, and n-hexadecane for all surfaces prepared. The three liquids were chosen
due to the difference in their surface tension. The wetting properties of a porous Fluoropor
35-70 surface generated under air polymerization show CAs of ~148◦ for water, ~140◦ for
ethylene glycol, and ~103◦ for n-hexadecane. The three liquids pin on the surface and show
no ROAs.
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values of water, ethylene glycol, and n-hexadecane on the open-air-polymerized Fluoropor 35-70 sur-
faces (standard), replicas from the smooth PDMS surfaces (SF, Bioclear B, and Bioclear C), and replicas 
from the wrinkled PF-PDMS surfaces (PF-SF, and PF-Bioclear B and C). The introduction of the 

Figure 2. Wetting and dewetting properties of the Fluoropor 35-70 surfaces prepared by open-
air polymerization (Air), replicated from smooth PDMS surfaces (SF, and Bioclear B and C), and
replicated from wrinkled PF-PDMS surfaces (PF-SF, PF- Bioclear B, and PF-Bioclear C). (A) Contact
angle values of water, ethylene glycol, and n-hexadecane on the open-air-polymerized Fluoropor
35-70 surfaces (standard), replicas from the smooth PDMS surfaces (SF, Bioclear B, and Bioclear C),
and replicas from the wrinkled PF-PDMS surfaces (PF-SF, and PF-Bioclear B and C). The introduction
of the wrinkles onto the Fluoropor surface resulted in an increase in the CA of all liquids. (B) Roll-off
angle values of water, ethylene glycol, and n-hexadecane on the Fluoropor 35-70 surfaces replicated
from smooth PDMS and PF-PDMS. X refers to pinned drops with no roll-off angles. The values
shown are mean values of 3 measurements and the standard deviation.

The Fluoropor 35-70 replicated from soft, smooth PDMS surfaces of three different
PDMS types (SF, Bioclear B, and Bioclear C) results in CAs of ~157◦ for water, ~153◦ for
ethylene glycol, and ~125◦ for n-hexadecane. There is no significant difference between
the three soft PDMS types. The CAs of all liquids are significantly higher on the replicated
samples compared to the samples polymerized under air. However, all liquids pin on
the surfaces as well and show no ROAs. To introduce an additional microstructure on
the surface, Fluoropor 35-70 replicas were prepared from wrinkled PF-PDMS (PF-SF, PF-
Bioclear B, and PF-Bioclear C) molds. The wrinkled Fluoropor 35-70 replicates show
higher CAs of >165◦ for water, >155◦ for ethylene glycol, and ~135◦ for n-hexadecane.
Additionally, water and ethylene glycol roll-off the surfaces at ROA values below 10◦ and
~21◦, respectively (see Figure 2A,B). In conclusion, a significant enhancement of the wetting
properties was achieved by replication from wrinkled PDMS surfaces.
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To investigate the observed wetting behavior of the surfaces, the surfaces structures of
the samples were analyzed with SEM (see Figure 3). The surface polymerized under air
shows less porosity than the surfaces replicated against smooth PDMS types of SF, Bioclear
B, and Bioclear C (Figure 3B,C). This inhomogeneity in the porous network explains the
CAs < 150◦ and poor dewetting behavior of the surfaces polymerized under air. The
surfaces of Fluoropor replicated against soft PDMS are shown in Figure 3C. The porosity
of SF surfaces differs slightly from the Bioclear B and C surfaces: In a close-up, it appears
that in some areas of the Fluoropor replicated from SF, the pores are covered with a layer
of nonporous material. However, overall, this partial nonporosity does not affect the
wetting behavior, as, presumably, the roughness of the surfaces is still high enough to cause
enhanced wetting properties. The Fluoropor surfaces replicated from wrinkled PF-PDMS
show both the wrinkled structure and micro-/nanostructure (see Figure 3D). The wrinkled
Fluoropor surfaces show an open porous network, which was successfully achieved by
supercritically drying the samples. The replicated wrinkles match up well to the prepared
PF-PDMS molds, where both Bioclear replicas show smaller and narrow wrinkles, whereas
PF-SF replicas show larger wrinkles. To further investigate this, the surface porosity was
determined by image analysis using ImageJ (see Figure A3 and Table A2). To determine
surface porosity, the area fraction of the voids in the images was analyzed: Fluoropor
surfaces replicated from PF-PDMS show the highest surface porosity percentage of 46–48%,
followed by the surfaces replicated from smooth PDMS with 30–37% porosity, and lastly,
the open-air-polymerized Fluoropor surfaces with 13% porosity.
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Figure 3. SEM images of different Fluoropor 35-70 surfaces prepared by different replication tech-
niques. (A) Schematic showing the preparation process to fabricate the different Fluoropor 35-70
surfaces prepared under air, against smooth PDMS, and against wrinkled PDMS. (B) SEM image of
the open-air-polymerized surface showing a mostly closed surface. SEM images of the replicated
Fluoropor 35-70 surfaces from (C) smooth PDMS surfaces and (D) SEM images of the replicated
Fluoropor 35-70 surfaces showing the replicated porous wrinkles and an open porous structure.
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Overall, the introduction of a new pattern (wrinkles) enabled the achievement of
superhydrophobic surfaces with a maintained surface porosity and enhanced both the
wetting and dewetting properties of the replicated Fluoropor 35-70 surfaces.

4. Conclusions

In summary, we present the fabrication of superhydrophobic surfaces with an en-
hanced liquid repellence, using a highly fluorinated polymer, via direct replication. The
templates/molds for the direct replication were wrinkled surfaces, which were prepared
by depositing Parylene F onto soft PDMS substrates. The replicated wrinkled porous
surfaces showed an open micro-/nanoporous network without further need of any sur-
face treatment to expose it. This was achieved using the supercritical drying approach,
which helped preserve the micro-/nanoporous network at the surfaces and prevented its
collapse. The replicated wrinkled Fluoropor surfaces showed a high water CA of >165◦

and a low ROA of <10◦. Altogether, the introduction of a second structure to the inherent
micro-/nanostructure of Fluoropor resulted in enhanced liquid repellence. The replication
from easily prepared wrinkled surfaces, thus, offers an interesting possibility for enhancing
the wetting properties of porous materials.

Author Contributions: Conceptualization, D.H. and F.M.; methodology, F.M. and A.U.; validation,
FM., N.N., P.Z. and A.G.; formal analysis, F.M.; investigation, F.M., A.U., K.K. and N.N.; resources,
D.H. and B.E.R.; data curation, F.M.; writing—original draft preparation, F.M.; writing—review and
editing, F.M., D.H. and B.E.R.; supervision, D.H. and B.E.R.; project administration, D.H. and B.E.R.;
funding acquisition, D.H. and B.E.R. All authors have read and agreed to the published version of
the manuscript.
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Figure A1. WLI image of the generated wrinkles and their corresponding profile on the 250 µm
PF-PDMS films.

The surface free energy of the fabricated PF-PDMS molds was calculated according to
the Owens, Wendt, Rabel, and Kaelble (OWRK) method using three liquids with different
surface tensions: water, ethylene glycol, and diiodomethane [62].

Table A1. Surface free energy of the Parylene-F-coated PDMS templates.

Wrinkled Templates

PF-SF PF-Bioclear B PF-Bioclear C

Surface free energy
(mN/m) 25 ± 1 29 ± 1 28 ± 1
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