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Abstract: To study the effect of SAP incorporation on the early shrinkage of SAP internally cured
concrete with the aim to solve the problems of early shrinkage and cracking of bridge leveling-layer
concrete, using the SAP incorporation method as a parameter, the mechanical properties test of internally
cured concrete, the shrinkage performance test of ring restraint and the scanning electron microscope
observation test were carried out. The effects of the SAP content and incorporation method on the flowa-
bility, mechanical properties, shrinkage performance and microstructure of internally cured concrete
were analyzed. The experimental results show that when the content of the SAP in concrete is 0.2% of
the mass of cementitious materials, it has the least influence on the compressive strength of concrete.
The addition of preabsorbed water to the SAP can delay early cement hydration, increase the later
cement hydration rate and final hydration degree, and improve the concrete strength. Preabsorbed
water mixed with an SAP can effectively improve the shrinkage of concrete, and the shrinkage
reduction effect is more obvious than that from the dry addition of the SAP; the early cracking risk
of concrete without an SAP is high, and it will crack before day 28. The addition of an SAP can
strengthen the microstructure of concrete and improve its density and crack resistance, effectively
avoiding concrete cracking. It is recommended that the water-absorbent resin be incorporated in a
preabsorbent manner, and the SAP preabsorbent ratio is equal to the maximum water storage rate of
the SAP.

Keywords: SAP internally cured concrete; incorporation method; mechanical properties; shrinkage
performance; microstructure

1. Introduction

Cracking caused by concrete shrinkage is an important problem affecting the durability
of concrete [1–3]. Modern high-strength concrete is characterized by a low water-binder
ratio and large shrinkage. The traditional watering curing method generally makes the
water stay on the surface of the structure and evaporate rapidly, which does not achieve the
purpose of curing. The cement cannot be fully hydrated, and the concrete shrinks greatly,
resulting in a large number of cracks [4].

Concrete cracking is affected by many parameters, including the water-cement ratio,
cement type, admixture, structural geometry and external conditions [5–7]. On the one
hand, during the hardening process of cement, due to an insufficient water supply during
hydration [8], the internal relative humidity of the cement slurry is reduced, resulting in
voids and resulting in increased tensile stress in pore water [9,10]. On the other hand, due
to the loss of water in the surrounding atmosphere, the internal relative humidity in the
concrete pores decreases, and water loss from the concrete pores will cause stress in the
concrete skeleton, resulting in shrinkage [11,12].
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The concept of internal curing was first proposed by Bentz [13] in 1991, which incor-
porates water-absorbing materials such as super-absorbing resins (SAPs) and lightweight
aggregates to form a micro-“reservoir” [14] inside the concrete. When the hydration heat of
the cementitious material is released, the water on the surface of the concrete evaporates
and the internal pores produce negative pressure, and then the “reservoir” will release the
water stored in the water-absorbing material to promote the full hydration of the cement
and achieve the curing effect [15–17].

The shrinkage of concrete is obviously reduced after adding a water-absorbing ma-
terial [18–20], and especially after adding an SAP with a high water absorption rate, the
concrete will expand slightly in the early stage [21,22]. An SAP incorporated into concrete
first absorbs water to expand and then releases water to shrink. The SAP releases moisture
to effectively reduce concrete shrinkage, but also forms defective holes in the concrete,
reducing the strength of the concrete [17,23,24].

At present, there is much research on the shrinkage cracking of concrete. Most scholars
have studied the effect of SAP incorporation on mechanical property and concrete shrinkage
performance [1,19]. Yu et al. [25] proved that the shrinkage and tensile strength of UHPC
increased first and then decreased with the increase in the SAP content by using a three-
point bending test of a notched beam, a single-crack tensile test and mercury porosimetry;
they found the optimum content of SAP to be 0.1~0.15%. Laurence et al. [26] conducted
a bellows test and a restrained ring test to prove that an SAP can reduce the autogenous
shrinkage of a mortar mixture by more than 80% within 7 d, and the shrinkage reduction effect
is weakened after 7 d. Yang et al. [27] studied the effect of an SAP on the drying shrinkage and
humidity distribution of concrete slabs, proving that the SAP had the best effect of inhibiting
shrinkage within 7 d, and the internal curing of the SAP greatly reduced the humidity
difference in pavement slabs at different depths. Yuka et al. [28] developed a delayed-
absorption SAP, which can reduce autogenous shrinkage without adding additional water
and does not affect compressive strength.

In view of the influence of different incorporation methods of the SAP, the main
direction of existing research is focus on the SAP’s influence on the rheological prop-
erties of concrete. Liu et al. [29] evaluated the influence of two kinds of SAPs on the
rheology of UHPC mortar under different particle sizes and dosages, and found that the
pretreatment method of the SAP had no significant effect on thixotropy; Ma et al. [30]
examined the effects of a dry SAP on the maximum shear stress and yield stress of cement-
based materials, and found that the dry SAP increased yield stress and plastic viscosity;
Adams et al. [31] developed a simple mixing design method for the formulation of 0.42 w/c
ordinary Portland cement mortars, requiring the addition of additional water or a high
range of water-reducing agents when the SAP is 0.2% of the cement weight.

In summary, most of the studies on the influence of an SAP on the concrete shrinkage
performance at present focus on the influence of the SAP type and content on concrete
shrinkage cracking. In view of the influence of different SAP incorporation methods on
concrete properties, most of the research focuses on how to determine the additional water
content of the SAP to improve the rheological properties of cement-based materials. It can
be seen that, at present, under different SAP incorporation methods, and especially under
the condition of SAP partial pre-water absorption, the influence on concrete mechanics and
shrinkage properties is still small.

Based on the above reasons, this paper takes the SAP incorporation method as the
parameter and considers the change law of water absorption over time in the concrete
mixing stage to carry out the flow performance test, compressive strength test and con-
strained shrinkage performance test of internally cured concrete. The effects of different
SAP incorporation methods on the fluidity, mechanical properties and ring shrinkage strain
of internally cured concrete were studied. The degree of hydration of concrete under
different SAP incorporation methods was analyzed by using scanning electron microscopy
experiments, and the internal hydration mechanism of concrete under different SAP incor-
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poration methods was explained in order to provide a reference for the application of SAP
internally cured concrete.

2. Raw Materials and Test Methods
2.1. Raw Materials
2.1.1. Cement

The cement used was P • O 32.5 ordinary Portland cement, according to the “general
Portland cement” GB 175-2007 [32]. The cement requirements to test for the indicators were
met by the basic physical properties of cement, which are shown in Table 1.

Table 1. Physical properties of P • O32.5 ordinary Portland cement.

Apparent
Specific Gravity

Specific Surface Area
(m2/kg) Stability

Setting Time (min)
Strength (MPa)

Flexural Compressive

Initial Final 3 d 28 d 3 d 28 d

3.1 330 Qualified 201 274 2.8 5.7 18.5 37.2

2.1.2. Aggregate

The particle size of the coarse aggregate used in the test was 4.75~19.5 mm, and the
mixing ratio of 4.75~9.5 mm and 9.5~19.5 mm was 4:6. The crushing value of the crushed
stone was 17.5%, the needle flake content was 4.3% and the mud content was 0.12%.

The fine aggregate used in the test was machine-made sand, and the fineness modulus
was 2.5. According to the interval of the cumulative sieve residue curve, this kind of fine
aggregate is a medium sand with good gradation.

2.1.3. Internal Curing Agent

The internal curing agent used in the test was a super-absorbent resin (SAP), which
is a highly crosslinked sodium acrylate produced by aqueous solution polymerization
(crosslinking agent content of 0.06%), and the average particle size was 150 µm.

2.1.4. Water and Water Reducer

The water used in the test was tap water.
The admixture used in the test was a polycarboxylate powder concrete superplasticizer,

the water reduction rate was 30% and the bleeding rate ratio was ≤20%.

2.2. Mix Design

Because of the inability to accurately measure the amount of water released by the SAP
inside concrete, researchers have measured the water absorption kinetics curve of the SAP
in cement-based centrifugal fluids. The results show that the development law of SAP water
absorption in a cement slurry centrifugal fluid is divided into three stages: first, it rises
rapidly to the maximum, then gradually decreases, and finally, tends to be stable [33,34].
Studies have found that before the final setting of concrete, the concentration of the pore
solution of cement paste does not fluctuate much, generally staying around 0.7 mol/L, and
a 0.7 mol/L sodium chloride solution can be used to simulate a cement-based solution [35].

Firstly, the presaturated water-absorbing SAP was placed in a 0.7 mol/L sodium
chloride solution to simulate the change process of the water absorption rate of the SAP
in a concrete mixture. The tea-bag method [34,36,37] was used to measure the maximum
water absorption rate of the SAP per unit mass in the process of pre-water absorption
(u1 = 146.02) and the water storage rate of the preabsorbed SAP when the concentration of
the pre-water absorption SAP in the sodium chloride solution was balanced (u3 = 35.00).
The u2 (u2 = 111.02) is the water release rate of the SAP in the concrete mixing stage.
Considering the change in the water absorption rate of the SAP in the concrete mixing
stage, the SAP pre-absorption water and concrete unit water consumption rates of each
test group were calculated. The mix proportion design results of internally cured concrete
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are shown in Table 2 (W0 is the pre-water absorption of the SAP, and the content of the
SAP is 0.2% of the mass of cementitious materials). Six kinds of mix proportions were
designed: the J0 group without an SAP, the G0 group with a dry SAP, the G1 group with a
dry SAP and additional m × u3 water, the Y0 group with a pre-saturated SAP and reduced
water consumption of m × u2, the Y1 group with a pre-saturated SAP and reduced water
consumption of m × u2, and the Y2 group with m × u3 pre-water absorption.

Table 2. Internally cured concrete mix ratio.

SAP
/(g/m3)

W0
/(kg/cm3)

W
/(kg/m3)

Cement
/(kg/m3)

S
/(kg/m3)

G
/(kg/m3)

Water-Reducing
Agent

J0 0 0 165 470 668 1100 0.04%
G0 904 0 165 470 668 1100 0.04%
G1 904 0 196.7 470 668 1100 0.04%
Y0 904 132.01 165 470 668 1100 0.04%
Y1 904 132.01 89.70 470 668 1100 0.04%
Y2 904 31.74 165 470 668 1100 0.04%

2.3. Experimental Design
2.3.1. Flow Test of Concrete

The maximum particle size of the aggregate used in the preparation of the internally
cured concrete was 19 mm. The visual slump of concrete was much larger than 10 mm
during the trial mixing. Therefore, according to the slump measurement method in the
“Ordinary concrete mixture performance test method standard” GB/T 50080-2002 [38], the
flow performance of the internally cured concrete mix with three kinds of SAP contents
(0.1%, 0.2%, 0.3%) was measured.

2.3.2. Mechanical Performance Test of Concrete

According to “the test method of mechanical properties of ordinary concrete” GB/T
50081-2002 [39], three sets of standard cube specimens with a size of 150 mm × 150 mm ×
150 mm were made, with three in each group. The compressive strength of concrete with
three kinds of SAP contents (0.1%, 0.2%, 0.3%) was measured to determine the optimal
content of the SAP. The compressive strength of the concrete at key ages (1, 3, 7, 14, 28, 60,
90 d) was measured under different SAP incorporation methods, and the development
law of the compressive strength of internally cured concrete with concrete curing age
was studied.

2.3.3. Experiment on Restrained Shrinkage Performance of Concrete Ring

According to ASTMC 1581-04 [40], the annular restraint shrinkage test of concrete was
carried out. The height of the ring was 100 mm, the outer diameter of the inner steel ring
was 305 mm and the thickness was 5 mm. The thickness of the concrete ring to be poured
was 60 mm, and the bottom circular steel plate had a groove to limit the inner and outer
steel rings. The half-bridge patch method was used to evenly paste strain gauges along
the inner surface of the inner steel ring in the annular direction. The strain gauges were
the A120 type with built-in temperature regulation, and there were four strains in total.
The strain gauges were connected to the static strain collection instrument. The timing
began with the completion time of the casting. The stress change was recorded every 6 h on
the first d, and the stress change and crack development in the concrete ring were recorded
every 12 h thereafter until the end of 28 d.

2.3.4. Microscopic Test of Scanning Electron Microscopy

After the shrinkage test, the concrete specimen was taken out and broken. The ce-
ment matrix fragments were screened and soaked in an alcohol solution to terminate the
hydration process of the internal cement. After drying with a dryer, the processed dry test



Materials 2022, 15, 7854 5 of 15

block was pasted on conductive glue. After the gold sputtering, the samples were put un-
der the scanning electron microscope (The instrument is a FEI Quattro S model from the
United States Thermoelectric Company, produced in the Czech Republic) to observe the
morphology of cement hydration products and cracks.

3. Results and Discussion
3.1. Concrete Fluidity Test Results

Due to the high water absorption rate of the SAP, the working performance of the
concrete will be greatly affected when it is mixed into concrete with dry or pre-water
absorption. Therefore, the flow performance of SAP internally cured concrete is studied.
The measured concrete slump under different SAP contents and incorporation methods is
shown in Figure 1.
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As can be seen from Figure 1, under the five incorporation methods, the slump of
the Y0 group was significantly higher than that of the J0 group and showed an obvious
increasing trend with the increase in SAP content; the slump of group G0 was significantly
lower than that of group J0, and decreased with the increase in SAP content; the slump was
slightly reduced in the G1 group; and the slumps of the G1, Y1 and Y2 groups were similar
to that of the J0 group.

Compared with the reference group (J0), the slump of the dry-mixed group (G0) and
the dry-mixed water group (G1) decreased with the increase in the amount of absorbent
resin, and the decreases were 1.5%, 6% and 10.5% and 1.9%, 3.4% and 3.8%, respectively.
When a dry SAP is added to the mixture, the SAP absorbs water from the slurry, reducing
the effective water content and w/b, which is equivalent to reducing water [41]. Without
providing additional water, it will lead to an increase in yield stress and plastic viscosity,
and lead to a decrease in slump flow and an increase in mortar flow time [42–44]. When the
SAP is used in a dry state, additional water should be added to make up for the water
absorbed by the SAP during the mixing process so that SAP does not have an adverse
effect [42]. Compared with the G0 group, the G1 group added extra water to make up for
the water absorbed by the SAP from the cement slurry, and thus, the slump decreased
less and the flow performance was better. Due to the complex ion composition of the
concrete cement slurry, the SAP cannot absorb all the additional water, and cement and fine
aggregate particles are adhered around SAP particles, which increases the friction between
aggregates; therefore, the slump of the G1 group is lower than that of the J0 group.

For the Y0 group with presaturated water absorption and additional water, the slump
increases by 1.9%, 8.1% and 11%. The SAP release of water in the Y0 group increases the
water-cement ratio and makes the concrete fluidity increase significantly. Compared with
the reference group (J0), the slump of the water-saturated and water-reduced group (Y1)
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was slightly increased; the reason was that the preabsorbed absorbent resin absorbed less or
no longer absorbed the mixed water and cement slurry, and the absorbent resin was evenly
dispersed in the concrete, meaning that a small amount of water would be released, and
thus, the fluidity of the concrete did not change much. The partial preabsorbent SAP (Y2)
did not absorb water or release water after mixing with the mixture; thus, compared with
group J0, the slump of the concrete also remained basically unchanged. Some studies [29]
have confirmed that the addition of a preabsorbed SAP has no significant effect on the flow
time of the mini-V-shaped funnel of UHPC, indicating that a preabsorbed SAP has little
effect on the fluidity of different kinds of concrete mortars.

3.2. Concrete Compressive Strength Test Results

The compressive strength of concrete with different SAP dosages and incorporation
methods is shown in Table 3 and Figure 2.

Table 3. Mean and variance analysis of compressive strength.

Group Average Variance

0.1% 39.77 14.64
0.2% 41.35 11.00
0.3% 39.90 14.31

J0 43.90 0.00
Y1 43.57 2.54
Y2 42.50 0.19
G0 39.77 0.74
G1 37.47 1.20
Y0 34.83 2.34
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According to the analysis of the data in Table 3, the average value of the 28 d com-
pressive strength of concrete with 0.2% SAP content is the highest, and the fluctuation is
relatively small; the relative decrease amplitude of compressive strength in the Y1 and
Y2 groups was the smallest, and the pre-water absorption in the Y2 group was weakly
sensitive to the SAP content.

As can be seen from Figure 2, the compressive strength curves of group Y1, group
G0, group G1 and group Y0 all showed regularity. With the increase in the SAP content
from 0.1% to 0.3%, the compressive strength first increased and then decreased, and the
compressive strength reached the peak when the SAP content was 0.2%. It can be considered
that an SAP of this type has the least influence on concrete strength when the content is
0.2%. This may be due to SAP water absorption characteristics leading to a decrease in
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the effective water-cement ratio, resulting in increased strength, and the strength increase
caused by the decrease of water-cement ratio exceeds the strength decrease caused by SAP
shrinkage. It can be considered that 0.2% SAP content is the best dosage, which is similar
to the finding in the research of Il-Sun Kim [45], and the best dosage of different types of
SAPs will be different.

After the SAP content exceeds 0.2%, the strength of each group generally decreases. It
is speculated that the main reason may be the uneven distribution of water in the matrix
caused by the addition of excessive SAP [46]. Subsequently, due to the large number of pores
in the concrete during the hardening stage, the compressive strength decreases [47–49].
The compressive strength of G0 and Y2 decreased due to the formation of holes in the
concrete by the SAP. The strength of the G1 group and Y0 group decreased, on the one
hand, because the incorporation of the SAP formed holes in the concrete; on the other hand,
it was also because additional water or the SAP’s additional release of water reduces the
water-binder ratio of concrete, thereby reducing the strength of concrete.

In summary, when the SAP content is low, its water storage and release function
are not obvious, the internal curing effect is not obvious, and the compressive strength
of the concrete increases slightly. When the SAP content is too high, the holes left after
the shrinkage of the SAP and the release of water become the main factor affecting the
compressive strength of the concrete, which reduces the compressive strength of the
concrete. Therefore, under the conditions of appropriate dosage, an appropriate water
diversion method and appropriate water diversion, the SAP internal curing effect can be
the best, and the strength of the concrete can reach its maximum.

3.3. Test Results of Compressive Strength of Concrete at Different Curing Ages

The compressive strength test was carried out with the optimal dosage of 0.2% (the SAP
content has the least effect on the strength of concrete, and the SAP content in the follow-up
test is 0.2%). The variation law of compressive strength of internally cured concrete with
curing ages under different SAP incorporation methods is studied. The results are shown in
Figure 3.
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As can be seen from Figure 3, with the increase in the curing age, the strength of
the concrete develops rapidly in the first 7 d, but slows down after 7 d. The compressive
strength of concrete at 28 d reaches more than 95% of that at 90 d, and the growth range of
the compressive strength is very small.

The development trend of the compressive strength of group Y1 and group Y2 is
relatively consistent. In the early stage, the intensity development was slower, whereas
in the later stage, the intensity development speed was faster, but the overall difference
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was small. The development trend of the compressive strength of the G0 group and G1
group was basically the same, which shows that the early strength developed faster and
the late strength developed slower; the 7-d compressive strength reached 90% of the 28-d
compressive strength, and the later compressive strength growth was only 2.7 MPa and
2.6 MPa, respectively, which finally stabilized at 39.8 MPa and 35.2 MPa. The compressive
strength of the Y0 group was consistently lower than that of the other five groups; the
7-d compressive strength reached 80% of the 28-d compressive strength, and the later
compressive strength increased slowly with age.

The intensity development trend of the G0 group and G1 group was similar. The main
reason is that these two groups of SAPs have the same mechanism of action. After adding
water, the water-binder ratio of the G1 group increased and the maximum strength de-
creased in the later stage. However, the incorporation of the SAP is consistent, and thus, the
change trend of strength with age was consistent. Secondly, the dry, mixed SAP absorbed
the cement slurry, which is equivalent to reducing the water-binder ratio of the concrete.
The hydration heat of the cement was intensified, and the water in the capillary pores of
the concrete dissipated faster; therefore, the early strength is high and the later strength is
small. Finally, in the cement hardening stage, the SAP water-release shrinkage left holes in
the concrete, and the concrete compressive strength decreased, making its 90-d compressive
strength lower than that of the J0 group.

The compressive strength of the Y0 group was lower. The reason may be due to the
fact that in the concrete mixing stage, the ion concentration of the cement slurry is greater
than the ion concentration inside the SAP particles of the Y0 group. Therefore, the com-
pressive strength is low in the early hardening stage. At the same time, it also leads to an
uneven distribution of water in the concrete, resulting in large pores [46]. Hydration prod-
ucts generated by hydration are not enough to make up for the strength loss caused by
pore expansion.

The strength development trend of group Y1 and group Y2 was similar. In both groups,
the SAP was preabsorbed so that sufficient water was stored inside the SAP crosslinked
network structure. The water absorbed by the saturated SAP in the Y1 group is quickly
released during the concrete mixing process. With the increase in the water-cement ratio, the
early compressive strength decreased. After the initial cement setting, the gradual release
of the additional water stored in the SAP helps to form a denser and more homogeneous
cementing matrix, which acts as an effective filler for the voids near the aggregate and
ensures the dense filling of cement particles [50], thus resulting in a slightly greater increase
in compressive strength at a later stage than in the J0 group. Therefore, the growth range of
the compressive strength in the later stage is slightly greater than that of the J0 group.

From the overall test results of compressive strength, it can be concluded that pre-
water absorption of the water-absorbing resin has a better effect on the inner curing of
concrete than dry incorporation. SAP presaturated water absorption and water consump-
tion reduction have the same internal curing effect as SAP partial pre-water absorption.

3.4. Shrinkage Performance of Concrete

With 0.2% SAP content, the shrinkage strain of the concrete ring under different SAP
incorporation methods was studied. The steel-ring strain test results of different concretes
are shown in Figure 4, and the concrete cracks are shown in Figure 4.

It can be seen from Figure 4 that with the increase in curing age, the circumferential
compressive stress of the inner steel ring increased gradually, and the initial microcracks
were observed in the J0 group and G0 group. It can be seen from the strain curves of the
steel ring that the stress of the steel ring decreased after adding the absorbent resin, which
indicates that adding an absorbent resin can effectively reduce the shrinkage of concrete;
the reduction was 25% in group G0 and 30% in groups Y1 and Y2.
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Figure 4. The strain value of the steel ring. 
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Figure 4. The strain value of the steel ring.

According to reference [26], the development of the shrinkage of cement materials can
be divided into three stages: the liquid stage, skeleton formation stage and final hardening
stage. The volume change caused by the early contraction is more significant. Judging from
the development of the concrete shrinkage strain, the first 7 d is the rapid shrinkage stage
of concrete, in which the shrinkage stress of concrete develops rapidly. After 7d, the initial
setting of concrete is over, and the stress enters the stable development period. After 22 d,
the ductility of the J0 concrete reached the limit and the stress of the steel ring changed
abruptly, decreasing from 825 microstrain to 379 microstrain. The concrete ring changed
from an initial microcrack to final crack, and two penetration cracks appeared (as shown
in Figure 5). At about 28 d, the concrete ring of group G0 cracked and a penetrating crack
appeared. The stress of the steel ring changed abruptly, decreasing from 793 microstrain to
376 microstrain, and the concrete ring crack appeared. However, the steel-ring stress of the
Y1 and Y2 groups increased rapidly before 7 d and remained stable after 7 d, and no cracks
were observed in the concrete ring.
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The reason for the above phenomenon is speculated to be that the steel-ring stress grad-
ually increases with the concrete contraction, and the strain values of the three experimental
groups are all lower than those of the J0 group, indicating that the incorporation of the SAP
effectively reduces the concrete contraction. Studies have shown that the incorporation of
an SAP will change the texture of concrete [51] and improve its workability, consistency
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and plasticity [52]. A gel material provides cushioning, which helps to improve the stability
of fresh concrete [53], and the increase in the polymer volume helps to seal cracks inside
concrete [54]. Incorporation of a preabsorbed SAP can effectively store water in the early
stage, and provide sufficient water for internal curing in the later stage of concrete curing,
which slows down the hydration process inside the concrete. The splitting tensile strength
of concrete develops rapidly, whereas the shrinkage stress in the concrete ring develops
slowly. Therefore, compared with the J0 group, the stress of the steel ring in groups Y1 and
Y2 decreased greatly and developed slowly, and the concrete ring did not crack until d 30.
The dry SAP absorbs the cement slurry at the early stage of concrete hardening and reduces
the fluidity of the concrete mixture, which is equivalent to reducing the water-binder ratio
of the concrete, making the SAP release water too early and too fast in the later period of
maintenance, reducing the internal curing effect of the SAP. That is, the steel-ring stress of
the G0 group is slightly lower than that of the J0 group.

3.5. Microscopic Test Analysis Using a Scanning Electron Microscope

A scanning electron microscope (SEM) was used to observe the hydration products of
cement and the changes in the microstructure of the cement matrix after incorporation of
the SAP. The reasons for the change in mechanical properties and the crack resistance of
internally cured concrete were analyzed. The results are shown in Figure 6.
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The microstructure of hardened cement is mainly composed of the following phases:
a calcium silicate hydrate phase, calcium hydroxide, an unhydrated binder and an aggre-
gate [55,56]. It can be seen from Figure 6 that there is a small amount of calcium silicate
hydrate gel and a small amount of rod-like ettringite on the cement matrix of group J0, and
there are obvious microcracks in the cement matrix. There are a large number of micropores
on the surface of the matrix, and the diameter of the pores is relatively large, the structure
is relatively loose and the density is relatively poor. There are still a large number of pores
on the surface of the matrix, in group G0 with dried SAP, but the number of pores is less
and the size of the pores is smaller than that of group J0. The hydration products on the
matrix surface are mostly needle sheets. In group Y1, there is still calcium silicate gel on the
cement matrix, but compared with the blank control group, the number and size of holes
were further reduced. In addition, a large amount of stout, fibrous ettringite grows on the
surface walls and cracks of the matrix, and the pore area ratio of the matrix decreases, and
thus, the cracks also decrease significantly.

SAP cement-based materials have been proven to have self-healing properties [57–59].
When an SAP is incorporated into cement-based materials, the SAP gradually releases
water, which reacts with the surrounding unhydrated cement, resulting in hydration
products that can fill and heal microcracks. In addition, the entry of water causes the SAP
to expand, and then the expanded SAP gel fills the macroscopic cracks and restricts water
flow. According to some studies, when water flows through cracks, SAP particles near the
downstream surface become dry, whereas particles near the upstream surface expand to
form soft gels and fill SAP voids and cracks [58]. The longer the cement hydration process,
the more hydration products are generated, and the more robust the morphology will be.
The size of hydration products in group Y1 is larger than that in group J0, indicating that
the reservoir function of the preabsorbed SAP plays a better role, prolonging the hydration
time and making the hydration reaction of cement more adequate and the matrix structure
more compact.

Therefore, the incorporation of an SAP slows down the early hydration rate, and the
cement is further hydrated after water release; thus, water is released in the later stage of
cement hardening and the hydration process is prolonged, which improves the compacting
degree of concrete and enhances its crack resistance.

Figure 7 shows the internal hydration reaction mechanism of concrete with different
SAP incorporation methods.
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As can be seen from Figure 7, the different effects of the SAP incorporation methods
mainly lie in the strength loss caused by the SAP releasing water into pores and the strength
increase caused by the hydration degree. The SAP supplies preabsorbed water to the pores
when they dry, thereby reducing the capillary force [41]. Water is usually absorbed by the
SAP and released after the concrete solidifies [60]. Therefore, the SAP promotes the hydration
of cement [61] while shrinking and leaving gaps of more than 1000 nm in cement-based
materials [62] and weakening the effective cross-sectional area of the compressed surface,
which has a negative impact on the compressive strength [63]. These two effects have opposite
effects on the mechanical properties of concrete. Therefore, the effect of SAP incorporation on
compressive strength depends on the strength of both influences.

When the SAP is dried and incorporated, the cement slurry will be absorbed in the
mixing stage, resulting in the reduction in the water-cement ratio of the mixture. However,
after the initial setting of concrete, the internal water content of concrete is low, and the SAP
releases water prematurely; thus, the hydration process is shorter, and the early strength
of the concrete is high and the later strength is low. At the same time, premature SAP
water release also weakened the improvement in the concrete shrinkage. When the SAP
is preabsorbed and incorporated, the water-binder ratio is reduced during the mixing
phase, resulting in an increase in the water-cement ratio of the mixture. In the late curing
period, the SAP releases enough water to delay the hydration rate so that the cement is
fully hydrated and enough hydration products are generated to make up for the pores
produced by SAP shrinkage. Therefore, the early strength of the concrete is low and the
late strength is high, and the concrete crack resistance performance is greatly improved.

4. Conclusions

(1) The SAP incorporation method has a significant effect on concrete fluidity. The fluidity
of concrete increases when a preabsorbent SAP is added, and is positively correlated
with SAP water content and SAP content. The fluidity of concrete decreases when the
SAP is dried and is negatively correlated with SAP content.

(2) It can be considered that the optimum content of this type of SAP in concrete is 0.2%.
The compressive strength of concrete mixed with a preabsorbent SAP has a relatively
low development before 28 d, and a relatively large increase after 28 d.

(3) The shrinkage property of concrete mixed with an SAP is improved and the shrinkage
strain is significantly reduced. The shrinkage strain of concrete mixed with a pre-
absorbent SAP decreases the most, and no cracking occurs until the end of the test.
The shrinkage-reducing effect of a dry SAP is limited and concrete still cracks.

(4) The SAP stores water in the early stage of hydration, and releases water in the later
stage to promote hydration. Therefore, the compactness of concrete is improved and
the crack resistance is improved. The shrinkage reduction effect of a preabsorbent SAP
is better than that of a dry SAP. The pre-water absorption method is recommended,
and the pre-water absorption ratio is the maximum water storage rate of the SAP.
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