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Abstract: Materials science gives theoretical and practical tools, while new modeling methods and
platforms provide rapid and efficient development, improvement, and optimization of old and new
technologies. Recently, impressive progress has been made in the development of computer software
and systems. The frontal cellular automata (FCA), lattice Boltzmann method (LBM), and modeling
platforms based on them are considered in the paper. The paper presents basic information on
these methods and their application for modeling phenomena and processes in materials science.
Recrystallization, crystallization, phase transformation, processes such as flat and shape rolling,
additive manufacturing technologies (Selective Laser Sintering (SLS)/ Selective Laser Melting (SLM)),
and others are examples of comprehensive and effective modeling by the developed systems. Selected
modeling results are also presented.

Keywords: recrystallization; phase transformation; rolling; additive manufacturing technologies;
frontal cellular automata; lattice Boltzmann method

1. Introduction

Materials science and engineering are focused on creating new substances or changing
the physical and chemical composition of existing materials to improve their properties.
The important manufacturing techniques of product manufacturing are forming and addi-
tive manufacturing. Forming processes are important for the production of lightweight
components made of metallic materials with defined geometric parameters and mechanical
properties. Additive technologies have been introduced in many facilities in the prepa-
ration of short-term production (parts with complex geometry), and their use allows for
saving materials, time, and production costs of various components. The preparation of
forming processes and additive manufacturing using a trial-and-error method is a thing
of the past. Today, methods that include computer-aided design systems (CAD) are more
effective. The application of different numerical methods for the simulation of different
phenomena in materials has become incredibly important in the last few years. The first
method that is often used for such simulations is the phase field (PF) method. PF was
recently used, for example, for the morphological and microstructural evolution of metallic
materials under environmental attack [1]. DeWitt and Thornton presented a brief intro-
duction to phase-field modeling and possible applications for simulations of precipitate
evolution, grain growth, solidification, phase separation in battery electrodes, and de-
position [2]. Recent applications of phase-field simulations of solid-state microstructure
evolution and solidification that have been compared and/or validated with experiments
were described by Tourret et al. [3]. The level-set (LS) method can be used, for example,
to simulate grain growth with an evolving population of second phase particles [4] and
for modeling multiphase thermo-fluid flow in additive manufacturing processes [5]. A
review of level-set methods and some recent applications can be found elsewhere [6]. The
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Monte Carlo (MC)–Potts model was used to model the primary recrystallization and grain
growth in cold-rolled single-phase Al alloy [7] and grain growth simulation of single-
phase systems [8]. The finite element method (FEM) was recently used for the analysis
of microstructure evolution and mechanical properties during compression of open-cell
Ni-foams with hollow struts [9], for simulations of microstructure evolution in single crystal
and polycrystal shape memory alloys under uniaxial tension and compression [10], and
for predicting phase transformations and microhardness for directed energy deposition
of Ti6Al4V [11]. The cellular automata (CA) [12–14] method can be used, for example, for
simulation of dynamic recrystallization behavior under hot isothermal compressions for
as-extruded 3Cr20Ni10W2 heat-resistant alloy [12], modeling of solidification microstruc-
ture evolution in laser powder bed fusion-fabricated 316L stainless steel [13], simulation
of coupled hydrogen porosity, and microstructure during solidification of ternary alu-
minum alloys [14]. Other examples of used numerical methods to model the evolution of
microstructure in materials are analysis of metal extrusion by the finite volume method
(FVM) [15], prediction of multidirectional forging microstructure evolution of GH4169
superalloy by the neural network [16], and prediction of microstructure evolution with
convolutional recurrent neural networks [17]. Multiscale models, which are a combination
of several methods (for example, finite element and cellular automata or cellular automata
and finite volume), are also used. FE and CA methods were recently used for numerical
prediction of microstructure for selective electron beam melting [18], while CA and FVM
were used to predict the grain structure of an alloy, e.g., Inconel 718, fabricated by additive
manufacturing [19].

Considering the use of a given method to model a given phenomenon or process,
its advantages and disadvantages are always important. The phase-field method auto-
matically takes into account changes in front topology and generalizes easily to 3D areas;
however, there is a complicated theoretical side of the model, small model volumes, and
the need for fine discretization in the front area. The level-set method allows for a direct
representation of the interface and curvature of the grain boundary, and there is also no
need to discretize explicitly the interface. LS has an inability to track the evolution of
the texture, which can be solved by combining LS with the theory of crystal plasticity.
The numerical implementation of the Monte Carlo algorithm is quite simple, and good
computational performance can be achieved using parallel calculations; however, the MC
solutions depend on the type of mesh used, a good representation of the curvature of the
grain boundary, the proper determination of the simulation length, and the time scale.
Taking into account the finite element method, it can be seen that complex shapes can be
approximated with high accuracy, the sizes of the elements can be different, and nonlinear
boundary conditions can be defined. FEM needs to control the numerical error because
it depends on discretization parameters, material properties, and boundary conditions.
CAs provide very high computing performance and a better accounting of many factors,
including local, e.g., crystallographic orientation, or dislocation density. The simple rules
and synchronous updating of cell states on the grid introduce additional simplifications
in the modeled reality, and the calculation time is the main preference for the use of 2D
solutions compared to 3D.

Recently, one of the most effective methods for simulations of different phenomena
and processes in materials science is the frontal cellular automata (FCA) and the lattice
Boltzmann method (LBM). FCA is a modified CA algorithm that allows for algorithmic
acceleration of calculations with the same level of accuracy. The calculation time of the
3D FCA calculations is similar to the time of classical 2D CA. LBM is very feasible for
modeling the flow of liquids, gases, mixtures, heat flow, and transfer as well as diffusion
occurring simultaneously with the liquid (gas) flow. The wide application of the LBM
method was limited by some of its features. The main disadvantages were the high memory
volume requirements and a large number of iterations, i.e., the computation time even in
two-dimensional and especially in three-dimensional calculations. The development of
computer and computational technology related to the possibility of using parallel comput-
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ing with the use of graphics cards has changed the perception of the LBM method from
being a little useful to very effective. LBM was recently used, for example, for modeling the
evolution of coherent vortices and periodic flow in a continuous casting mold [20], simulat-
ing fluid flow in multi-scale porous media [21], and simulating fluid flow in multi-scale
porous media [22]. LBM comes from the CA, so a combination of these two methods in
comprehensive solutions can be considered natural. Taking into account their algorith-
mic structure, these methods are almost ideal for a parallel programming environment
involving CUDA (Compute Unified Device Architecture) graphics cards. Models based on
LBM and FCA do not need a complicated interface. The solution can be implemented in a
common domain, while the number of processes and phenomena modeled simultaneously
depends on the number of variables associated with a point, cell, or node in the same model
volume. Extending the model with a new process or phenomenon consists of adding vari-
ables and an algorithm without developing additional communication between different
parts of the model. This is an undeniable advantage compared to multiscale models. FCA
and LBM can be the base methods for the development of comprehensive platforms to
model various technological processes.

A frontal cellular automata (FCA) algorithm was developed by Svyetlichnyy and for
the first time was successfully applied to model microstructure evolution in 2010 [23]. Over
the next years, the method has been successfully used to model different phenomena and
processes in materials science. Crystallization, recrystallization, phase transformations, se-
vere plastic deformation, and technological processes such as rolling or continuous casting
were successfully modeled. Universal frontal cellular automata can be used for practically
all possible processes consisting of nucleation and grain growth. Closed-transition circuits
make the FCA suitable for modeling multiple nucleation and grain growth.

The introduction of the lattice Boltzmann equation to lattice gas automata (LGA)
applied to viscosity calculations can be regarded as the first of the milestone steps leading
to the LBM method. The next steps were the replacement of particles by the continuous
Fermi–Dirac distribution for the equilibrium distribution, linearization of the collision
operator, application of the Boltzmann distribution instead of the Fermi–Dirac distribu-
tion, and replacement of the collision operator with the BGK (Bhatnagar–Gross–Krook)
approximation. After 1992, the LBM method can be considered as developed. Its further
development is primarily related to the expansion of application areas and the development
of new principles, methods, etc. Materials science and engineering are now important areas
of FCA and LBM application, and further dynamic growth of interest in these methods is
expected soon.

The paper presents the new modeling platforms that allow for the simulation of
different phenomena and processes in materials science as well as forming processes (for
example, rolling processes) and additive manufacturing technology. Basic information
on the FCA and LBM methods, which are the basis of these platforms, is shown. The
principles of calculations carried out with the use of these methods are presented. Finally,
examples of modeling results of phenomena within the considered processes and the results
of simulation of industrial processes in the general aspect obtained by using the developed
platforms are shown. The presented computing platforms are based on their software
developed based on FCA and LBM methods. Calculations can be performed on Windows
8, 10, and 11 and Linux operating systems. Some of the new algorithms developed include
the possibility of parallel computing with the use of CUDA (Compute Unified Device
Architecture), i.e., the universal architecture of multicore processors on Nvidia cards and
the programming environment based on the C and C++ programming language, which is
an integral part of this architecture. Some of the developed software is also a CPU-based
sequential computing version, written in C++ or Fortran. For parallel calculations, graphics
cards (GeForce RTX 2080 Ti, GeForce TITAN 6GB, TITAN Z 12 GB, GeForce 1080Ti, GeForce
1060, NVIDIA, Santa Clara, California, USA) are used. Processing and presentation of the
results are carried out primarily with the use of OpenGL technology.
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2. Frontal Cellular Automata

Frontal cellular automata (FCA) are a modernization of the classical cellular automata
and their development began in the 2000s. FCA is very efficient The method is very
effective for a certain class of tasks, in which changes can be presented and described as
the movement of boundaries or the movement of the front of changes, while the rest, a
significantly larger part of the space, remains unchanged. This principle can be applied, for
example, to modeling the evolution of microstructure. The principle of considering only
the front of changes gave the name to the modified method.

There are several differences between the classical CA and the FCA. Three of the
most important modifications are increasing the number of states (multiple states), inverse
information transfer, and using linked lists. The increasing number of states differentiates
the processing procedures of cells in different states. The inverted transfer allows sending
only critical information at an appropriate moment to the neighboring cell that influences
its states rather than collecting mainly unused information from the whole neighborhood
in each iteration. Figure 1 presents the direction of information transfer considering the
Moore and von Neumann neighborhoods. The linked lists allow cells to proceed only in
“active” states on the front of changes. These and other means exclude a huge number of
cells from calculations in every iteration, reducing overall computation time by hundreds
and even thousands of times.
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Figure 1. FCA communication direction using the Moore (a) and von Neumann (b) neighborhoods.

Figure 2 shows a fragment of the space with cells in three states. The initial state of the
cell does not change if there are no changes in its neighborhood and changes if a cell in the
frontal state appears in its neighborhood. The cell in the frontal state changes its state in the
final state immediately or with delay, depending on a modeling phenomenon or process.
The final state never changes. As a result, only frontal cells are used for calculations. The
introduction of the frontal state allowed us to resign from exploring the entire space and to
concentrate activities on cells in which changes take place.

The described modifications reduce the computation time but increase the complexity
of the algorithm. FCA creates, among other things, the possibility to take into account
changes in shape and sizes of the cells, reorganize space, and introduce new structures
that connect cells in the group of the same state, in the same grain, or according to other
arbitrary features. In FCA, linked lists usually unite cells in the same state by adding and
removing elements. It is a central point in the acceleration of calculation, especially for
sequence programming. Reducing the calculation time of the frontal automata compared
with the classical one is significant in the 2D models, and it is radical in the 3D models. More
detailed information on FCA can be found elsewhere [23]. However, it should be noted
that the advantage of FCA over classic CA is slightly smaller for parallel computations
because there are no effective methods of linked-list maintenance.
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3. Lattice Boltzmann Method

The lattice Boltzmann method (LBM) is very feasible for modeling the flow of liquids,
gases, mixtures, heat flow, and transfer as well as diffusion occurring simultaneously with
the liquid (gas) flow. LBM is derived from a variant of the CA method, which can be
regarded as a simplified model of molecular dynamics that implements the discretization
of space, time, particle velocity, and the statistical Boltzmann equation. The basis of the
method is the solution of the transport Boltzmann equation:

∂ f
∂t

+
∂ f
∂x
·ξ + F

m
· ∂ f

∂u
= Ω (1)

where f —particle distribution function; x and ξ—phase space variables (coordinate and
velocities); t—time; F—external force (for example gravity); m—mass; u—macroscopic
velocity; Ω—the collision operator.

The particle distribution function along the directions and velocities is a Maxwell
function, so along any direction of space, particles have velocities according to the Gaus-
sian distribution:

f =
ρ

(2πRT)D/2 exp

(
− (ξ − u)2

2RT

)
(2)

where ξ—microscopic velocities; R—gas constant; D—space dimension; ρ—gas density;
T—temperature.

The particles velocities space ξ can be reduced to a finite (discrete) velocity system
{ei, i = 1, . . . ,b}, and a grid can be built on which calculations can be made. Therefore, the
equation is approximated for the characteristic velocities of the determined grid and the
selected directions:

fi(x + ei, t + 1) = fi(x, t) + Ωi (3)

Equation (3) is called the lattice Boltzmann equation (LBE) and is the basis of the LBM
method. An important element of this equation is the collision operator. One of the first
and possibly the simplest and most frequently used is the operator proposed by Bhatnagar,
Gross, and Krook (named after BGK), which has the following form:

Ωi( f ) =
∆t
τ

[
fi(x, t)− f eq

i (x, t)
]

(4)

where ∆t = 1—time step; τ—relaxation time; feq—the distribution function in the appropri-
ate direction in the equilibrium state.
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The solution of Equation (3) with the collision operator (4) is divided into two stages:
collision and advection (streaming). Calculations for the collision stage are preceded by the
calculation of macroscopic variables: density ρ and velocity u (through momentum ρu):

ρ =
b

∑
i=0

fi (5)

ρu =
b

∑
i=0

fiei (6)

and the equilibrium distribution feq:

f eq
i (x, t) = wiρ

(
1 +

u · ei

c2
s

+
(u · ei)

2

2c4
s
−+

u · u
2c2

s

)
(7)

where cs—sound speed in the modeled flow; wi—directional weights.
The output distribution function after the collision has the following form:

f out
i (x, t) = f in

i (x, t)− 1
τ

[
f in
i (x, t)− f eq

i (x, t)
]
+ Fi (8)

On the other hand, at the advection stage, a simple transfer of the distribution function
to neighboring nodes takes place:

f in
i (x + ei, t + 1) = f out

i (x, t) (9)

An additional stage of the calculations is considering the boundary conditions.
The same LBM algorithm is used for all issues, including cyclically repeating steps

(Figure 3):

1. Calculation of macroscopic values: density ρ, velocity u, temperature T, concentration
C, etc.;

2. Determination of the equilibrium distribution function feq for the modeled variable;
3. Collision operation, determination of the output distribution function fout;
4. Streaming operation, transfer of the distribution function to the appropriate cells, site,

or nodes;
5. Consideration of boundary conditions.

Some of these stages can be combined (for example, 1 + 2 + 3 or 4 + 5). The cycle can
be started from anywhere although it starts with the determination of macroscopic values,
the determination of equilibrium distributions functions, and the assignment of output
functions not according to the collision operator but with the equal equilibrium distribution
fout = feq. In this way, the computation starts from the local equilibrium state in all nodes,
and changes occur due to the global imbalance.

The basis of the method is the discretization of space and time. A regular square (two-
dimensional) or cubic (three-dimensional) grid with a distance between adjacent nodes
equal to one is superimposed on the space. The length of the time step is equal to one. An
important element of the system is the selection of the velocity model. In one-dimensional
space, the models D1Q2 and D1Q3 are used; in a two-dimensional space, D2Q4, D2Q5, and
D2Q9 are used. For three-dimensional problems. D3Q6, D3Q7, D3Q15, D3Q19, and others
are used. D indicates the dimensionality, while Q indicates the number of velocities.

More information on the LBM method can be found elsewhere [24].
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4. Platform Based on Frontal Cellular Automata for Modeling the Microstructural
Phenomena in Technological Processes

The use of any method, including cellular automata, to model a specific technolog-
ical process requires formalization and solving several problems directly related to the
limitations of its applicability. The accurate analysis allows for adequate and effective use
of a given modeling method. By determining and accurately describing selected issues,
microstructural phenomena, and processes, it is possible to develop an appropriate scheme
of numerical modeling.

Choosing as a goal to create a universal tool for modeling microstructure evolution
in various technological processes, e.g., casting, forming, heat treatment, etc., a platform
based on frontal cellular automata was developed (Figure 4). This FCA platform was
created as a hierarchical system and used for the study of microstructural phenomena to
design, improve, and optimization of technological processes, including crystallization,
recrystallization, grain growth, and phase transformation. The basis of the platform (first
level) is frontal cellular automata (FCA) augmented with the transformation and reorgani-
zation of cells. The models creating the second level and responsible for the simulation of
basic microstructural phenomena are based on FCA. The third level of the system includes
models of technological processes and uses the models of the second level as building
blocks. An additional element that complements the system is the material database.
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The development of the platform included several stages according to its hierarchical
structure, from the development of FCA algorithms and models of individual phenomena
to the final comprehensive model of the technological process. In the beginning, the second-
level models (Figure 4) were simplified, schematically reflecting real phenomena. Then,
all elements of the platform were constantly expanded after a wide range of experimental
and theoretical research. Models of the second level can be divided into two groups. The
models of the first group create the original structure. They are the model of the «real»
crystallization phenomenon (solidification) [25] and the «unreal» process of creating the
initial microstructure. Both models do not require the initial microstructure, and the results
of their simulation, i.e., the initial microstructure, can be used by the models of the second
group. Models in the second group require initial microstructure, and the group includes
models of recrystallization, phase transformations, and microstructure refinement. The
phenomena modeled on the second level can be divided into two stages: nucleation and
grain growth (crystals, crystallites, and a new phase), so they can be realized using the
same FCA (considering the relevant details).

4.1. FCA Deformation and Reorganization

During the modeling by FCA, it is very important to define the space geometry and
boundary conditions as one of the most important parameters. Under certain conditions
of deformation, CA space may be distorted, and it may be necessary to reorganize it.
It directly affects the boundary conditions, which should be changed. Calculations are
optimal with cells of cubic shape, but then, the shape of the cells can be deformed. If the
strain accumulated in the material is not large enough, the CA cells change shape and
size. When the deformation reaches a predetermined level, the space of the CA should
be reorganized to obtain the cubic shape of the cells. Reorganization in CA is similar to
“remeshing”, widely used in FEM codes. Different space reorganization methods have been
developed (Figure 5). A detailed description of the solutions and algorithms developed in
this area can be found elsewhere [26].
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4.2. Initial Microstructure

Considering the modeling of microstructure evolution in any process, an initial mi-
crostructure is necessary, which under certain modeling conditions will be closest to the
initial real structure. The developed model of universal frontal cellular automata makes it
possible to obtain the initial microstructure, which is the result of two processes or stages:
nucleation of grains and their growth. Figure 6 shows the general scheme for modeling the
initial microstructure.

The first step in modeling the initial microstructure, based on the three-dimensional
model of cellular automata, is the determination of the geometry of the cellular automata
by defining the sizes of the three-dimensional space used. This parameter is directly related
to the definition of the number of cells for each axis of the system and the actual sizes. An
additional factor that is also considered is the shape of the FCA space. The developed
model allows using the cuboid or cylinder space. The next step in the process of creating
the initial microstructure is to apply the boundary conditions, which may be different in
different directions. Information on nucleation is collected and stored by specifying the
time and place of appearance of each nuclei and its spatial orientation. This information is
ordered according to the time of nucleation. The orientation of the growing grains is also an
element that should be considered during the process of creating the initial microstructure.
The model considers two types of orientation, i.e., crystallographic orientation and spatial
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orientation of grain other than spherical. These orientations are combined when modeling
the initial microstructure. The model allows for both random selections of the orientation
for each grain and allocation of the same orientation for all grains, whose orientation can
be chosen randomly or strictly defined. Taking into account all of the factors described
above, the model allows modeling of the initial microstructure, which may be different by
considering different modeling conditions.
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Figure 7 presents the results of the initial microstructure simulation for the spherical
shape of the growing grains and open and periodic boundary conditions, with the assumed
space of 400× 400× 400 cells, the dimensions of the space 500× 500× 500 µm, the number
of nuclei equal to 600; in each simulation, the nuclei were distributed in the same places in
the cell space.
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The selection of the boundary conditions and the shape of the growing grains is a pre-
liminary stage preparatory to obtaining the initial microstructure for the given parameters.
Such a microstructure, apart from the grain shape, should also meet other requirements
concerning, e.g., average grain size, grain size distribution, texture, and others. Obtaining
the required grain size distribution in the microstructure can be done in two ways: either by
correcting the existing microstructure or by modeling a new microstructure with a matching
of the nucleation rate and grain growth. Figure 8 shows schematically the algorithm that
allows to obtain a microstructure with a given distribution.
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The steps of the algorithm for creating a microstructure with a given grain size distri-
bution are as follows:

1. Representation of the theoretical particle size distribution using a distributive series;
2. Determining the number of grains in a representative model volume and checking

the size of the cell space;
3. Defining the nucleation conditions;
4. Modeling the microstructure and determining its empirical distribution;
5. Determining the error of fit by comparing the obtained empirical distribution with

the theoretical one;
6. Return to point 3 and perform correction of nucleation conditions in case of failure to

meet the matching criterion.

The fulfillment of the matching condition becomes tantamount to obtaining a digital
representation of the microstructure with a given grain size distribution and determination
of the nucleation conditions. In the case of correction of the existing microstructure, only
the first three steps of the algorithm are carried out.

The description of the algorithm that allows obtaining a microstructure with given
parameters and examples of simulation results can be found elsewhere [27,28].

4.3. Recrystallization

An important factor that influences the microstructure and properties of the material,
without which it is impossible to comprehensively consider the processes that take place in
many materials, is the phenomenon of recrystallization. In hot-deformed materials, one of
the dominant microstructure-reconstruction processes is static recrystallization.

The developed FCA-based model for recrystallization contains several submodels:
dislocation density and flow stress model, nucleation model, and grain growth model.

The main assumptions of the recrystallization model are the following:

1. The dislocation density is assigned to the grain, and the initial dislocation density is
the same for all grains and equal to a minimal value for current thermal conditions.

2. Nucleation begins when the dislocation density reaches a critical value ρc.
3. The nucleation rate depends on the dislocation density, strain, strain rate, and temperature.
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4. The migration rate of the grain boundaries is a function of temperature, dislocation
density, crystallographic orientation, and other parameters.

Table 1 shows the basic relationships used in the submodels of the recrystallization
model. A detailed description of the recrystallization model developed can be found
elsewhere [29,30].

Table 1. Recrystallization model.

Submodels Dependencies

Dislocation Density and Flow Stress Model σ = σ0 + αµb
√

ρav (10)
.
ρ = U(ε)

.
ε−Ω(ρ)

.
ε− R(ρ) (11)

Nucleation Model

.
nV = aNεlN−1D−kN

0
.
ε (12)

∆
.
nV = aNεlN−1D−kN

0
.
ε(NVmd − NV)∆t (13)

NVmd = amd
.
ε
−mexp

(
Q
RT

)−m
(14)

Dsrx = AεaDb
0Zc (15)

Z =
.
εexp

(
Q
RT

)
(16)

Grain Growth Model

v = M f (θ)F (17)
f = 0 dla θ < 7

◦

f = 3.72 ∗ 10−4exp
{

8 ∗
[
1− exp

(
− θ

2.2

)]10
}

dla 7
◦
< θ < 15

◦

f = 1 dla θ > 15
◦

(18)

Figure 9 shows the initial microstructure and an example of the final microstructure
after deformation at T = 1100 ◦C and complete static recrystallization. The microstructure
was obtained for the following conditions: space sizes of 500 × 500 × 500 cells, the
dimensions of the space 400 × 400 × 400 µm, and strain rate and strain equal to 1 s−1 and
0.18, respectively. The final average grain size was dav = 75 µm (measured 78.5 µm). The
calculations were made for C 45 steel.
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Figure 10 shows the results of the dynamic and metadynamic recrystallization model-
ing considering the geometry of the deformation. The initial microstructure before deforma-
tion (Figure 10a) and after deformation without recrystallization (Figure 10b) with partial
dynamic recrystallization (Figure 10c) and after metadynamic recrystallization (Figure 10d)
is shown. Cellular automata with dimensions nx × ny × nz = 200 × 300 × 400 cells and
space dimensions ax × ay × az = 400 × 600 × 800 µm were used for the simulation. The
number of grains was 250. The deformation temperature T = 1000 ◦C, the deformation
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time t = 0.5 s, and the nonzero components of the strain rate tensor:
.
εx = 1.0,

.
εz = −1.0,

and
.
εxz = 0.07. The shape of the space and each cell is not a cube in this case but a cuboid.

Figure 10b shows the changes in the shape of the space and microstructure with uniform
deformation. Figure 10c shows the microstructure with the dynamic recrystallization pro-
cess that occurs after deformation in 0.5 s. Figure 10d shows the microstructure after full
metadynamic recrystallization. The model assumes that nucleation occurs only during
deformation, and Figure 10d shows the microstructure after metadynamic recrystallization
as an effect of grain growth after dynamic recrystallization.
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4.4. Phase Transformation

The main tools for the modeling of phase transformations are cellular automata, often
combined with the finite difference method (CA+FDM), phase-field (PF), or multi-phase-
field method (MPF). The structure of the hybrid model of diffusion phase transformations
developed in carbon steels is shown in Figure 11. The model is based on two modeling
methods: FCA and LBM. The model is developed to simulate the evolution of microstruc-
tures (FCA), carbon diffusion, and heat flow (LBM).
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The model was developed in several stages, from the 1D variant to the 3D variant. At
the final stage of model development, the 3D Fourier equation in the following form was
used in the calculations:

1
α

∂T
∂t

=

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
+ Q(x, y, z, t);

∂c
∂t

= D
(

∂2c
∂x2 +

∂2c
∂y2 +

∂2c
∂z2

)
(19)

where T—temperature; c—carbon concentration; α—thermal diffusivity; Q(x,y,z,t)—the
source of thermal energy; D—diffusion coefficient.

The BGK (Bhatnagar–Gross–Krook) model was used for simulations:

fk(x + ∆x, y + ∆y, z + ∆z, t + ∆t)− fk(x, y, z, t) =−∆t
τ

[
fk(x, y, z, t)− f eq

k (x, y, z, t)
]
+ ∆twkS (20)

fk(x + ∆x, y + ∆y, z + ∆z, t + ∆t)− fk(x, y, z, t) = −∆t
τ

[
fk(x, y, z, t)− f eq

k (x, y, z, t)
]

(21)

where fk(x, y, z, t), f eq
k (x, y, z, t)—the particle and equilibrium distribution functions; τ—

the single-relaxation-time parameter; S—the source term; wk—weighting factor in the
direction k.

The equilibrium distribution function f eq
k :

f eq
k = wk ϕ(x, y, z, t) (22)

where φ—the dependent variable (temperature T, concentration c).
Two steps can be considered in LBM calculations:
Collision:

fi(x, y, z, t + ∆t) = fk(x, y, z, t)[1−ω] + ω f eq
k (x, y, z, t) (23)

where ω = ∆t/τ.
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Streaming:

fi(x + ∆x, y + ∆y, z + ∆z, t + ∆t) = fk(x, y, z, t + ∆t) (24)

Table 2 shows the developed numerical algorithms that are used in the 3D heat flow
and diffusion models. (Steps 2–7 are repeated cyclically).

Table 2. Algorithms for 3D simulation of heat flow and carbon diffusion.

Heat Flow Diffusion

Initial parameters (1)

Number of nodes: nx, ny, and nz, node position: x, y, z, number of time steps: tsteps, grid step: ∆x,
∆y, ∆z, time step: ∆t, austenite and ferrite fractions in interface node: ϕIA = 1, ϕIF = 0 (1a)

Velocity and specific enthalpy coefficients: kv
and kq, temperatures of phase transformation,
in the interface, and in the node: TP, TI, and

Tx,y,z (1b)

Carbon concentration in nodes: ci, diffusion
coefficient: Dcf (1b)

Calculations of a boundary velocity, the quantity, mass, or volume of the transformed material in
the interface node; fraction of the new phase in the interface node; fraction checking (2)

v = kv(Tp − TI) (2a) v = ∆c; (2a)

∆ϕI = v∆t; ϕIF,t = ϕIF,t−1 + ∆ϕI (2b)

If ϕIF,t < 1⇒ go to step (2e) (heat source) (2c) if ϕIF,t < 1⇒ go to step (3) (c calculation) (2c)

If ϕIF,t ≥ 1 then: φIF,t’ = 1, change the state of node from interface to ferrite and the neighboring
nodes from austenite to interface (according to neighborhood), set the value of the fraction for the

new interface: ∆ϕnI = (ϕIF,t − ϕIF,t’)/numA = ϕIF,nI; numA—the number of nodes in phase
austenite in the neighborhood of old interface, the ∆ϕ for the old interface (new ferrite) node:

∆ϕoI = 1 − ϕIF,t−1; ϕIF,oI = 1; ϕIA,oI = 0 (2d)

Heat source calculation:
if ϕt < 1⇒ QI = kq∆ϕI

if ϕt ≥ 1⇒ QnI = kq∆ϕnI; QoI = kq∆ϕoI (2e)

Determination of new temperature:
Tx,y,z = Σfi + Qx,y,z (3) Determination of new concentration: c = Σfi (3)

feq calculations (4)

Collision (5)

Streaming (6)

Boundary conditions (7)

Figure 12 presents the examples of modeling results for the selected values of the
parameters defined in the heat flow algorithm developed: kv and kq values. As can be seen,
these parameters have a direct impact on the rate of transformation. The kv is used directly
for boundary velocity calculations, while kq determines the rate of temperature increase in
the interface and has an impact on the boundary velocity. The growth of the grain placed in
the center of the grid was modelled with the use of the Moore neighborhood and the vector
normal to the surface. The calculations were performed on the NVIDIA GeForce GTX
1060 graphics card with the use of CUDA parallel programming. D3Q19 LBM scheme was
used for the calculations. The main simulation parameters are as follows: Tx,y,z = 750 ◦C,
TP = 800 ◦C, nx × ny × nz = 128 × 128 × 128, steps = 100, ∆x = 1, ∆y = 1, ∆z = 1, ∆t = 1,
τ = 1, kv = 0.003, kq = 15, and the bounce-back boundary conditions.
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The concept of the model and the first 1D modeling results of carbon diffusion and
heat flow can be found elsewhere [31,32]. The results of 2D modeling can be found in
subsequent work carried out in this area [33].

4.5. Modeling of Technological Processes—Rolling Processes

The search for modern technological solutions for the rolling process, which refers to
the acquisition of higher-quality rolled products and reducing the cost of their production,
becomes a necessity in the modern stage of development of this technological process.
Often, during rolling, it is difficult to simultaneously ensure product dimensions and shape
and the required microstructure, which is responsible for the final mechanical properties.
The intensive development of computer technology makes it easier to use modern numeri-
cal methods for the simulation of complex forming processes. The developed modeling
system can be applied effectively to model microstructure evolution in the rolling processes
of various materials. General characteristics of flat rolling is required for the modeling
of the process (Figure 13). Analytical solutions and advanced numerical models can be
used to obtain the process parameters and their average values. FCA modeling is based on
the information about the duration of plastic deformation, the time intervals between the
deformations, temperature, strain rate, etc.
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The developed modeling system can be adapted to model various materials. The
overall model of this process has been comprehensively verified, for example, for modeling
the evolution of the microstructure in AISI 304L stainless steel [34].

Simulations of microstructure evolution can be a part of more complex modeling
system or performed independently. It can be realized in three modeling stages (Figure 14):
design of rolling schedule, finite element method simulation, and frontal cellular automata
simulation of microstructure evolution. The second and third stages can be repeated
several times.
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A detailed description of first stage and the designed schedule can be found else-
where [35]. The examples of simulation results of the second stage can be found in detail
elsewhere [36]. The third stage includes the FCA simulation of the microstructure evolution,
which can be performed for any representative point (for which data can be obtained) using
any FEM code. For the calculation, information on the time, temperature, and strain rate
tensor are used. More information on this stage can be found elsewhere [37]. The developed
shape rolling scheme can be applied, in principle, to any material. Simulation, prediction,
and validation of the evolution of microstructures in AISI 304L stainless steel during the
shape rolling process were presented in one of the unpublished works [38]. Other results
can be found elsewhere [39].

4.6. Grain Refinement and Modeling of Severe Plastic Deformation

The main principles of severe plastic deformation (SPD) modeling based on grain
refinement using the presented FCA platform are described in [40] and their references.
Then, several SPDs were modeled: accumulative roll bonding process and MaxStrain
technology [41,42].

Another innovative combined metal forming process, which can be treated as one of
the SPD techniques, consists of three different modes of deformation: asymmetric drawing
with bending, namely accumulated angular drawing, wire drawing, and wire flattening,
which was also modeled on the FCA platform [43].
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The evolution around highly reactive interfaces in the processing of nanocrystallized
multilayered metallic materials has been investigated and discussed in [44].

5. LBM-Based Platform for Modeling of Advanced Additive Manufacturing
Characterized by the Changes of State of Matter

Authors took part in a development of a new modeling platform presented firstly
in [45]. Additive manufacturing (AM) technologies that contain phase transitions are a
main subject for the three-dimensional simulation on the platform. It is based on LBM with
CA elements and was primarily oriented on selective laser melting (SLM). An example
of calculation of the model parameters for the real material (Ti-6Al-4V alloy) and the real
process is presented in [45]. It contains also the first quantitative results. It can be used
for analysis of new multipasses and multimaterials SLM processes and can be served
for computer-aided design. The principles and evolution of the development platform
can be found by tracking previous publications presented in the references of the cited
publications [45]. Other aspects of this LBM-CA platform can be found elsewhere [46,47].
Some essential details of the platform are presented below.

Figure 15 represents the proposed scheme, where the process is divided into dif-
ferent stages according to the associated physical phenomena, which are related to the
corresponding mathematical models.

Materials 2021, 14, x FOR PEER REVIEW 18 of 23 
 

 

5. LBM-based platform for modeling of advanced additive manufacturing character-
ized by the changes of state of matter 

Authors took part in a development of a new modeling platform presented firstly in 
[45]. Additive manufacturing (AM) technologies that contain phase transitions are a main 
subject for the three-dimensional simulation on the platform. It is based on LBM with CA 
elements and was primarily oriented on selective laser melting (SLM). An example of cal-
culation of the model parameters for the real material (Ti-6Al-4V alloy) and the real pro-
cess is presented in [45]. It contains also the first quantitative results. It can be used for 
analysis of new multipasses and multimaterials SLM processes and can be served for com-
puter-aided design. The principles and evolution of the development platform can be 
found by tracking previous publications presented in the references of the cited publica-
tions [45]. Other aspects of this LBM-CA platform can be found elsewhere [46,47]. Some 
essential details of the platform are presented below. 

Figure 15 represents the proposed scheme, where the process is divided into different 
stages according to the associated physical phenomena, which are related to the corre-
sponding mathematical models. 

 
Figure 15. Schematic representation of interconnection between analyzed process physical phenom-
ena and models [45]. 

The powder bed generation (PBG) model with some results was published in [46,48]. 
The first a simplified model of heat transfer was presented in [48,49]. The CA method was 
the basis of these two models. For the other models, the LBM was used [45,47,49].  

In this paper, we present a model of powder particles removal that was developed 
on the general principles of the platform with the use of LBM, as in section 3. It can be also 
used for optimization of micro vacuum material removal system. The main LBM blocks 
for gas flow in this model are the same (Figure 3). The same velocity model (D2Q9) is 
applied. The model contains equations that describe the particles motion in the gas. The 
new horizontal vx and vertical vy velocity components are calculated as follows: 𝑣 (𝑡 + 1) = 𝑚𝑣 (𝑡) + (1 − 𝑚)𝑣 (𝑡) (25) 𝑣 (𝑡 + 1) = 𝑚𝑣 (𝑡) + (1 − 𝑚)𝑣 (𝑡) − 𝑔 (26) 

where m—particle mass; g—gravity. The mass m and gravity g are dimensionless in the 
models. The mass m varies from zero ( m = 0, very small, light particles) to unity ( m = 1, a 
very heavy particle). The gravity g depends on the modeling parameters: lattice size, time 

Figure 15. Schematic representation of interconnection between analyzed process physical phenom-
ena and models [45].

The powder bed generation (PBG) model with some results was published in [46,48].
The first a simplified model of heat transfer was presented in [48,49]. The CA method was
the basis of these two models. For the other models, the LBM was used [45,47,49].

In this paper, we present a model of powder particles removal that was developed on
the general principles of the platform with the use of LBM, as in Section 3. It can be also
used for optimization of micro vacuum material removal system. The main LBM blocks
for gas flow in this model are the same (Figure 3). The same velocity model (D2Q9) is
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applied. The model contains equations that describe the particles motion in the gas. The
new horizontal vx and vertical vy velocity components are calculated as follows:

vp
x(t + 1) = mvp

x(t) + (1−m)vx(t) (25)

vp
y (t + 1) = mvp

y (t) + (1−m)vx(t)− g (26)

where m—particle mass; g—gravity. The mass m and gravity g are dimensionless in the
models. The mass m varies from zero ( m = 0, very small, light particles) to unity (m = 1, a
very heavy particle). The gravity g depends on the modeling parameters: lattice size, time
step, and particle size. For very small particles, when the gas resistance is high, g = 0. For
big, very heavy particles, the lattice size and time step define the gravity, g = gmax.

The location of a particle is a continuous variable, while the velocity field is discretized.
A new position is calculated according to simple Euler’s integration scheme:

xp(t + 1) = xp(t) +
up

x(t + 1) + up
x(t)

2
(27)

yp(t + 1) = yp(t) +
up

y (t + 1) + up
y (t)

2
(28)

An analysis of simulation results shows that particle removal with the use of only a
vacuum function is highly dependent on the gap. When the gap is wider, the effectiveness
is lesser, and the control of the gap is difficult. To enforce movement in the opposite
direction and turbulences, an additional inflow channel with much higher gas pressure
was proposed. An example of a simulation result is presented in Figure 16. The modelling
space was 128 × 128 cells or nodes. To make this scheme more effective, strong gas stream
is forced in the horizontal direction. Other designs of removal systems can be analyzed by
this model.
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Figure 16. Modeling results showing inflows and outflows in the removal equipment.

In Figure 17, examples of two cases of SLM simulation are presented. The modeling
space was 128 × 80 nodes. The presented results were obtained with the use of sequential
FORTRAN code on PC with Intel Core i7-3930 K, and calculations lasted about 3 h. The
similar simulations with parallel computations on GPU with CUDA technology using
the graphic card GeForce 1060 with 1280 CUDA cores lasted about 1.5 min, that is, about
100 times faster. The solid material is presented in gray and black, while the liquid material
is blue. The laser beam is shown by the green color. The intensity of heat transfer from the
laser beam to the materials is correspondent to intensity of pink and red colors. The case
of one material is presented in Figure 17a, whereas the case of two different materials is
presented in Figure 17b. It can be seen that the processing of two materials with a significant
difference in material properties is accompanied by the problem of melting the material
with a higher melting temperature, and solving this problem is one of the main goals of
here-presented development platform.
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Figure 17. Simulation results of the SLM process: (a) one material and (b) two different materials.

An example of modeling a 3D selective laser melting is presented in Figure 18. The
following conditions were assumed for the calculations: the average particle size is about
35–40 µm, the model space is x × y × z = 256 × 128 × 64 cells, the laser travel velocity is
1 m/s, and the laser power was equal to 200 W. Three passes are presented. The gray color
represents particles of powder and solidified material. The blue color corresponds to the
liquid phase of the material. The laser beam is shown in green. Other examples can be
found elsewhere [45].
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6. Conclusions

The paper presents basic information about modeling platforms based on relatively
new and little-known methods for modeling phenomena and processes in materials science
and engineering FCA and LBM.

The first platform for modeling microstructure evolution was first based on FCA,
which is very suitable for modeling processes of multiple nucleations and grain growth
in materials and allows for algorithmic acceleration of calculations with maintaining high
accuracy. Then, this platform was supplemented by the LBM, which is widely used not
only in hydrodynamics but also for modeling heat flow or diffusion processes. LBM can
also become the basic method for modeling complex processes and phenomena containing
not only flows but also different transformations of both the first and second type: both
state and phase transformations, including flow, diffusion, heat transfer, latent heat, and
many other phenomena that are difficult to consider with the use of other methods. The
components of the systems and their role in the comprehensive modeling of various
processes are shown. The first platform allows modeling of recrystallization, crystallization,
and phase transformation, and it is mainly oriented to model forming processes (flat, shape
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rolling, drawing, SPD, etc.). The performance of the systems was verified in application to
specific materials and process parameters, and the selected modeling results are presented.

The large variety of modeling phenomena creates opportunities for the expansion
of complex models that are homogeneous and do not need multiscale modeling with
a complex slow-acting interface between different methods. This aspect eliminates the
possibility of efficient and fast modeling. An advantage of using FCA and LBM is the ease
of parallelization of calculations on modern GPUs using, for example, CUDA software. The
use of several or tens of thousands of GPU processors allows accelerating the calculations
several hundred times. The developed systems also take into account solutions based on
parallel calculations, and examples of the results are shown.

The second platform for the modeling, design, and optimization of additive manu-
facturing is in development and is based on LBM and CA. Elimination of complicated
interfaces allows for modeling of the manufacturing process within the single integrated
platform. The platform is ready to be used for computer-aided analysis, optimization, and
design of multimaterial, multipass SLM cycles.

The second platform can be adapted for several other additive manufacturing (AM)
technologies that contain phase transitions (melting-solidification). Mainly, they are in-
cluded in the group of powder bed fusion techniques (PBF): DMLS (direct metal laser
sintering), SLS (selective laser sintering), MJF (multi-jet fusion), and EBM (electron beam
melting). It can be used for modeling other AM, for example, WAAM (wire arc additive
manufacturing) and FFF (fused filament fabrication), also known as FDM (fused deposition
modeling), etc. However, it requires additional efforts for the adaptation of existing models
and the development of missed ones.

The second platform can be expanded with modeling by CA (FCA) of microstructure
formation and evolution during the solidification.
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