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Abstract: In ferroelectric materials, phase boundaries such as the morphotropic phase boundary
(MPB) and polymorphic phase boundary (PPB) have been widely utilized to enhance the piezoelectric
properties. However, for a single-ferroelectric-phase system, there are few effective paradigms to
achieve the enhancement of piezoelectric properties. Herein, we report an unexpected finding that
largely enhanced piezoelectric properties occur in a single-tetragonal-ferroelectric-phase region in
the Sm-modified (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT-xSm) system. An electrostrain maximum (0.13%)
appears in the single-phase region of the BZCT-0.5Sm composition with the maximum polarization
(Pm = 18.37 µC/cm2) and piezoelectric coefficient (d33 = 396 pC/N) and the minimum coercive field
(EC = 3.30 kV/cm) at room temperature. Such an enhanced piezoelectric effect is due to the synergistic
effect of large lattice distortion and domain miniaturization on the basis of the transmission electron
microscope (TEM) observation and X-ray diffraction (XRD) Rietveld refinement. Our work may
provide new insights into the design of high-performance ferroelectrics in the single-phase region.

Keywords: lead-free ceramics; single ferroelectric phase; enhanced piezoelectric effect; c/a ratio;
miniaturized domains

1. Introduction

Piezoelectric materials have been widely used in numerous electromechanical applica-
tions such as sensors, transducers, and nano-positioners, representing a huge market valued
at approximately USD 25 billion [1–3]. Since the discovery of Pb(Ti,Zr)O3 (PZT) in the
1950s, the piezoelectric material market has been dominated by lead-based ceramics, such as
Pb(Ti,Zr)O3-based (PZT-based) or Pb(Mg,Nb)O3-PbTiO3-based (PMN-PT-based) ceramics,
due to their high piezoelectric and ferroelectric properties [4]. However, with increasing
environmental concerns about the toxicity of lead, it has become critical to develop lead-free
piezoelectric materials with similar excellent performance over a wide temperature range to
replace commercial lead-based ceramics in numerous electronic devices [5].

For more than sixty years, ferroelectric phase boundaries such as the morphotropic
phase boundary (MPB) and polymorphic phase boundary (PPB) have been widely utilized
in lead-based and lead-free piezoelectric systems to achieve ferroelectric ceramics with great
piezoelectric and ferroelectric properties [6–14]. At the phase boundary, the instability of the
polarization state caused by the phase transition between the several kinds of ferroelectric
phases leads to easy rotation of the polarization directions under external electric or stress
fields [15–17], and the miniaturized hierarchical domain structure of the composition
located in ferroelectric phase boundaries induces low-energy barriers to domain wall
motion [18–21]. As a result, such a composition can achieve a high piezoelectric coefficient
and electrostrain [22–25]. As the composition moves away from the phase boundary, the
coexisting ferroelectric phases transform into a single ferroelectric phase, resulting in the
stabilized polarization states and micro-sized domain structures [18]. The enhanced energy
barriers of polarization rotation and domain wall motion largely reduce the piezoelectric
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properties in a single-ferroelectric-phase region [1]. As a result, there is a rarely effective
pathway to enhance the piezoelectric properties by modifying a single ferroelectric phase.

Here, surprisingly, we found enhanced piezoelectric properties in the single tetragonal
ferroelectric phase in Sm-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT-xSm, where x is the
molar percent of Sm dopants) ceramics, differing from the modified piezoelectric properties
at the phase boundary by the introduction of Sm in previous studies [26–28]. The optimal
composition of the BCZT-0.5Sm ceramics exhibits an enhanced piezoelectric coefficient d33
and electrostrain and maximum polarization over a wide temperature range compared
with the adjacent samples with the same tetragonal phase. XRD refinement by the Rietveld
method and transmission electron microscope results show that the BCZT-0.5Sm ceram-
ics have a large c/a ratio and miniaturized domains, which may be responsible for the
enhanced properties of this material.

2. Experimental Procedure

((Ba0.85Ca0.15)1–1.5x/100Smx/100)(Zr0.1Ti0.9)O3 (BCZT-xSm, x = 0, 0.25, 0.5, 0.75, 1, and 1.5,
where x is the molar percentage of Sm) ceramics were prepared by a conventional solid-state
reaction route with BaCO3 (99.8%, Alfa Aesar), TiO2 (99.8%, Alfa Aesar), BaZrO3 (99%, Alfa
Aesar), CaCO3 (99.5%, Alfa Aesar), and Sm2O3 (99.99%, Alfa Aesar) powders. After complete
drying, the precursors were weighed and then ball-milled in alcohol with a zirconium oxide
milling ball and Nylon jar for 6–8 h. The powders were calcined at 1350 ◦C for 3 h after drying.
The mixture was ball-milled for a second time for 6–8 h, then dried, granulated with 5 wt.%
polyvinyl alcohol (PVA) solution, and compacted into pellets at 120 MPa. The green pellets
were sintered at 1450 ◦C for 5 h. Sliver paste was painted on both sides of the pellets, and the
pellets were heated at 700 ◦C for 30 min.

The crystal structure of the samples was characterized by X-ray diffraction (XRD)
using a Shimadzu XRD7000 from 20◦ to 85◦ at a step of 0.02◦ and a rate of 2◦/min with
CuKα radiation at a constant current of 30 mA and voltage of 40 kV. The refined spectrum
of XRD was measured at a step of 0.01◦ and a rate of 0.6◦/min. A field emission scanning
electron microscope (Quanta 250 FEG) was used to reveal the surface morphology of the
BCZT-xSm ceramics at an acceleration voltage of 10 kV. The density of all samples was
measured by the Archimedes method with the medium of water. The relative density of
all samples was above 96%. The temperature dependence of the dielectric permittivity (εr)
was measured from 150 ◦C to −100 ◦C by a HIOKI LCR meter at a cooling rate of 2 ◦C/min
(Delta temperature chamber). The dielectric spectroscopy oscillation voltage was 1 V, and
the LCR frequency was 1 kHz, 10 kHz, and 100 kHz. Polarization-electric field (P-E) loops
and electrostrain loops were tested at 10 Hz and 30 kV/cm by a Premier II ferroelectric test
system and MTI2100 measurements. The cylinder specimens with silver paste were poled
at 25 ◦C under a DC field of 1 kV/mm for half an hour, and the temperature dependences
of the piezoelectric coefficient d33 values were measured by a piezoelectric d33-meter
(Model ZJ-3B, Chinese Academy of Sciences) with a self-made temperature chamber (in a
silicon oil bath), which relied on collector magnetic stirrer (LANSGT 101S) warming and
liquid nitrogen cooling. The local microstructural evolution and corresponding diffraction
patterns were obtained by a JEOL-2100F high-resolution transmission electron microscope
(TEM) equipped with a double-tilt heated sample stage at an acceleration voltage of 200 kV
and analyzed by the Digital Micrograph software.

3. Results and Discussion
3.1. Sample Characterization and Microstructure

Figure 1a shows the surface morphology of the BCZT-xSm ceramics. All samples
had a densely packed microstructure with a uniform grain size distribution. The normal
distribution of the grains was obtained by the statistics of the grain size in the SEM images
by the ImageJ software, and the means and standard deviations of the grain sizes were
also obtained, as shown in Figure 1b. With the introduction of Sm, the grain size gradually
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decreased from 17.7 µm (x = 0) to 1.7 µm (x = 1.5). The decreasing trend of the grain sizes is
reported to be related to the decrease of the grain boundary mobility after doping [29].
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Figure 1. (a1–a6) SEM images and (b1–b6) normal distribution diagrams of the grain size statistics of
BCZT-xSm (x = 0, 0.25, 0.5, 0.75, 1 and 1.5) ceramics; mean values and standard deviations are marked
in the statistics diagram. XRD patterns and the Rietveld refinement of the XRD data for BCZT-xSm
with (c1) x = 0, (c2) x = 0.25, (c3) x = 0.5, (c4) x = 0.75, (c5) x = 1, and (c6) x = 1.5.

From the XRD patterns of different Sm-doped ceramics, it can be seen that the crystal
structure was a pure perovskite structure without any secondary phase in the range of 20◦

to 85◦ [26–28,30]. Figure 1c shows the XRD Rietveld refinement results of the BCZT-xSm
(x = 0, 0.25, 0.5, 0.75, 1, and 1.5) ceramics by the GSAS-EXPGUI program, which were well
fit to the observed data. The refinement of the diffraction patterns showed that all Sm
modified samples were in the ferroelectric tetragonal (T) phase with the P4mm space group
at room temperature [31]. In addition, the reliability factors (Rp), error factors (χ2), and
lattice parameters are listed in Table 1. The low Rp (%) and χ2 (%) of the samples illustrate
the reliability of the refined XRD results. As shown in Table 1, when the doping amount of
Sm was 0.5, the lattice distortion (c/a ratio) was the highest (1.0046), while it was 1.0041 for
BCZT-0.25Sm and 1.0042 for BCZT-0.75Sm.
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Table 1. Structure parameters of BCZT-xmol%Sm obtained by Rietveld refinement.

Composition Rp (%) Error Factor
χ2 (%) Space Group a (Å) b (Å) c (Å) c/a α/β/γ Unit Cell

Volume (Å3)

x = 0 [32] 7.57 P4mm
Pmm2

3.971(5)
4.012(1)

3.971(5)
4.012(1)

4.007(0)
4.012(1)

1.009
1

90/90/90
89.6/89.6/89.6

63.2017
64.5845

x = 0
x = 0.25

8.78
8.91

1.88
1.98

P4mm + Pmm2
P4mm

4.005(3)
3.993(6)

4.005(3)
3.993(6)

4.014(9)
4.009(7)

1.0024
1.0041

90/90/90
90/90/90

64.3526
63.9489

x = 0.5 7.98 1.57 P4mm 3.996(8) 3.996(8) 4.015(3) 1.0046 90/90/90 64.1425
x = 0.75
x = 1
x = 1.5

7.15
8.13
7.82

1.36
1.63
1.44

P4mm
P4mm
P4mm

3.996(8)
3.996(9)
3.997(1)

3.996(8)
3.996(9)
3.997(1)

4.013(6)
4.010(9)
4.008(0)

1.0042
1.0035
1.0027

90/90/90
90/90/90
90/90/90

64.0796
64.0749
64.0350

Rietveld refinement of these modified BCZT-Sm XRD results showed that the c/a
ratio increased and then decreased sharply, which may be affected by the electronegativity
and ionic radius of Sm. In addition, by calculating the tolerance factor, as shown in the
following equation, it can be seen from Table 2 that, with the increase of Sm ion doping
content, the tolerance factor decreased continuously.

t =
RA + RO√
2(RB + RO)

where RA is the effective ionic radius of the A-site, RB is the effective ionic radius of the B-site,
and RO is the effective ionic radius of the O-site. As the tolerance factor became smaller, the
tetragonal structure became more unstable and transformed into a cubic structure [33–35]. The
characteristic peak splitting gradually disappeared, leading to the decrease of the c/a ratio.

Table 2. Tolerance factors and differences for several different compositions.

Composition t

x = 0.25 1.0408
x = 0.5 1.0406

x = 0.75
x = 1

x = 1.5

1.0393
1.0376
1.0357

3.2. Dielectric and Ferroelectric Properties at Room Temperature

Figure 2a–g show the temperature-dependent permittivity curves upon cooling of
BCZT-xSm (x = 0, 0.25, 0.5, 0.75, 1, and 1.5) ceramics at different frequencies (1 kHz, 10 kHz,
and 100 kHz) and the dielectric loss at 100 kHz. With the increase of the Sm concentration,
the maximum permittivity at the Curie temperature gradually decreased. When the doping
concentration of Sm was 1.5, the dielectric permittivity curves exhibited diffuse phase
transitions from cubic to tetragonal and from tetragonal to orthorhombic, indicating a
reduction in the difference between cubic symmetry and ferroelectric non-center symmetry,
as well as the disruption of long-range-order ferroelectric domains. As shown in Figure 2h,
with the increment of Sm, the Curie temperature (TC) gradually increased and then de-
creased. In addition, the temperature of the tetragonal (T) to orthorhombic (O) phase
transition remained almost constant (10 ◦C) away from room temperature. Therefore, the
BCZT-xSm ceramics exhibited a ferroelectric tetragonal phase at room temperature, which
was consistent with the results of the Rietveld-refined XRD.

Figure 3a,b show the polarization-electric field (P-E) loops and electrostrain loops
of the unmodified BCZT and BCZT-xSm ceramics at 30 kV/cm in the tetragonal-phase
region, whose temperature was 10 ◦C higher than that of the T-O phase boundary. With
increasing Sm doping concentration, the P-E loops and electrostrain curves became slim,
indicating the miniaturization of the ferroelectric domains. To elucidate the changes in
the ferroelectric, piezoelectric, and electromechanical properties after introducing Sm to
the BCZT system, Figure 3c–f display the composition-dependent maximum polarization
(Pm), coercive field (EC), strain, and piezoelectric coefficient (d33) in the single tetragonal
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phase. As shown in Figure 3c, the BCZT-0.5Sm ceramic exhibited an enhanced effect of the
piezoelectric properties, which showed a larger Pm (18.37 µC/cm2), strain (0.13%), and d33
(396 pC/N) and a lower EC (3.30 kV/cm) compared with those of other ceramics. With the
introduction of more Sm dopants (x = 1 and 1.5), the normal ferroelectric tetragonal phase
gradually transformed to a relaxor state, leading to the degradation of the piezoelectric and
ferroelectric properties. The above results indicated that the BCZT-0.5Sm ceramic exhibited
an enhanced piezoelectric effect in a single ferroelectric phase.
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3.3. Enhanced Piezoelectric Properties over a Wide Temperature Range

Furthermore, this enhancement effect could exist not only at room temperature,
but also over a wide temperature range across the tetragonal phase. The temperature-
dependent polarization-electric field (P-E) loops and electrostrain loops of the BCZT-xSm
(x = 0.25, 0.5, 0.75) ceramics from 20 ◦C to 100 ◦C are shown in Figure 4a–c. Compared with
the BCZT-0.25Sm and BCZT-0.75Sm ceramics, the BCZT-0.5Sm ceramic showed larger Pm
and strain and lower EC upon heating (Figure 4d–f). Figure 4g presents the temperature-
dependent piezoelectric coefficient d33 when heated from −20 ◦C to 100 ◦C. The d33 change
of the BCZT-xSm ceramics peaked around 10 ◦C, indicating the T-O phase boundary [36].
With further heating, the d33 of the BCZT-0.5Sm ceramic was much larger than that of the
BCZT-0.75Sm ceramic in the single-tetragonal-phase region. It is clear from the temperature-
dependent results that the enhancement effect of the BCZT-0.5Sm ceramic in a single
ferroelectric phase worked over a wide range of temperatures below TC.

3.4. Properties’ Microstructure Relationship in a Single-Phase Region

In order to reveal the enhanced piezoelectric effect of the Sm-modified BCZT ceramics,
the microstructure of different compositions was probed from the (100) zone axis by
transmission electron microscopy (TEM). Figure 5(a1–f1) show the ferroelectric domain
structures and the corresponding average domain sizes of the BCZT-xSm (x = 0, 0.25, 0.5,
0.75, 1, and 1.5) ceramics [31,37] in Figure 5(a2–f2), respectively. Figure 5(b1,d1) display
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the lamellar domain patterns of the BCZT-0.25Sm and BCZT-0.75Sm ceramics, while for
the BCZT-0.5Sm ceramic, the domain pattern showed a hierarchical structure, as shown in
Figure 5(c1). Compared with the average domain size of the BCZT-0.25Sm (120 nm–240 nm)
and BCZT-0.75Sm (160 nm–300 nm) ceramics, the average domain size of the BCZT-0.5Sm
ceramic was the lowest (100 nm–200 nm).
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For ferroelectrics, the electric-field-induced strain comes from two aspects, that is
the intrinsic contribution from electrostriction and the inverse piezoelectric effect and the
extrinsic contribution from the domain wall motion [38–42]. For electrostriction, when
an external electric field is applied, ions shifting away from the equilibrium sites lead
to the variation of the lattice parameters and the relative strain [43,44]. Therefore, the
large lattice distortion, indicating a large variation of the lattice parameter, favors the
maximum polarization (Pm) and piezoelectric coefficient (d33) and the intrinsic contribution
of electrostriction for electric-field-induced strain [45]. On the other hand, the electrostrain
is also generated by the motion of ferroelectric non-180◦ domain walls, accompanied by a
hysteresis from the energy barrier of domain rotation [44,45]. Therefore, even though the
domain sizes of BCZT-1Sm and BCZT-1.5Sm were also reduced, the XRD peak splitting
was gradually less pronounced at this time, and the spontaneous polarization was reduced,
resulting in a lower polarization response under an external electric field, a gradual decrease
in polarization and strain, and a reduction in the notification hysteresis.
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As shown in Figure 6, after introducing Sm into the BCZT ceramics, the average
domain size of BCZT-0.5Sm was the smallest, indicating the flattened energy distribution
for domain wall motion and a low coercive field (Ec) for polarization rotation [46–48]. The
easier domain wall movement induced by the miniaturized domain favored the maximum
polarization (Pm) and piezoelectric coefficient (d33) and the extrinsic contribution of electric-
field-induced strain. Therefore, an enhanced piezoelectric effect was exhibited in a single-
ferroelectric-tetragonal-phase region owing to the extrinsic contribution of the miniaturized
hierarchical domain structure and the intrinsic contribution of the large lattice distortion.
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4. Conclusions

In summary, the enhanced piezoelectric effect was reported in the single ferroelectric
tetragonal phase of Sm-modified BCZT ceramics. The phase diagram showed that the Curie
temperature firstly increased and then decreased, while the temperature of the tetragonal and
orthorhombic phase transition almost kept the same (10 ◦C) with the increment of the Sm
concentration. Compared to BZCT-0.25Sm and BZCT-0.75Sm, BZCT-0.5Sm had the largest
electrostrain (0.13%), maximum polarization (18.37 µC/cm2), and piezoelectric coefficient
(396 pC/N) and the lowest coercive field (3.30 kV/cm) at room temperature. Based on the
refined XRD results and TEM observation, the BCZT-0.5Sm ceramic showed the largest lattice
distortion (c/a ratio = 1.004737) and a miniaturized hierarchical domain structure, where
the average domain size was 100 nm–200 nm. In addition, such an enhanced piezoelectric
effect can be maintained over a wide temperature range from −50 ◦C to 75 ◦C, including
tetragonal and orthorhombic phase ranges. Our work may provide an efficient route to design
high-performance ferroelectric materials in a single-ferroelectric-phase region
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