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Abstract: The chemical corrosion aging of plutonium is a very important topic. It is easy to be
corroded and produces oxidation products of various valence states because of its 5f electron orbit
between local and non-local. On the one hand, the phase diagram of plutonium and oxygen is
complex, so there is still not enough research on typical structural phases. On the other hand, most
of the studies on plutonium oxide focus on PuO2 and Pu2O3 with stoichiometric ratio, while the
understanding of non-stoichiometric ratio, especially for Pu2O3-x, is not deep enough. Based on this,
using the DFT + U theoretical scheme of density functional theory, we have systematically studied the
structural stability, lattice parameters, electronic structure, mechanical and optical properties of six
typical high temperature phases of β-Pu2O3, α-Pu2O3, γ-Pu2O3, PuO, α-PuO2, γ-PuO2. Further, the
mechanical properties and optical behavior of Pu2O3-x under different oxygen vacancy concentrations
are analyzed and discussed in detail. The result shows that the elasticity modulus of single crystal in
mechanical properties is directly related to the oxygen/plutonium ratio and crystal system. As the
number of oxygen vacancies increases, the mechanical constants continue to increase. In terms of
optical properties, PuO has the best optical properties, and the light absorption rate decreases with
the increase of oxygen vacancy concentration.

Keywords: plutonium oxides; density functional theory; numerical simulation; optical properties

1. Introduction

The study of plutonium and its oxides has received continuous attention due to the
complexity of the 5f state localized local/discrete domain of plutonium (Pu), resulting
in a complex and rich phase diagram of plutonium oxide [1–3]. Plutonium and its oxide
are important components of mixed oxide fuel in fast breeder reactors and advanced
heavy water reactors [4–11], which plays an important role in the nuclear industry. Of
course, they may also be stored as radioactive waste for long periods [12]. The phase
diagram of plutonium oxide is intricate by the presence of multiple suboxides. It is
recognized that the initial oxidation of plutonium produces trivalent sesquioxides (Pu2O3),
followed by the trivalent dioxides (PuO2). The coexistence of PuO2 and plutonium leads
to a reduction reaction of 3PuO2 + Pu→ 2Pu2O3, which is feasible in thermodynamics
and results in a Pu2O3/Pu interface. In plutonium oxide layer, other non-stoichiometric
plutonium oxides PuO2-x (0 < x < 0.5) can also be formed. The ratio of Pu2O3 to PuO2 is
very sensitive to temperature and other external environments [1,13–17]. Generally, the
base state of plutonium suboxide is the hexagonal structure β-Pu2O3 (P3m1), in addition,
there is another oxide with a body-centerd cubic structure (α-PuO1.52) [18]. Further studies
revealed that the cubic phase sesquioxide-plutonium (α-Pu2O3) also exists stably.α-Pu2O3
consists of 32 plutonium atoms and 48 oxygen atoms (Ia-3 space group) but it has not been
prepared as a single-phase compound. This is because α-Pu2O could only be stable below
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300 ◦C and can be partially reduced on PuO2 by the mixture of PuO1.52 and PuO1.98 [19] at
high temperature, and then cooled to room temperature. Above 650 ◦C, 18 low-valence
oxides between PuO1.61 and PuO2 (i.e., PuO1.61+y) mainly exist in a single-phase structure
and can be prepared by reducing PuO2 to carbon or hydrogen in vacuum [19]. So far,
their final structure of this phase has yet to be determined. However, above 650 ◦C,
18 low-valence oxides between PuO1.61 and PuO2 (i.e., PuO1.61+y) are likely to be the
subchemometric plutonium dioxide (PuO2) phase. Additionally, the structure of PuO1.61 is
closely related to cubic PuO1.52. Therefore, it can be preliminarily described as the same
cubic structure with 32 metal atoms and 51/52 oxygen atoms in a single cell. In contrast, in
XRD measurements above 300 ◦C, [19] only strong pseudo-face-centered cubic reflections
can be observed. Above 650 ◦C, PuO2 can survive in a super-poor oxygen state, where the
oxygen stoichiometry ratio can be reduced to PuO1.7 or even PuO1.6 [20]. The presence of
oxygen also confirmed from density measurements at 750 ◦C vacancies, rather than the
formation of interstitial plutonium ions.

Theoretically, it is a challenge to study plutonium oxides within the framework of
electronic structure calculation based on standard Density Functional Theory (DFT). Due
to the narrow f -band, close proximity to d and s orbitals in the metallic element plutonium,
the phenomena of significant dynamic charge rise and fall exhibit in metallic bonds [21–24].
In the standard framework of local density generalization and generalized gradient gen-
eralization, the local effect of f- electrons caused by strong electron-electron interaction is
not captured. To overcome this difficulty, different methods such as calculations involving
self-interaction corrections (SIC) [25,26], mixed exchange correlation functions [27,28] or
intra-atomic Coulomb interactions (Hubbard’s U-parameters) [29–33] have been proposed
and applied to study the two stoichiometric oxides (PuO2, Pu2O3) in terms of structural,
electronic, thermodynamic and optical properties [34–36]. Raymond et al. [37] calculated
the electronic properties of the native (1120) surfaces of β-Pu2O3 and found that the anti-
ferromagnetic structure was more stable than the ferromagnetic structure. Lu et al. [38]
used DFT + U method to determine the stability of charged defects in PuO2. Petit et al. [25]
analyzed the electronic structures of PuO2.25, PuO1.75 and PuO2 using the SIC approxima-
tion. Agarwal et al. [39] used the Gibbs Free Energy Model to calculate the phase diagram
of PuO2-x (0 < x < 0.5) and observed the mixed-phase gap behavior of PuO2 and PuO1.7.
The results showed that the pure up Pu-O system can reduce to 60% of the plutonium to
the +3 oxidations state while maintaining the face-centerd cubic (fcc) structure. However,
there are still few studies on high-temperature phase stability, electronic structure and
formation mechanism of non-chemiscale PuO2 and Pu2O3, especially for typical high-
temperature phases and Pu2O3-x (0 < x < 1) with different concentrations of oxygen vacancy
defects. In this paper, the mechanical and optical properties of six typical high-temperature
phase structures of Pu oxides are systematically discussed by DFT + U method, including
β-Pu2O3, α-Pu2O3, γ-Pu2O3, PuO, α-PuO2, γ-PuO2. Considering the obvious influence of
vacancy defects on the properties of the system [40], we have also focused on the mechani-
cal and optical properties of β-Pu2O3, structures with different concentrations of oxygen
vacancy defects.

2. Computational Methods

First-principles calculation is carried out using the VASP (Vienna ab initio simulation
package) software package [41]. The generalized-gradient approximation (GGA) with
Perdew-Burke-Emzerhof (PBE) form [42] was used to describe the exchange-correlation
functional. Setting the cut-off energy as 540 eV, we take the 6s27s26p66d25f4 of pluto-
nium and the 2s22p4 electrons of O as valence electrons [43] to participate in the cal-
culation. The in situ repulsive energy of the plutonium 5f orbital electrons is consid-
ered in the calculations, and the values of U and J are, respectively, 4. 75 eV and 0.
75 eV [44]. For the calculations of the β-Pu2O3, α-Pu2O3, γ-Pu2O3, PuO, α-PuO2, and
γ-PuO2 and the Monkhorst-Pack k-point grid for the Brillouin zone integral were sampled
on 10 × 10 × 6(β-Pu2O3), 7 × 7 × 7(α-Pu2O3), 10 × 10 × 7(-Pu2O3), 8 × 8 × 8(PuO),
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8 × 8 × 8(α-PuO2), 7 × 7 × 10(γ-PuO2) [7]. All structures were completely relaxed and the
residual force was less than 0.01 eV/Å.

Spin-polarized are included in structural optimizations. Here, we consider three
possibilities for the magnetic states: nonferromagnetic (NM), ferromagnetic (FM) and
antiferromagnetic (AFM) for all the oxides, see Table S1. In the following FM calculations,
we use the collinear 1-k structure where the atomic spin moment is along the [001] direction.
Energy formation is the total energy of a crystal minus the energy of the individual atoms
contained in the crystal. In order to analyze the structural stability of the six plutonium
oxides, their energy formation (Eform) has been calculated,

E f orm = [Etot (PumOn)−mEtot(Pu)− nEtot (O)]/(m + n)) (1)

where m and n are the number of Pu and O atoms in the supercell. Respectively, Etot (PumOn),
Etot(Pu) and Etot (O) are the total energy of per atom in their solid state. In general, the
lower the formation energy, the more stable the solid solution. Additionally, the lower the
formation energy of impurities, the more efficient the doping process.

For the six plutonium oxides, three independent elastic stiffness constants C11, C12,
C44 were calculated by Voigt Method and obtained the Bulk Modulus (B), Shear Modulus
(G), Young’s Modulus (E) and Poisson’s Ratio (υ). It is calculated as follows:

B =
1
3
[C11 + 2C12 ] (2)

G =
1
5
[C11 − C12 + 3C44] (3)

E =
9BG

3B + G
(4)

υ =
3B− 2G

2(3B + G)
(5)

Other than that, Debye temperature is also closely related to the elastic constant. Based
on the estimation of the average speed of sound (vm) in a given material, the commonly
used method of calculating Debye temperature is as follows:

θD =
h
k

[
3n
4π

(
NAρ

M

)1
] 1

3

vm (6)

As shown in the formula above, h, k, NA, n, M and ρ represent Planck’s Constant,
Boltzmann’s Constant, Avogadro’s Number, the atoms, molecular weight and density
of organic cations. The average sound velocity (vm) can be calculated by shear velocity
(vt) and compression velocity (vl), respectively. vm is related to vt and vl and are listed
as follows:

vt =
√

G/ρ (7)

vl =

√(
B +

3
4

G
)

/ρ (8)

vm =

[
1
3

(
2

v1
3 +

1
vt3

)]− 1
3

(9)

The optical properties of a compound are described by a complex function. The
imaginary part of the dielectric tensor is determined by the sum of the following empty
band states:

ε2(ω) =
2πe2

Vε0
∑
k,v,c

δ(Ec
k − Ev

k − }ω)
∣∣〈Ψc

k
∣∣µ·r |Ψ v

k
〉∣∣2 (10)
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ε0 is the vacuum dielectric constant, V is the crystal volume. v and c, respectively,
denotes the valence and conduction bands. }ω is the energy of the incident phonon.
u is defined as the vector of incident electric field polarization. µ·r is the momentum
operator. Ψc

k and Ψv
k are the wave functions of point k the conduction and valence

bands, respectively. The real part of the dielectric tensor is proposed by the well-known
Kramers-Kronig relation:

ε1(ω) = 1 +
2
π

P ∑
k,v,c

∫ ∞

0

ε2(ω
′)ω′

ω′2 −ω2 + iη
dω′ (11)

3. Results and Discussion
3.1. Crystal Structure Analysis

Plutonium oxide has multiple structures, and Figure 1 shows the crystal structure
parameters and local charge density of six plutonium oxides. Pu2O3 has three forms, with
β-Pu2O3 containing in the tripartite crystal system (P3m1 space group), α-Pu2O3 containing
in the cubic crystal system (Pn3m space group) and γ-Pu2O3 containing in the tetragonal
crystal system (P4m2 space group). PuO belongs to the cubic crystal system (Fm3m space
group). The PuO2 exists in two forms and α-PuO2 belongs to the cubic crystal system
(Fm3m space group) and γ-PuO2 belongs to the tetragonal crystal system (P42/mnm)
space group. Through structural optimization, their equilibrium lattice constants were
calculated and listed in Table 1.
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Figure 1. Optimized geometries of (a) β-Pu2O3, (b) α-Pu2O3, (c) γ-Pu2O3, (d) PuO, (e) α-PuO2,
(f) γ-PuO2 are shown in the figure above. The gray atoms indicate the Pu atoms. The red atoms
indicate O atoms. Their local electronic density states are also listed. Pu and O atoms are represented
in blue and red color, respectively.
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Table 1. Lattice parameters of β-Pu2O3, α-Pu2O3, γ-Pu2O3, PuO, α-PuO2, γ-PuO2, include formation
energy, lattice constant and bond angle α, β, γ.

Plutonium Oxide Formation Energy (eV) a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦)

β−Pu2O3 −3.411 3.76 3.76 5.97 90 90 120
α−Pu2O3 −3.357 5.38 5.38 5.38 90 90 90
γ−Pu2O3 −3.401 3.76 3.76 5.97 90 90 120

PuO −2.808 4.97 4.97 4.97 90 90 90
α−PuO2 −3.673 3.76 3.76 5.97 90 90 120
γ−PuO2 −3.507 3.76 3.76 5.97 90 90 120

The formation energies of the six oxides were calculated according to Equation (1). As
shown in Table 1, the formation energies of all six plutonium oxides are negative, which
indicates that the formation of the compounds is exothermic. β-Pu2O3 and γ-Pu2O3 have
the same lattice constants a, b, c and bond angles α, β, γ, but β-Pu2O3 has a lower formation
energy. β-Pu2O3 structure is more energetically stable than γ-Pu2O3. By comparison, the
formation energies of the two PuO2 structures show that the α-PuO2 structure is more
stable than the γ-PuO2 structure.

3.2. Band Structure and Density of Electronic States

As shown in Figure 2, we have calculated the energy band diagrams and total electron
density of states (TDOS) diagrams to investigate the properties of the six plutonium oxides.
Based on the properties of plutonium, spin orbit coupling is considered in our calculations.
From Figure 2a–f, we can see that electrons with the same spin state are concentrated near
the Fermi energy level, and at energies below −2 eV. The TDOS is contributed by both
spin-up and spin-down electrons, and at energies −2 eV < E < 2 eV, β-Pu2O3 and α-PuO2 is
only contributed by spin up states in −2 eV to 2 eV, but with little effect of the spin-down
electronic states for β-Pu2O3 and α-PuO2 in −2 eV to 2 eV. Additionally, at energies greater
than 2 eV, the TDOS is mainly contributed by spin-down electrons. In view of this, we can
filter the electrons with different spin states according to different energy ranges, which is
of great importance for quantum applications.
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Figure 2. The upper left figure shows the electronic structure band, and the upper right figure shows the
total electron density of states (TDOS) of (a) β-Pu2O3, (b) α-Pu2O3, (c) γ-Pu2O3, (d) PuO, (e) α-PuO2,
(f) γ-PuO2. The red line is represented by electrons that spin downwards and the blue line is represented
by electrons that spin upwards. The location with an energy of 0 represents the Fermi level.
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In general, the stability of the material structure was determined by the position of the
value of the electronic density of states (DOS) at the Fermi energy level. For the metallic
system, the distribution of electronic DOS will span the Fermi level and have a great impact
on the properties of materials. In Figure 2, the red line indicates spin up, and the blue line
indicates spin down. We can see that the spin up electron density of the six plutonium
oxides crosses the Fermi level. However, only the electron densities of Figure 2b–d cross
the Fermi level for spin down electrons, while for spin down electrons, the band gaps of
Figure 2a,e,f are 4.46 eV, 4.85 eV and 4.11 eV. We have calculated the electronic projected
density of states (PDOS) of plutonium oxides, as shown in Figure 3. It shows that the overall
picture is similar and the electron contribution to the density of states can be discussed in
three intervals from Figure 3a–f. At energies below −1 eV, for β-Pu2O3, α-Pu2O3, α-PuO2
and γ-PuO2, the DOS is mainly contributed by the p-orbitals of the oxygen atom, while
the orbital contributions of γ-Pu2O3 and PuO are similar. Near the Fermi energy level, it
can be clearly seen that the f-orbiting electrons of the plutonium atom play a major role
and are contributed by the separate spin-up electron. We believe that for the six plutonium
oxides, the f-orbital electrons of Pu atom mainly contribute to the DOS at the Fermi level.
The contribution of O atom is small, because the energy of 2p electron in the outermost
layer of oxygen atom is smaller than 5f of Pu. At the same time, the 2p orbital electron of
oxygen atom has a large expansibility which means the degree of electron dispersion is
strong. From each figure, we can see an obvious spike in electronic density of states, which
is mainly caused by the strong localization of 5f orbital electrons of Pu atom.
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Figure 3. The electronic projected density of states (PDOS) of (a) β-Pu2O3, (b) α-Pu2O3, (c) γ-Pu2O3,
(d) PuO, (e) α-PuO2, (f) γ-PuO2.

3.3. Mechanical and Optical Properties

Table 2 shows the mechanical constants Cij of plutonium oxides. For a mechanically
stable material with a cubic structure [45,46], the independent elastic constants need to
meet the following three criteria C11 > |C12|, C44 > 0 and C11+2C12 > 0. The Bulk modulus
(B), Young’s modulus (E), Shear modulus (G) and Poisson’s rati (υ) of several plutonium
oxides are given in Table 3. Brittleness and ductility can be determined by the value of B/G.
When B/G is small, the material is brittle; otherwise, it is ductile. From the calculations, it
is possible to see that the B/G value of β-Pu2O3 is large and ductile. The bulk modulus (B)



Materials 2022, 15, 7785 7 of 14

indicates incompressibility, and Table 3 shows that PuO has the greatest incompressibility
followed by α-PuO2. The modulus of elasticity E is an important parameter to characterize
material stiffness, which mainly reflects compressive strength of the material. From Table 3,
we find that α-PuO2 has the highest stiffness. The Shear modulus (G) is a measure of the
ability of a material to resist shear deformation, and Table 3 shows that α-PuO2 has the
largest Shear modulus, so it has the strongest shear deformation resistance. In addition, the
smaller Poisson’s ratio is, the more brittle the material is. The result is consistent with our
analysis above.

Table 2. Values of mechanical constants Cij of each lead oxide.

C11 C12 C13 C14 C33 C44 C66

β−Pu2O3 253.275 122.725 151.414 8.55 228.163 −8.55 65.275
α−Pu2O3 305.341 4.798 4.798 - 305.341 −17.313 −17.313
γ−Pu2O3 226.968 127.209 92.974 - 259.606 54.821 96.290

PuO 425.817 112.785 112.785 - 425.817 45.283 45.283
α−PuO2 3925.219 2276.845 2276.845 - 3925.219 65.254 65.254
γ−PuO2 4966.565 5302.567 112.485 - 572.217 −433.486 445.562

Table 3. Values of the Young’s modulus (E), Bulk modulus (B) and Shear modulus (G) (in GPa), and
Poisson’s ratio (v) of each plutonium oxide.

Plutonium
Oxide

Bulk
Modulus (GPa)

Young’s
Modulus (GPa)

Shear
Modulus (GPa)

Poisson’s
Ratio

β-Pu2O3 176.2 155.78 57.58 0.35
α-Pu2O3 104.98 128.82 49.72 0.3
γ-Pu2O3 148.87 171.67 65.63 0.31

PuO 217.13 205.43 76.52 0.34
α-PuO2 209.49 281.5 110.3 0.28
γ-PuO2 175.13 153.61 56.73 0.35

The study of optical properties of materials is one of the most effective techniques
for analyzing various physical properties related to the electronic structure of materials.
The dielectric function, optical absorption spectrum and reflection spectrum of plutonium
oxide have been calculated and analyzed. The imaginary and real parts of the dielectric
functions of plutonium oxide with different structures are shown in Figure 4. In the low
energy region, the real part of the dielectric function decreases to low value with the energy
increasing and then increases slowly and then remains essentially constant. The imaginary
part of the dielectric function decreases as the energy increases in low energy region, a
new peak at energies above 20 eV, but the peak decreases. The curve for PuO is the most
unusual, with a unique peak in the low energy band. The absorption and reflection spectra
of different structures of plutonium oxide are shown in Figure 4c,d. It shows that the
photon absorption of plutonium oxides diminishes with the increasing wavelength. In
the visible range, the absorption decreases and then increases steadily with the increasing
wavelength. In the UV region, it shows that the different plutonium oxides have different
peaks of wavelength absorption. Compared with other plutonium oxides, the absorption
of some photons in the violet and UV regions is the strongest for PuO and forms the two
highest peaks evident, with the plutonium oxides reflecting more significantly in the visible
region and stable in the infrared region as the wavelength increases. PuO remains the most
unusual, with two distinct peaks. In Figure 4, the un-reported metastable oxide of α-Pu2O3
presents the highest dielectric properties. Light absorption spectra or reflection spectra also
present different absorbed properties.
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3.4. Mechanical and Optical Properties at Different Oxygen Vacancy Concentrations

After analyzing the previous research, we found that β-Pu2O3 is the most stable among
the six plutonium oxides structures, and at the same time its moldability and forgeability
are better. This is more meaningful and valuable for the research. The current research on
plutonium oxides mainly focuses on PuO and PuO2, but there are few studies on Pu2O3
under high temperature phase. So, we expanded the cell of β-Pu2O3 by 2 × 2 × 2 times
along the crystal direction to obtain the structure of β-Pu16O24. We studied the properties
under different oxygen vacancy concentrations after rounding off its oxygen atoms in the
ratio of 1:2:4:6 and obtained the electronic PDOS maps for (a) β-Pu16O23, (b) β-Pu16O22,
(c) β-Pu16O20 and (d) β-Pu16O18. The above is shown in Figure 5. In the energy region
below −4 eV, it is mainly the p orbitals of O atoms that contribute to the major DOS,
followed by the d and f orbitals and p orbitals of Pu atoms. There are no electronic states
that are occupied between energies −4 eV and −1 eV. As the energy continues to 0 eV, DOS
is mainly influenced by f-orbitals of Pu atom, followed by d orbitals of Pu atom, and there
is almost no contribution from the oxygen atom. Secondly, the contribution of the f orbitals
of Pu to the DOS decreases as the oxygen vacancy concentration increases.

Debye temperature is an important physical quantity that reflects the interatomic
bonding forces. The melting point of a material is positively correlated with the interatomic
bonding force. The Debye temperature increases with the values of Pu/O increasing; when
the value of Pu/O varies from 0.696 to 0.727, and decreases with the values of Pu/O
increasing. When it varies from 0.727 to 0.889, β-Pu16O22 has the strongest interatomic
bonding and the highest Debye temperature among the four calculated oxygen vacancy
plutonium oxide structures. The crystal structure is more complex, the anharmonic degree
of lattice vibrations is greater. If the lattice wave scattering is larger, the mean free path of
phonons is smaller, and the thermal conductivity is lower. Results show that the lattice
thermal conductivity of β-Pu16O23 is the lowest among the four oxygen vacancy plutonium
oxides, as shown in Table 4.
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Figure 5. The electronic Pre-Departure Orientation Seminar (PDOS) of (a) β-Pu16O23, (b) β-Pu16O22,
(c) β-Pu16O20, (d) β-Pu16O18.

Table 4. Values of the Debye temperature and lattice thermal conductivity of the studied structures.

Plutonium
Oxide

Debye
Temperature (K)

Lattice Thermal
Conductivity

β-Pu16O23 285.864 0.8124
β-Pu16O22 307.852 0.8501
β-Pu16O20 303.668 0.8250
β-Pu16O18 301.879 0.8535

To further investigate the properties of β-Pu2O3 at different oxygen vacancy concen-
trations, we calculated the transverse sound velocity (νt), longitudinal sound velocity (νl)
and average sound velocity (νm) of Pu16O23, Pu16O22, Pu16O20 and Pu16O18. The result
is shown in Figure 6a. The calculated Bulk modulus (B), Shear modulus (G), Young’s
modulus (E) and Poisson’s ratio (υ) were compared with the elastic constants of Pu32O62,
Pu32O60, Pu32O56 and Pu32O52 calculated by Ghosh et al. [47], which is shown in Figure 6b.
We found that Pu16O20 is more special and manifested mechanical constants of C11 > C33,
C66 > C44, while the values of C11, C33, C66, C44 kept increasing as the number of oxygen
vacancies of the other three oxides increases, which it always shows C11 < C33, C66 < C44.
Comparing with the values of Cij calculated by Ghosh et al. [47], who studied four plu-
tonium oxides and found that the values of C11, C33, C44, and C66 decrease gradually as
oxygen vacancies increase. From Figure 6a, it shows that the transverse sound velocity (νt),
longitudinal sound velocity (νl) and mean sound velocity (νm) increase with the values
of Pu/O increasing when the value of Pu/O varies from 0.696 to 0.727. They decrease
with the values of Pu/O increasing when the value of Pu/O varies from 0.727 to 0.889 f.
Shear modulus (G) is the ratio of shear stress to shear strain, which represents the ability of
materials to resist shear strain. If the modulus is larger, the material is harder. The ratio of
G to B (G/B) indicates the brittleness and toughness of material, and it can be found that
Pu16O20 has the best brittleness and toughness of the four plutonium oxides we studied,
while Pu16O23 has the smallest G/B value. That means the brittleness and toughness of
the material gradually increases as the value of Pu/O increases from 0.696 to 0.8, and is
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predicted to decrease when the values are greater than 0.8. It can be observed that Poisson’s
ratio (υ) gradually decreases as the value of Pu/O gradually increases from 0.69 to 0.8 and
then gradually increases again when the values are greater than 0.8. Compared with the
case calculated by Ghosh et al. [47], the study reveals that the oxygen vacancy profile of
β-Pu16O24 does not vary in a single way.
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Figure 6. (a) Values of average sound velocity (νm), longitudinal wave velocity (νl), shear wave
velocity (νt) of Pu16O23, Pu16O22, Pu16O20, Pu16O18 using VASP. (b) Values of the Young’s modulus
(E), Bulk modulus (B) and Shear modulus (G) (in GPa), and Poisson’s ratio (υ ) of Pu16O23, Pu16O22,
Pu16O20, Pu16O18 are compared with the values of Pu32O62, Pu32O60, Pu32O56, Pu32O52 calculated
by Ghosh [47,48].

The imaginary and real parts of dielectric function of plutonium oxide at different
oxygen vacancy concentrations are shown in Figure 7a,b. In the low energy region, the
values of both real and imaginary parts of the dielectric function decrease. As oxygen
atoms decrease, the energy gradually increases. The values of the real and imaginary parts
of the dielectric function increase as oxygen atoms decrease. Figure 7c shows the optical
absorption spectrum of plutonium oxide at different oxygen vacancy concentrations. The
main absorption peak is around 40 nm (in the vacuum UV region), which indicates that
most electrons can transition from the valence band to the conduction band by absorbing a
small amount of energy corresponding to the system band gap. When the wavelengths
are less than 700 nm, the absorption of light of the plutonium oxide increases with the
decreasing numbers of oxygen atoms at the same wavelength of incident light. When a
turnaround is near 700 nm, the absorption of the light of the plutonium oxide decreases
with the decrease of oxygen atoms. Figure 7d shows the reflection spectrum of plutonium
oxide at different oxygen vacancies. The reflection values are larger in the visible region
from 380–790 nm. It shows that when the wavelengths are less than 700 nm, at the same
wavelength, the light absorption of plutonium oxide increases with the decrease of oxygen
atoms. However, there is a turnaround and the light absorption of plutonium oxide
decreases as oxygen atoms decrease when wavelengths are around 700 nm. The change
in the negative dielectric function is well supported the conclusions obtained in optical
absorption spectrum and absorption spectrum.
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Figure 7. Real ε1(ω), imaginary ε2(ω) components of the dielectric function, light absorption spectra
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4. Conclusions

After systematically investigating the electronic structure, mechanical and optical
properties of plutonium oxides β-Pu2O3, α-Pu2O3, γ-Pu2O3, PuO, α-PuO2, γ-PuO2 and
β-Pu2O3-x at different oxygen vacancy concentrations by using the first principles, the
results show that the vicinity of the Fermi energy level is mainly determined by the spin-up
electron state of 5f orbital of Pu atom, while the spin-down electronic states of the 5f orbitals
are at higher energy levels. This is useful for distinguishing and screening the electrons
of different spin states. The higher the oxygen/plutonium ratio, the greater the bonding
between the crystalline atoms. The elastic modulus is higher, the material is harder. When
the oxygen/plutonium ratio is 1.5, the elastic modulus of the γ crystal system is higher than
β crystal system. The α crystal system is the smallest. However, at an oxygen/plutonium
ratio of 2, the elastic modulus of α crystal system is higher than γ crystal system. For the
study of the UV light of any of the plutonium oxides, PuO has the strongest absorption in
the UV region and the most unusual reflective properties, which there are two reflective
peaks in the entire waveband.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15217785/s1.
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