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Abstract: Grinding burn is an undesired defect in gear machining, and a white layer is an indication
of severe burn that is detrimental to gear surface performance. In this work, the influence of grinding
parameters on the thickness of the white layer during form grinding of quenched transmission gear
was investigated, and the microstructure evolution and mechanism of severe burn formation were
analyzed. The grinding temperature increased with the grinding depth and grinding speed, with
the highest level of ~290 ◦C. The thickness of the white layer exceeded 100 µm when the grinding
depth was 0.03 mm, and the top layer was a plastic deformation layer followed by a fine-grained
martensite layer. Coarse-grained acicular martensite was found at the interface between the white
layer and softened dark layer. The mechanical effect and thermal softening mainly contributed to
the formation of white layer stratification. The ground surface topography showed several scratches
and typical grooves; when grinding depth increased to 0.03 mm, the grinding surface roughness Sa
was relatively high and reached up to ~0.60 µm, mainly owing to severe plastic deformation under
grinding wheel extrusion and the thermal effect.

Keywords: gear grinding; white layer; grinding temperature; surface integrity

1. Introduction

With the fast development of the vehicle industry and the increasing demand for
transmission gears, it is important to manufacture gears with high quality and efficiency. For
heavy-duty gears, the gear blank is usually subjected to heat treatment such as carburizing,
nitriding, and quenching to meet the high hardness and toughness requirements. However,
the deformation caused by heat treatment reduces the dimensional accuracy of gears.
Grinding is normally applied as the final process in gear manufacturing to eliminate
geometric deformation generated during heat treatment and to produce components with
good geometric accuracy and surface quality [1–4]. Owing to the friction/shearing between
abrasive particles and workpiece material, the grinding temperature is relatively high.
Grinding burn occurs easily when the grinding parameters are unreasonable, which can
be defined as changes caused by heat release out of the grinding process in the surface
and subsurface layer of the workpiece [5]. Grinding burn originates from tempering and
thermal softening when the grinding temperature exceeds the tempering temperature
during grinding, and its essence is the transformation of the metallographic phase in
the surface layer [3,6]. Grinding burn is usually divided into three levels, including
predominantly dark blue oxide layers, thermal softening when the grinding temperature
exceeds the austenitizing temperature, and a white layer and dark tempered layer. Grinding
burn can induce machining defects such as microcracks on the ground surface [7].
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As grinding burn is highly related to the final quality of machined products, re-
searchers carried out an analysis on the formation mechanisms of grinding burn and how
to reduce the probability of it occurring. Guerrini et al. [1] found that, when the grinding
temperature exceeded 450 ◦C, a softened dark layer caused by carbon coming out of the
solution was observed below the gear surface, and the thickness of the tempered layer
increased with the grinding temperature. When the temperature exceeded the austenitiza-
tion temperature, a severe bright martensite layer was formed on the outermost surface. It
was found that the increase in cutting depth and feed speed led to higher level of grinding
burn [3]. Sun et al. [8] reported that a white layer structure was generated on the surface
layer after grinding hardening and its composition was analyzed, while the formation
mechanism of the white layer and its connection with grinding parameters have not been
further discussed. As the grinding depth increased, greater grinding energy was required
to remove materials [9]. This indicated that more energy was converted into heat and
significantly affected the workpiece surface. Su et al. [10] reported that the increase in
grinding depth increased the thickness of the ablated layer, while an appropriate increase
in feed speed and decrease in grinding speed could reduce the grinding temperature.
Zhou et al. [11] found that, when the abrasive particles cut or ploughed across the rail, the
grinding temperature decreased with the increasing forward speed, resulting in a small
thickness of the white layer. Jamshidi et al. [5] defined surface burn as a chemical reaction
between oxygen and workpiece material and proposed a burn model that comprehensively
considered maximum temperature and exposure time to predict oxide layer thickness.
Jermolajev et al. [12] established a time–temperature diagram showing surface layer modifi-
cation for profile gear grinding based on local contact zone temperature measurements and
used the tempering time to explain workpiece surface burn rather than contact time, as the
grinding temperature could not drop below the tempering temperature instantaneously
when the grinding wheel moved away.

Based on the comprehensive literature review, it was found that previous studies
mainly worked on the theoretical models of grinding burn during surface grinding and the
prediction of temperature thresholds for generating grinding burn. Several studies focused
on the relationship between burn formation during gear grinding and grinding parameters.
In this paper, according to the variation in grinding temperature and thickness of the abla-
tion layer under different grinding parameters, the influence of grinding speed and depth
on grinding burn was analyzed. The change in microhardness within subsurface layers, the
microstructure and morphology, as well as the surface roughness were comprehensively
investigated. The result of this study can mostly likely provide benchmarks for improving
both the quality and efficiency during gear grinding in vehicle industries.

2. Experimental Setup and Procedure
2.1. Workpiece Material

A gear made of 20Cr2Ni4A steel was selected as the workpiece in this research. It
underwent a series of heat treatments including normalizing, carburizing, quenching,
and tempering. The corresponding chemical composition is shown in Table 1. Good
toughness and high strength are required when 20Cr2Ni4A steel is used to manufacture
heavy-duty gears, and it needs to be carburized and quenched to improve the hardness
of its surface layer. The initial workpiece was cut into several segments for grinding trials
with different grinding parameters, and the size of the samples was designed to be clamped
and ground easily.

Table 1. Chemical composition of 20Cr2Ni4A steel (mass fraction, %) [13].

C Si Mn Cr Ni Fe S

0.17–0.23 0.17–0.37 0.30–0.60 1.25–1.65 3.25–3.65 ≥95.00 ≤0.03
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2.2. Experimental Setup

A three-axis automatic hydraulic high-precision grinding machine (DY-510ASM) was
used for gear grinding experimental trials, which was driven by an O05-63B0 three-phase
asynchronous motor. The maximum rotation speed of the grinder was 4000 r/min with
a rated power of 7.5 kW. An alumina forming grinding wheel with #80 abrasive mesh
and a diameter of 350 mm was used, and the grinding wheel was dressed by a diamond
wheel dresser before each set of experiments. The wheel topography was observed with a
high-definition charge-coupled device (HD CCD) microscope, as shown in Figure 1; white
corundum abrasive grains were evenly bonded to the surface and sharp cutting edges of
abrasives could be observed.

Figure 1. Topography of the grinding wheel surface observed by microscope with (a) low and
(b) high magnification.

Before grinding, the runout on both sides of the tooth surface along the feed direction
was limited within 0.001 mm by a dial indicator to ensure machining accuracy. The
gear sample was clamped by the fixture on the perpendicular direction of feed speed.
Considering the setting of gear machining parameters in industrial application, the total
grinding thickness of one side was set at 0.24 mm, the feed speed and the grinding speed
were selected with three levels, and the grinding depth for each pass was set to 0.02 mm
and 0.03 mm. The specific grinding parameters are shown in Table 2.

Table 2. Parameters set in the gear forming grinding experiment.

Feed Speed (m/s) Grinding Speed (m/s) Grinding Depth (mm) Number of Passes

0.19

26 0.02 12

30
0.02 12
0.03 8

34
0.02 12
0.03 8

0.26

26 0.02 12

30
0.02 12
0.03 8

34
0.02 12
0.03 8

0.35
26 0.02 12
30 0.02 12
34 0.02 12

2.3. Measuring Equipment

The temperature signals were captured by a GG-K-30-1000-CZ type thermocouple
produced by KAIPUSEN when the grinding wheel passed the workpiece material surface.
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For each gear sample, a narrow slot with a width of 1.0 mm was cut from the tooth tip to
the tooth root along the middle of tooth width to accommodate the thermocouple sensing
tip. As shown in Figure 2a, a thermocouple was inserted into the narrow slot on the
workpiece to measure the grinding temperature. This method was generally used to record
temperature variation with good accuracy [14,15]. The thermocouple sensing tips were
located close to the grinding surface, and the narrow slots were sealed with waterproof and
heat-resistant glue, which could prevent the cooling liquid from affecting the measurement
results. Figure 2b shows the experimental setup of grinding temperature measurement; the
gear sample selected for the grinding temperature measurement is shown in Figure 2c.

Figure 2. (a) Configuration of embedded thermocouples, (b) experimental setup of grinding temper-
ature measurement, and (c) corresponding gear sample.

The gear teeth ground by different parameters were cut using a wire electrical dis-
charge machine and embedded in resin for polishing to observe the microstructure of the
ground surface layer. A high-resolution scanning electron microscope (SEM, TESCAN
MIRA4 LMH) was used to observe the ground surface morphology. Microhardness at the
subsurface was measured using a Vickers hardness tester with a load of 1000 g and intent
time of 10 s, and each measurement was set with 100 µm depth intervals. An Atometrics-
NA500 white light interferometer was also applied to measure the surface roughness of the
ground surface.
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3. Experimental Results and Discussion
3.1. Grinding Temperature

Most of the mechanical work occurring in the grinding process is converted into
grinding heat, which increases the temperature of the gear tooth surface. If the thermal
stress caused by the grinding process exceeds the yield strength of the workpiece material,
residual tensile stress will be generated within the ground surface and it is possible to form
dominant or recessive grinding cracks in the surface layer, which severely affect the gear
strength and fatigue life [16]. In addition, as the contact arc surface of gear grinding is
complex, the grinding temperature changes with the normal grinding depth and presents
as a non-uniform form [17]. Thus, the grinding temperature is an important indicator of
the workpiece heating state during the grinding process. The highest temperature during
grinding under each set of parameters was recorded. Figure 3 shows the variation in
grinding temperature under different grinding parameters. It is obvious that a high level
of grinding parameters generally led to a relatively higher grinding temperature, with the
maximum value of ~290 ◦C.

Figure 3. Temperature variation under different grinding parameters.

Statistical ANOVA method was applied to further analyze significant factors and the
related percentage contribution ratio (PCR) for ground temperature. Figure 4 shows the
detailed information concerning the main effects plots of grinding temperature related to
different grinding parameters. Data from the ANOVA table confirmed that feed speed was
statistically significant, affecting grinding temperature with a corresponding percentage
contribution ratio of 33.7%, followed by grinding depth, with the details presented in
Table 3.

Table 3. ANOVA of grinding temperature at different parameters.

Source DOE Adj SS Adj MS F PCR

Feed speed (m/s) 2 14,512 7255.8 8.22 * 33.7%
Grinding speed (m/s) 2 2975 1487.5 1.69 3.2%
Grinding depth (mm) 1 5794 5793.6 6.56 * 13.0%

Error 7 6178 882.5 50.1%
Total 12 37,832 100%

* Significant at the 5% level, F0.05, 2, 7 = 4.74, F0.05, 1, 7 = 5.59.
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Figure 4. Main effects plot for grinding temperature at different parameters.

Generally, the increase in feed speed and grinding depth led to the increase in grinding
temperature. Firstly, at a constant grinding speed, the grinding force increased with the
increase in grinding depth and feed speed. It led to an increase in the total energy consumed
by grinding, which indicated that more energy was converted into grinding heat [2]. The
increase in grinding force also caused severe friction, which eventually led to the increase in
grinding temperature. Secondly, as shown in Figure 5a, when the grinding depth increased,
the actual cutting thickness increased, which not only enlarged the contact area between
grinding wheel and workpiece, but also hindered the heat dissipation within the grinding
area, and finally contributed to the increase in grinding temperature [18]. Figure 5b shows
the influence of different feed speeds on grinding temperature. When the feed speed
increased, the path traveled by the grinding wheel under per unit time was extended and
more heat was generated, resulting in higher heat and grinding temperature. However,
increasing the feed speed might also shorten the heat transfer time, and thus lead to a lower
grinding temperature [3,19]. According to the recorded data, this kind of effect was more
obvious when the feed speed increased to 0.35 m/s. With the same level of feed speed and
grinding depth, the grinding temperature increased when the grinding speed increased
from 30 m/s to 34 m/s, and the effect of the grinding speed was more significant when
the grinding depth was set at 0.02 mm. The grinding temperature was relatively high
when the grinding speed was selected as 34 m/s and the feed speed was 0.26 m/s. This
was mainly because of the fact that the number of cuts per unit time increased at a higher
grinding speed and, subsequently, more heat was generated [20]. The reduction in grinding
temperature when increasing the grinding speed with the depth of 0.03 mm and feed of
0.26 m/s could be attributed to two aspects. One possible reason was the dimensional
deformation of the gear blank during carburization and quenching processes, which might
lead to uneven thermal field distribution in the grinding process. The other was that, at
the depth of 0.03 mm and feed of 0.26 m/s, the scratch and ploughing effects were less
significant when the grinding speed increased to 34 m/s, resulting in a decrease in the
energy converted into grinding heat.
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Figure 5. The influence of different (a) grinding depths and (b) feed speeds on contact arc length per
unit time.

3.2. Characteristics of Grinding Burn

Figure 6 shows the morphology of the subsurface layer after grinding with different
parameters. It was found that the bright white ablation layer generally occurred within the
subsurface layer after grinding in the depth direction. The white layer was the reinforced
structure of the surface material after hardening during abrasive grinding, and it was
mainly composed of martensite, cementite, and residual austenite [8]. This phenomenon
can be explained by the following reasons. The high temperature generated during grinding
promoted the reaching of the austenitic field followed by rapid cooling, and the cooling fluid
contributed to the transformation from the austenite to martensite phase [21]. White layer
formation was fundamentally dependent on the thermal and mechanical effects of grinding
on the workpiece material. These effects were mainly caused by the interaction of grinding
tool and workpiece material and were significantly affected by grinding parameters [22].

Figure 6. Morphology of (a) the unground surface layer and (b–l) the ground surface layer at different
grinding parameters.
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With the grinding depth of 0.02 mm, feed speed of 0.19 m/s, and grinding speed of
26 m/s, a relatively thin white layer with a thickness of less than 5 µm was generated on the
ground surface. When the grinding speed increased from 26 m/s to 34 m/s, the thickness
of the white layer increased slightly. When the feed speed was 0.35 m/s and the grinding
speed was over 30 m/s, the thickness of the white layer exceeded ~50 µm. This was mainly
because of the fact that the exposure time was the same when the feed speed was constant,
while the temperature increased with a higher grinding speed, resulting in more obvious
grinding burn and a thicker white layer. The grinding burn often indicated the changes
in mechanical properties caused by microstructure transformation, which ultimately led
to the scrapping of the machined part [3]. At the grinding depth of 0.02 mm and the
same grinding speed, the variation in white layer thickness with different feed speeds was
almost consistent. Under the condition of the same grinding depth and grinding speed, the
increase in feed speed led to a higher heating rate and strain rate [23]. When the grinding
depth increased to 0.03 mm, a white layer with a thickness of ~100 µm was generated. A
higher grinding depth resulted in a great increase in grinding area and slow dissipation of
heat, which further promoted grinding burns [18].

Figure 7 shows the SEM morphology of the ground surface layer under different
grinding parameters. The effect of grinding parameters on the thickness of white layer and
plastic deformation, which were most likely related to dynamic recrystallization caused by
a high temperature and thermal stress during the grinding process [8]. This phenomenon
caused higher hardness of the surface layer, which easily caused microcracks. Coarse-
grained acicular martensite was observed at the interface between the white layer and
original workpiece material, which might be the transition zone formed by the gradual
weakening of thermal influence in this zone. The thickness of the white layer in Figure 7c
reached ~100 µm, which could be divided into three levels. The outmost layer (layer I)
was presumed to be a plastic deformation layer, and the microstructure was difficult
to observe and was probably produced by abrasive particles of high-speed cutting at
a high temperature. Layer II was composed of fine-grained martensite and possibly
carbide particles precipitated by a high temperature. Owing to thermal and mechanical
effects, the grains generated a series of dislocations and fragmentation, and finally formed
the special layer after cooling [8]. In layer III, the martensite grains became coarse and
retained austenite was observed, indicating that the quenching effect might be caused by
a high level of the grinding temperature. In fact, when the temperature was above the
austenitic transformation point and cooled rapidly, the martensitic microstructure would
be generated [24].

Figure 7. SEM morphology of the ground surface layer at the feed speed, grinding depth, and
grinding speed of (a) 0.19 m/s, 0.02 mm, and 34 m/s, respectively; (b) 0.35 m/s, 0.02 mm, and 26 m/s,
respectively; and (c) 0.19 m/s, 0.03 mm, and 34 m/s, respectively.
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There were two main reasons for the generation of the white layer during grinding
quenched transmission gear; one was phase transformation caused by a high temperature
and rapid cooling and the other one was plastic deformation caused by grinding abra-
sives [22]. Figure 8 shows the schematic of the formation mechanism of layer I, layer II,
and layer III. When the temperature did not reach the austenite transformation point, the
white layer could be formed by plastic deformation [24]. In the surface layer, owing to the
strong mechanical extrusion caused by the increase in grinding depth, the material was
plastically deformed and the refined grains formed layer I. Below this layer, the plastic
deformation gradually decreased and, with the influence of grinding heat, a relatively obvi-
ous fine-grained martensite structure was generated, and it became the main composition
of layer II. When grinding heat continued to be conducted to the subsurface, the influence
of mechanical extrusion could be ignored and resulted in phase transformation during the
rapid cooling process; subsequently, part of austenite transformed to martensite, forming
layer III. The final properties of the surface layer were determined by the combination
of work hardening caused by abrasive extrusion and heat softening caused by grinding
temperature [20]. It was found that, with aggressive parameters, especially large grinding
depths, undesirable grinding burn would occur on surface layer owing to the dominance
of mechanical extrusion and thermal effects. The micro-structural transformation of surface
layer material led to the deterioration of material properties, which ultimately caused the
decrease in the surface rolling relief fatigue strength [22].

Figure 8. Schematic showing the forming mechanisms of the white layer during grinding of quenched
gear samples.

3.3. Microhardness and Surface Roughness Variation

Figure 9 shows the microhardness variation of ground surface with different grinding
parameters. Before grinding, the workpiece material had a very high carbon content
(≥0.35 wt.%) owing to the existence of the carburized layer, which resulted in the high
hardness of surface layer, and quenching treatment led to compressive stress on the surface.
The microhardness gradually decreased with the depth below surface, and finally reached
the value of base material (450 HV to 460 HV) [25]. The difference in the hardness gradient
after grinding could be easily observed through the variation in the microhardness curves.
The hardness decreased within a 200 µm thickness owing to the influence of grinding
temperature, which resulted in heat softening in this depth range [26]. The softening
effect was more pronounced with a grinding depth of 0.03 mm and grinding speed of
30 m/s and 34 m/s. This was in agreement with the theory of thermal softening during
the grinding process, as high temperatures were more likely to be generated at a higher
grinding depth and speed [27,28]. When the grinding depth was reduced to 0.02 mm, owing
to the relatively low grinding temperature, the effect of thermal softening was difficult to
observe and the work hardening could be found from the hardness gradient curve. With
a relatively low level of grinding parameters, the highest microhardness value reached
680 HV at the depth of 200 µm, which normally formed at the place in which the most
drastic plastic deformation took place because of the removal of materials under a high
grinding pressure. The occurrence of work hardening and thermal softening was related
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to the grinding parameters. According to the findings from Ding et al. [29], a competing
process between thermal softening and work hardening occurred when the workpiece
material was subjected to a high grinding temperature and large grinding pressure. In
this work, aggressive grinding parameters produced a higher grinding temperature and
the effect of thermal softening on the hardness gradient was obvious, while a low level
of grinding parameters weakened the thermal effect and contributed to grain refinement
under mechanical extrusion [30].

Figure 9. Microhardness variation within the subsurface layer when grinding quenched gear samples
with different parameters.

Figure 10 shows the ground surface profile under different grinding parameters
observed via white light interference. Grooves featured by the cutting marks of a large
number of abrasive grains were observed on the ground surface regardless of grinding
parameters. The inherent result was determined by characteristics such as the abrasion, size,
and bond type of the grinding wheel during the grinding process [20]. The corresponding
surface profile was featured with peaks and valleys, especially at higher feed speeds or
grinding depths. With the increased feed speed, the number of abrasive grains involved
in the cutting process per unit time decreased. Therefore, the depth of grooves generally
increased. With the result of a high temperature and crushing of abrasive particles, deep
grooves and chip adhesion were observed, mainly owing to the fact that residual materials
accumulated under the plowing effect during the grinding process [31].

The material accumulation and deep grooves might be attributed to the factors in-
cluding grain wear flat, the fractures of grains and bond bridges, together with workpiece
material adhesion at high grinding forces and temperatures [26]. Figure 11 shows the
topography of the ground surface with different grinding parameters. A large number of
small scratches and grooves were observed. Obvious grooves were generated when the
depth of scratches increased and the cross section of grooves was similar to the shapes of
abrasive grains [11]. A large groove depth and small radius of curvature at the bottom of
the groove could increase the coefficient of the effective stress concentration on the ground
surface and increase the risk of fatigue failure [18]. It was found that particles penetrated
the workpiece surface, which might be caused by the detachment and fracture of abrasive
grains during the extrusion process of the grinding wheel. This defect added potential
damage to the ground surface, as it not only affected surface integrity, but also probably
led to surface corrosion and microcracking.
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Figure 10. Ground surface profile under different grinding parameters (feed speed, grinding depth,
and grinding speed): (a) 0.19 m/s, 0.02 mm, and 26 m/s, respectively; (b) 0.19 m/s, 0.02 mm, and
34 m/s, respectively; (c) 0.19 m/s, 0.03 mm, and 30 m/s, respectively; (d) 0.26 m/s, 0.02 mm, and
26 m/s, respectively; and (e) 0.35 m/s, 0.02 mm, and 34 m/s, respectively.
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Figure 11. Ground surface morphology with the feed speeds, grinding depths, and grinding speeds of
(a) 0.19 m/s, 0.02 mm, and 30 m/s, respectively, and (b) 0.19 m/s, 0.03 mm, and 34 m/s, respectively.

Figure 12 shows the variation in surface roughness (Sa) values of the ground surface
with different grinding parameters. ANOVA was utilized to further analyze the significant
factors and corresponding PCR for surface roughness (Sa). Compared with the data from
ANOVA shown in Table 4, it was found that the grinding depth was statistically significant,
affecting the surface roughness. Figure 13 shows the detailed information concerning the
main effects plots of surface roughness related to different grinding parameters. When
the grinding depth was 0.02 mm, the surface roughness gradually increased with the
grinding speed and the maximum value reached 0.560 µm, which was obtained with the
feed speed of 0.26 m/s and grinding speed of 34 m/s. Generally, the increase in grinding
speed led to the decrease in surface roughness because it increased the number of abrasive
cuts in the same period, which reduced the grinding force. However, a different trend
of Sa values was observed with the grinding depth of 0.02 mm. It could be explained
that the grinding temperature increased with a higher grinding speed, and the plastic
deformation of workpiece material at higher temperature resulted in the increase in surface
roughness [32]. In addition, with the grinding depth of 0.02 mm, a higher grinding speed
produced smaller-diameter chips, and each area of the grinding wheel surface participated
in the machining process more frequently, which accelerated the clogging of grinding wheel,
resulting in increased grinding power and heat generation [33]. When the grinding depth
increased to 0.03 mm, the surface roughness was deteriorated and increased to ~0.60 µm.
Obviously, the increase in grinding depth produced a higher level of grinding force and
grinding temperature and the material was squeezed by abrasive particles and flowed
plastically to both sides, resulting in the increase in surface roughness [34]. At a grinding
depth of 0.02 mm when the feed speed increased from 0.26 m/s to 0.35 m/s, and at the
grinding depth of 0.03 mm when the feed speed increased from 0.19 m/s to 0.26 m/s, the
decrease in Sa was less than 0.034 µm. However, at the feed speed of 0.19 m/s, the increase
in Sa exceeded 0.097 µm when the grinding depth increased from 0.02 mm to 0.03 mm. The
Sa decreased slightly when it increased from 0.26 m/s to 0.35 m/s, which might be caused
by the squeezing effect; the influence on Sa was limited when compared with the effect of
grinding depth. This is also consistent with the results of ANOVA in Table 4.

Table 4. ANOVA for surface roughness (Sa).

Source DOE Adj SS Adj MS F PCR

Feed speed (m/s) 2 0.002239 0.001120 2.06 5.1%
Grinding speed (m/s) 2 0.000652 0.000326 0.60 0%
Grinding depth (mm) 1 0.012133 0.012133 22.35 * 51.0%

Error 7 0.003801 0.000543 43.9%
Total 12 0.022745 100%

* Significant at the 5% level, F0.05, 2, 7 = 4.74, F0.05, 1, 7 = 5.59.
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Figure 12. Surface roughness (Sa) variation under different grinding parameters.

Figure 13. Main effects plot for surface roughness (Sa) with different parameters.

4. Conclusions

(1) The grinding temperature increased with the grinding depth and grinding speed,
with the highest level of ~290 ◦C. The feed speed presented the most significant effect
on grinding temperature with the corresponding percentage contribution ratio of
33.7%. Both work hardening and thermal softening were observed during grinding of
quenched gear samples, and aggressive grinding parameters intensified the thermal
softening effect, resulting in a reduction in microhardness within the subsurface layer.

(2) The thickness of the white layer exceeded 100 µm when the grinding depth increased
to 0.03 mm and it could be subdivided into three different layers owing to the contri-
bution of mechanical extrusion and the thermal effect. The top layer mainly featured
plastic deformation and the second one was composed of fine-grained martensite.
Coarse-grained acicular martensite was found at the interface between the white layer
and the softened dark layer.

(3) The ground surface topography showed several scratches and typical grooves and
some particles were embedded into the ground surface, which was probably caused by
the shedding and breaking of abrasive particles. When the grinding depth increased
to 0.03 mm, the grinding surface roughness (Sa) was relatively high and reached
up to ~0.60 µm. The percentage contribution ratio of the grinding depth on surface
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roughness was higher than 50%, mainly owing to severe plastic deformation under
grinding wheel extrusion and the thermal effect.
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