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Abstract: Ferritic high-Si ductile cast irons replace an unstable mixed ferrite-pearlite matrix with
a unique combination of high elongation, strength and hardness (ideal for automotive drive train
components) and resistance to oxidation and corrosion at high temperatures (automotive exhaust and
turbocharger systems). The present paper analyses the graphite parameters of 4.5%Si, un-inoculated
ductile cast iron (4.7%CE, 0.035%Mgres) as an effect of the casting section size. The structure is
characterized by 10.5–11.2% graphite and 464–975 nodules/mm2, at more than 70% ferrite and no
carbides, including at 3 mm wall thickness. The lower the wall thickness is, the higher the nodule
count is and, consequently, the higher the ferrite amount is. The Roundness Graphite Shape Factor
(RSF = 0.65–0.68) illustrates the presence of Slightly Irregular Spheroidal Graphite (Form V ISO 945).
There is a big difference between the graphite nodularity evaluated according to ISO 16112:2017
[CGI] (NG1 = 79–86%) and according to ISO 945-4-2019 (DI) (NG2 = 65.2–74.6%), both of them
based on RSF. Graphite Nodularity (NG3), calculated with the ISO 945-4-2019 [DI] formula, but
replacing RSF with SSF, Sphericity Graphite Shape Factor, has an intermediary position. The higher
the imposed minimum RSF or SSF is, the lower the Graphite Nodularity (NG4, NG5): 80–90% for min.
0.50 (minimum Form IV or Intermediate Graphite), 60–80% for min. 0.60–0.65 (minimum Form V
graphite) and 35–70% for min. 0.80 (minimum Form VI graphite). The SSF is more representative than
the RSF for Si-alloyed ductile cast iron, so it is recommended to use a graphite nodularity calculus
considering SSF instead of the RSF formula (stipulated by ISO 945-4-2019), with SSF replacing RSF.

Keywords: high-Si ductile cast iron; solidification; castings; cooling rate; carbides; graphite; graphite
nodularity; graphite shape factors; ferrite; pearlite

1. Introduction

Ductile cast iron, also known as nodular or spheroidal graphite iron, is a cast iron
(ferrous alloy at 3–4%C) with carbon being present in the form of nodular (spheroidal)
graphite particles. Nodulizing elements, typically magnesium, with and without an as-
sociation with rare earth (RE), are used to allow the solidification of the graphite into
nodules. Graphite nodules do not form as perfect spheres but with a small or large devia-
tion, depending on a large number of influencing factors, including chemical composition,
metallurgical treatments, and solidification conditions. Different graphite shape factors
are used to express the deviation of the graphite particle morphology from a sphere as
the maximum possible compactness degree. Usually, the Roundness Shape Factor (RSF) is
used as a ratio between the graphite particle area and the area of a circle corresponding to
the maximum size of the graphite particle (RSF = 1.0 for a sphere).

In commercial ductile cast iron, depending on the deviation from a sphere, as expressed
by RSF values, there are different graphite morphologies defined, according to ISO 945-4-2019:
spheroidal (RSF > 0.8, Type VI), slightly irregular spheroidal (RSF = 0.6–0.8, Type V),
irregular spheroidal (RSF = 0.45–0.6, Type IV), vermicular/compacted (RSF = 0.1–0.45,
Type III), and lamellar (RSF < 0.1, Type I) morphology [1]. These cast irons could also
include other unwanted graphite morphologies, such as degenerated form (spiky graphite),
exploded graphite, chunky graphite, etc.
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In comparison to steel, while there is no large difference when it comes to tensile
strength, ductile iron has greater yield strength. If ductile iron has a static strength compa-
rable to cast steel, this material has greater fatigue strength and ductility than grey (lamellar
graphite) cast irons. It is more flexible and more elastic than other cast irons. Generally, as
the strength of ductile iron increases, the ductility decreases. Typically, cast iron has better
compressive strength than steel.

The ductile iron properties depend on the material structure, with both the metal
matrix and the graphite phase parameters acting as important influencing factors. From
the metal matrix point of view, the pearlite/ferrite ratio is very important to determine
the mechanical properties. The ferrite increasing to the detriment of pearlite (as a result of
silicon increase) leads to increased ductility and toughness but to decreased strength and
hardness properties. High toughness is particularly important for components that may
suffer an impact or for components where a fracture would be catastrophic.

The graphite particles act as stress raisers, which may prematurely cause localized
plastic flow at low stresses and initiate fracture in the matrix at higher stresses. This means
that, from a stress concentration point of view, the graphite particles can be considered a
defect. It is known that local stresses are minimal with a spherical geometry and increase
with another geometry [2]. In ferritic-pearlitic ductile cast iron, it was found that the
initiation of microcracks occurred around very irregularly shaped graphite nodules [3]. In
the matrix, the softer ferrite gives higher ductility but lower yield strength than pearlite.
Graphite morphology plays an important role, and the more the graphite shape deviates
from the ideal spherical shape, the lower the ductility and strength [4].

In previous research programs, cast iron samples with different graphite morpho- logy
were subjected to a thermal-shock test by cyclic heating (furnace)-cooling (water) proce-
dure [5–7]. From time to time, the samples were polished, and the structure was analyzed
in unetching conditions. Micro cracks were identified, initiated by conventional defects
(micro-inclusions, micro-shrinkages, pores) and graphite particles, which also acted similarly
as defects. The increasing number of thermal-shock cycling led to the development of these
micro-cracks in crack chains, by the connection of all of these defects, including graphite
particles. The microstructures included in Figure 1 illustrate that the micro-cracks mainly
occur at the tip of graphite particles, for lamellar (Figure 1a) and vermicular/compacted
(Figure 1b) graphite and on the surface of irregularly shaped graphite nodules (Figure 1c).
From the nodular graphite type point of view, it is expected that the sensitiveness to micro-
cracks initiation increases from type VI (spheroidal) to type V (slightly irregular spheroidal)
and, especially, to type IV (irregular spheroidal) morphologies.
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Figure 1. Micro-cracks developed on the tip of the lamellar (a) and vermicular/compacted
(b) graphite particles and on the surface of irregularly shaped graphite nodules (c) as a result
of the thermal-shock test. The red circle shows the micro-crack initiation.

In ductile cast iron, silicon (usually as 1.8–3.0%Si content) acts as a graphitizing and
ferrite-promoting element, with an important contribution to avoiding carbide formation
and a fully ferritic structure target (avoiding pearlite). As a result, silicon increasing
in conventional ductile cast irons leads to the improvement of ductility and toughness
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but to the detriment of strength and hardness. When dissolved in ferrite, silicon favors
high strength, hardness, oxidation, and corrosion resistance, at lower ductility, toughness,
and thermal conductivity, with graphite as an important influencing factor. High silicon
contents (between 3.2 and 4.2%) in the as-cast state are viewed as an opportunity to replace
ferritic-pearlitic grades, avoiding potential hardness inhomogeneity.

It was found that Si-alloying (3.0–6.0%Si) negatively affects the quality of the graphite
phase in ductile cast iron. The deviation, using a sphere as a reference of graphite particles,
was noticeably increased by Si-alloying (from 2.5 up to 5.5%Si) when a characteristic of
the graphite particles appeared to be a larger perimeter, resulting in a large category
[IV, V, VI forms, ISO 945] [8–11]. According to [12–14], the 3.5% Si ductile iron showed
good nodularity. In contrast, with increasing silicon content to 4.5%, significant graphite
degeneracy occurred, with the appearance of chunky graphite, negatively affecting the
mechanical properties. Despite that, it was possible to counter the contamination of high-Si
ductile iron (3.2%Si, 75 mm thickness Y-IV keel block) with Bi by Ce addition or vice versa,
though the form VI graphite would not be achieved [15].

As more and more research programs have shown that, in Si-alloyed ductile cast
iron, especially at higher than 3.5%Si content, the graphite phase is negatively affected as
regards the compactness degree (at least of Type-V slightly irregular spheroidal graphite
presence). The main objective of the present paper is to evaluate the graphite nodularity
of 4.5%Si, un-inoculated ductile iron, depending on the graphite shape factors considered
and the nodularity calculus formula, when compared to ISO 16112-2017 (CGI) and ISO
945-4-2019 (DI) stipulations, referring to the un-Si alloyed cast irons.

2. Materials and Methods

Table 1 summarizes the experimental procedure parameters. The base iron, obtained by
electrical melting, is subjected to nodularization treatment by the Tundish-cover technique,
with Mg-treatment alloy at a limited content of rare earth elements (RE). Wedge castings
(22 mm base, 57 mm height) are obtained in a green sand mold at 1400 W s1/2/m2 K
thermal diffusivity and used for structure analysis. The ferrite/pearlite ratio, the carbide
amount, and the graphite phase characteristics are evaluated at different casting section
sizes. The graphite characteristics are evaluated with Automatic Image Analysis (OMNIMET
ENTERPRISE and analySIS® FIVE Digital Imaging Solutions software) for particles greater
than 5 µm in size and 0.59 mm2 area of an analyzed field. Different graphite particle size
and shape factors, different graphite nodularity formulas, and the relationships between
graphite phase parameters are considered.

Table 1. Experimental procedure parameters.

Nr. Step Characteristics

1 Melting Coreless induction furnace, graphite crucible, 10 kg, 8000 Hz; Pig iron, cast iron scrap,
recarburizer; 1525 ◦C superheating, 5 min holding

2 Nodularization Tundish cover technique, 10 kg ladle, 1500 ◦C temperature treatment;
1.5 wt.% FeSiCaMgRE [wt.%: 5.99Mg, 1.0Ca, 0.26RE, 0.91Al, 44.7Si, bal Fe]

Casting Wedge castings (22 mm base, 57 mm height)
Green sand mould [SM]; 1400 W s1/2/m2 K thermal diffusivity

4 Structure
Analysis

The graphite characteristics are evaluated with Automatic Image Analysis (OMNIMET
ENTERPRISE and analySIS® FIVE Digital Imaging Solutions software) for particles greater than
5 µm and 0.59 mm2 as the size area of an analyzed field.
* Carbides and ferrite/pearlite ratio
* Different graphite particles size and shape factors
* Different graphite nodularity formulas
* Relationships between graphite phase parameters
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Table 1. Cont.

Nr. Step Characteristics

5 Final Chemical
Composition

(wt.%): 3.3C, 4.55Si, 0.22Mn, 0.04P, 0.01S, 0.035Mg, 0.0004Ce, 0.0061La, 0.0038Ca; CE = 4.7%;
Control Thielmen Factors [16]: Px = 2.3; K = 1.48
CE = % C + 0.3(% Si + % P) + 0.4(% S) − 0.027(% Mn)
Px = 3(% Mn) − 2.65(% Si − 2) + 7.75(% Cu) + 90(% Sn) + 357(% Pb) +
333(% Bi) + 20.1(% As) + 9.60 (% Cr) + 71.7(% Sb)
K = 4.4(% Ti) + 2.0(% As) + 2.4(% Sn) + 5.0(% Sb) + 290(% Pb) + 370(% Bi) + 1.6(% Al)

(*) The structure analysis objectives.

In terms of final chemical composition (Table 1), the test ductile cast irons are character-
ized by 0.035%Mgres and 4.7% carbon equivalent (CE), being included in the hyper-eutectic
range (3.3%C and 4.55%Si). The pearlitic sensitiveness factor (Px = 2.3) [16] is strongly
affected by silicon alloying (Si/Mn = 20 ratio) and also by the effects of minor elements pres-
ence, typical for commercial ductile cast iron. The relatively high antinodulizing influence
factor (K = 1.48) [16] also illustrates the commercial ductile cast irons.

Figure 2 shows the graphite particle size parameters and shape factors considered in
the present work. The simple shape factors, such as the Aspect Ratio-AR and Elongation-E,
refer to the maximum and minimum size of graphite particles, while the Convexity-Cv
compares their Convex (Pc) and Real (Pr) perimeters. More complex graphite shape factors
include the graphite particle area (AG) and one other representative parameter, such as the
Maximum Ferret-Fmax (Roundness Shape Factor-RSF, Equation (1)), the Convex Perimeter-
Pc (Compactness Shape Factor-CSF, Equation (2)) or the Real Perimeter-Pr (Sphericity Shape
Factor -SSF, Equation (3)).
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Figure 2. Graphite particle size parameters and shape factors.

Roundness Shape Factor: RSF = 4 AG/π Fmax
2 (1)

Compactness Shape Factor: CSF = 4 πAG/Pc
2 (2)

Sphericity Shape Factor: SSF = 4 π AG/Pr
2 (3)

Graphite Nodularity (NG) usually refers to the defined nodular (spheroidal) graphite
rate compared to the total graphite particles in the analyzed structure, regarding their
number or area amount, respectively. The most important problem in this investigation
is to define the nodular (spheroidal) graphite morphology considered, as it varies within
a large range, from lamellar (maximum/minimum ratio < 0.1) to a sphere shape (maxi-
mum/minimum size = 1.0). In this respect, the different international standards referring
to cast irons stipulate different formulas for industrial applications.

Figure 3 illustrates the most important terms, included in ISO 16112:2017, referring
to the Compacted Graphite Cast Iron (CGI) (Figure 3a) [17], and in ISO 945-4-2019, refer-
ring to the ductile (nodular/spheroidal graphite) cast iron (Figure 3b) [1]. Both of them
are based on the area of the graphite particles and their Roundness Shape Factor (RSF),
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including the graphite particles area (AG) and Maximum Ferret (Fmax), but at the differ-
ent ranges considered. According to the CGI-ISO Standard, graphite particles are defined
as nodules (RSF = 0.625–1.0), intermediates (RSF = 0.525–0.625), and vermicular/compacted
(RSF < 0.525). ISO 945-4-2019, applied to ductile cast irons, refers to spheroidal
(RSF = 0.45–1.0), vermicular/compacted (RSF = 0.10–0.45) and lamellar (RSF < 0.10), with
three classes of spheroidal graphite, namely spheroidal (RSF ≥ 0.80), slightly irregular
spheroidal (RSF = 0.60–0.80) and irregular spheroidal (RSF = 0.45–0.65), respectively.
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Figure 3. Calculus of the Graphite Nodularity (NG) depending on the Roundness Shape Factor (RSF)
according to ISO 16112-2017-CGI (a) and ISO 945-4-2019-DI (b).

According to ISO 16112:2017-CGI (Figure 3a), the standard considers all of the graphite
particles defined as nodules (RSF > 0.625) and 50% of the graphite particles included in
the intermediate class (RSF = 0.525–0.625). ISO 945-4-2019-DI considers all of the graphite
particles defined by spheroidal graphite (RSF ≥ 0.80) and 90% of the slightly irregular
graphite particles (RSF = 0.60–0.80). A comparison of the respective graphite nodularity,
defined by these two standards, is illustrated in Figure 4.
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Figure 4. Graphite morphologies and Roundness Shape Factor (RSF) involved in the graphite
nodularity calculus, according to ISO 16112-2017-CGI (NG1) and ISO 945-4-2019-DI (NG2).

3. Results and Discussion

Typical microstructures of the wedge casting at the 3, 9, and 15 mm section sizes,
without and with Nital etching, are shown in Figure 5. For all of the considered solidification
cooling rates induced by wall thickness variation, the un-inoculated, 4.5%Si ductile cast iron
shows a ferrite–pearlite matrix (at different ferrite/pearlite ratios), without free carbides
and with mainly nodular (spheroidal) graphite phase, but with size and morphology.
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Parameters depend on the cooling rate. It is known that the lower the casting section
size is, the higher the solidification cooling rate. Generally, the solidification cooling rate
increase affects both primary (eutectic) and secondary (eutectoid) structures regarding the
constituents’ formation and their parameters. For conventional iron castings, it is expected
to increase the sensitivity to free carbides formation (instead of graphite) during eutectic
solidification, and pearlite (instead of ferrite) during eutectoid transformation, respectively.

Meanwhile, 4.5%Si alloyed ductile cast iron appears to have some peculiar structure
formation parameters from both graphite and metal matrix point of view. According to
Figure 5, the decrease of the casting wall thickness from 15 to 3 mm, led not only to the
expected increase in the nodule count (from 464 up to 975 Nodules/mm2) but also to the
increase in the ferrite amount (from 70 up to 100%). Ferrite formation during the eutectoid
reaction is controlled by carbon diffusion from the austenite matrix to the existent graphite
particles. The higher the carbon diffusion capability, the higher the amount of ferrite
formed. Carbon diffusion is mainly sustained by higher silicon content in the austenite
(lower carbon stability) and the shorter distance between graphite particles (such as for
higher graphite particle count). Still, it also depends on the diffusion time available (the
higher the cooling rate, the lower the time available for carbon diffusion). For this reason,
it is expected to obtain a lower ferrite/pearlite ratio by decreasing the casting section size,
but this situation appears to be typical only for un-silicon alloyed ductile cast irons. The
decreased carbon stability in the austenite structure (by Si-alloying) and the decreased
distance between nodules (higher nodule count) favored the carbon diffusion, able to form
ferrite, despite the decrease of the eutectoid reaction time, due to the decrease of the casting
size, respectively.

It appears that, in Si-alloyed ductile cast irons, the major increase of the nodule count
could be a solution for obtaining free carbides and pearlite structure, including in thin
wall casting solidification conditions, such as 3 mm casting section size. Similarly [18], for
EN-GJS-SiMo45-6 ductile iron, it was found that the increase of the nodule count by reduc-
ing the casting section size resulted in reducing the carbon and molybdenum segregation
to the intercellular regions and, hence, in reducing the number of intercellular precipi-
tates. The results suggest that pearlite and carbides are related to segregations during
solidification rather than to cooling rates at the eutectoid temperature.

Figure 6 shows the strong influence of the wedge casting wall thickness (lower section
size, higher solidification cooling rate) on the nodule count, in the present test conditions,
for 4.5%Si-alloyed ductile cast iron and from 3 up to 15 mm casting section size. More
than 900 nodules per square millimeter resulted in the smallest casting section size (3 mm),
600–700 for the 6 mm casting section size, and 450–500 for the 9–15 mm casting section size.
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Figure 7 illustrates the influence of the wedge-casting wall thickness on the graphite
nodules size rate distribution. Generally, the decrease in the casting section size (solidifi-
cation cooling rate increases) favors the increase of the rate of lower graphite nodule size.
More than 90% of graphite nodules are less than 30 µm, with a visible peculiar position of
3 mm section size: 65–70% less than 15 µm size and 30–35% at a rate of 15–30 µm nodules
size. The second values group brings together 6–15 mm casting section sizes, with 30–40%
nodules less than 15 µm and 50–60% nodules at 15–30 µm size, respectively.
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The amount of the graphite particles (G) and their convex (Pc) and real (Pr) perimeter
(see Figure 2) are also influenced by the wedge-casting wall thickness (Figure 8). If the
graphite amount is less depending on the wall thickness (G = 10.5–11.2%), the values of
both the convex and real perimeters are visibly influenced: less than 40 µm for the 3 mm
casting section size, 45–50 µm for the 6 mm section size, and 50–60 µm for the 9–15 µm
section size. The highest values of the considered graphite particles are obtained for a
12 mm wedge casting section size, much more than for the thickest section due to the
end effect (at 15 mm section). A higher level of real perimeter than the convex perimeter
resulted in the entire range of wedge casting section size considered.
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Figure 8. Influence of the wedge casting wall thickness on the average graphite amount (G), convex
perimeter (Pc), and real perimeter (Pr) of graphite particles.

The graphs included in Figure 9 show the evolution of other graphite shape factors
(defined by Figure 2) as an influence of the wedge-casting wall thickness. As general values,
the considered graphite shape factors fall within a narrow field, for the entire range of
the wedge casting section size: Aspect Ratio AR = 1.32–1.39, Elongation E = 1.37–1.48,
Convexity Cv = 0.91–0.92, Sphericity SSF = 0.79–0.82, Roundness RSF = 0.65–0.68. The
Roundness Graphite Shape Factor (RSF), which is considered (by the international standard
ISO 945-4-2019) to characterize the representative graphite morphologies in cast irons
(Figure 3b), suggests a fall within the slightly irregular spheroidal graphite (Form V ISO
945), in the 4.5%Si ductile cast iron test. For RSF < 0.7, it practically is at the lowest level of
the compactness degree defined by this standard (RSF = 0.6–0.8).
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Despite the fact that the same graphite shape factor (RSF) is used, there is a big
difference between the graphite nodularity evaluated according to ISO 16112:2017 [CGI]
(NG1 = 79–86%) and according to ISO 945-4-2019 (DI) (NG2 = 65.2–74.6%).

Graphite nodularity was basically calculated by considering the Roundness Shape
Factor (RSF), according to ISO 16112:2017, applied for the compacted graphite cast iron
(NG1-Figures 3a and 4) and to ISO 945-4-2019, applied for the ductile cast iron (NG2-
Figures 3b and 4). The results obtained are illustrated in Figure 10, with the wedge-casting
wall thickness as a possible
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Figure 10. Graphite nodularity calculated using the graphite Roundness Shape Factor (RSF), accord-
ing to ISO 16112:2017–CGI (NG1) and ISO 945-4-2019-DI (NG2), and by replacing the RSF with the
Graphite Sphericity Shape Factor (SSF) according to ISO 945-4-2019-DI formula (NG3).

By using the graphite nodularity NG2 formula (Figure 3b), while replacing the Round-
ness Shape Factor (RSF) with the Sphericity Shape Factor (SSF), the graphite nodularity
resulted: NG3 = [(∑ANG(SSF≥0.8) + 0.9∑ANG(SSF=0.6–0.80))/∑Atot]·100 (%). Its evolution with
the wedge casting section size is also illustrated in Figure 10. Practically having the same
appearance as the NG2 line, graphite nodularity NG3 has an intermediate position: very
close to NG1 for thin wall thickness (3–6 mm), close to 9 mm thickness, and at an equidistant
position of 12–15 mm wall thickness.

A specific graphite nodularity was also calculated, referring to a minimum imposed

graphite shape factor (RSF or SSF), in the 0.5–0.8 range: NG4 =
ΣAparticles (RSF)

ΣAtot
·100 [%] and

NG5 =
ΣAparticles (SSF)

ΣAtot
·100 [%] (Figure 11).
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Figure 11. Graphite nodularity NG4 [RSF] and NG5 [SSF] for the minimum imposed values for
Graphite Shape Factors (SF), RSF, and SSF.

In other words, in the graphite nodularity calculus, the area considered was the area
of all of the graphite particles with shape factors RSF or SSF at a minimum imposed level
(0.50, 0.60, 0.65, and 0.80) relative to the total area of the present graphite particles. The
higher the graphite shape factor level, the lower the resulting graphite nodularity for both
NG4 and NG5 expressions. If the minimum presence of Form IV (intermediate or irregular
spheroidal) is accepted (minimum 0.50 for RSF or SSF), the graphite nodularity is at the
highest level, 80–90%, respectively. Graphite nodularity decreases to 60–80% if the mini-
mum considered graphite morphology is Form V (slightly irregular spheroidal graphite),
typically for the 0.6–0.8 graphite shape factor. The lowest graphite morphology corre-
sponds to the highest considered graphite shape factor level (minimum 0.8), characteristic
for Form VI (regular spheroidal graphite): 55–70% for SSF = min. 0.80 and less than 40% for
RSF = min. 0.80, respectively. In this case, the highest difference is also registered between
the graphite nodularity levels, obtained using the graphite phase’s RSF or SSF parameters.

Figure 12 shows the influence of the minimum imposed graphite shape factors (RSF,
SSF) on the graphite nodularity NG4 and NG5 and the wedge-casting wall thickness. This
figure shows not only the decrease of the graphite nodularity by the increase of the claims
on the graphite phase compactness degree but also the increasing difference expressed by
the RSF or SSF parameters contribution. The difference is less visible for a min. 0.5 value,
then it continually increases between NG4 and NG5, up to the minim. 0.8 level of graphite
shape factor (from 10 up to 35% graphite nodularity difference).
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Micro-structures obtained in unetched wedge casting samples, at 3 and 15 mm wall
thickness, are compared in Figure 13 regarding the graphite phase aspect and also regarding
the representative graphite parameters values obtained (nodule count and nodularity).
The solidification cooling rate, expressed by the wedge casting section size (higher section
size, lower cooling rate), strongly affects the graphite phase, especially as nodule count,
which was cut by half at 15 mm compared to 3 mm wall thickness. The wall thickness
increase also led to an increase in the rate of larger graphite particles and the formation of
compacted graphite morphology. Both of these registered effects are generally expected in
ductile iron castings. As the microstructures suggest, the calculated graphite nodularity
level is also expected to be negatively affected by the increase in the casting wall thickness.
However, the graphite nodularity, expressed by NG1 and NG2, does not appear to sustain
it: NG1 = 81.5% vs. 81.7% and NG2 = 65.9% vs. 65.3%,

Figure 13. Comparison of the microstructures, the nodule count (NC), and the calculated graphite
nodularity [NG1, NG2, NG3] for the 3 and 15 mm wedge casting wall thickness.
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For 3 mm vs. 15 mm casting section size solidification, only the NG3 graphite nodular-
ity calculated illustrates the visible decrease of the nodularity (79.6% vs. 73.0%). It appears
that the Sphericity Shape Factor (SSF), involving the graphite particles area and the real
perimeter, is more representative than the Roundness Shape Factor (RSF), involving the
graphite particles area and the maximum ferret, for Si-alloyed ductile cast iron. Therefore,
using a graphite nodularity calculus is recommended considering the SSF instead of the
RSF formula (stipulated by ISO 945-4-2019), with SSF replacing RSF.

4. Conclusions

The present paper evaluates the graphite nodularity in 4.5%Si, commercial ductile
cast iron (0.035%Mgres, 4.5%Si, 4.7%CE, Px = 2.3, K = 1.48), and un-inoculated conditions,
solidified in thin wall castings (up to 20 mm section size) via green sand mould as the effect
of Si alloying, the graphite particles shape factors, the graphite nodularity calculus formula,
and the wedge casting wall thickness variation. The following conclusions could be drawn:

*The structure is characterized by 10.5–11.2% graphite (43% nodules at max 15 µm and
50% at 15–30 µm) and 464–975 nodules/mm2, at more than 70% ferrite and no carbides,
including at 3 mm wall thickness. The lower the wall thickness, the higher the nodule
count, and the higher the ferrite amount. The high cooling rate is generally favorable for
carbides and pearlite formation.

*The Roundness Shape Factor (RSF = 0.65–0.68), involving the graphite particle area
(AG) and its maximum size (Fmax), illustrates the presence of slightly irregular spheroidal
graphite (Form V ISO 945), characterized by a higher real perimeter, and positioned at
the lower part of this field (RSF = 0.60–0.80, ISO 945-4-2019-DI). Other shape factors also
sustain the lower quality of this spheroidal graphite: AR = 1.32–1.39, E = 1.37–1.48,
Cv = 0.91–0.92, SSF = 0.79–0.82.

*There is a big difference between the graphite nodularity evaluated according to ISO
16112:2017 [CGI] (NG1 = 79–86%) and according to ISO 945-4-2019 (DI) (NG2 = 65.2–74.6%),
both of them based on the Roundness Shape Factor (RSF). The same evolution of the NG1
and NG2 was registered with the wall thickness variation.

*Graphite Nodularity (NG3), calculated with the ISO 945-4-2019 [DI] formula, but by
replacing the RSF with the Sphericity Shape Factor (SSF), involving the graphite particle
area (AG) and its real perimeter (Pr), has an intermediary position: very close to NG1 for a
thin wall thickness (3–6 mm), close for a 9 mm thickness, and at an equidistant position for
a 12–15 mm wall thickness.

*The higher the imposed minimum RSF or SSF graphite shape factors, the lower the
graphite nodularity [NG4, NG5]: 80–90% for both the RSF and SSF = min. 0.50 (minimum
Form IV or Intermediate Graphite), 60–80% for RSF and SSF = min. 0.60–0.65 (minimum
Form V), and 35–70% for RSF and SSF = min. 0.80 (minimum Form VI).

*As a general conclusion, for high-Si DI (mainly > 4%Si), the Graphite Shape Factor
(SSF), involving the graphite particle area (AG) and the real perimeter (Pr), is more rep-
resentative than the RSF Shape Factor, involving the graphite particle area (AG) and its
maximum size (Fmax).

*In high Si-Ductile cast irons, it is recommended to use a graphite nodularity calculus
considering the SSF instead of the RSF formula (stipulated by ISO 945-4-2019), with SSF
replacing RSF:

NG = [(∑ANG(SSF≥0.80) + 0.9∑ANG(SSF=0.60-0.80))/∑Atot]·100 (%) [SSF = 4 π AG/Pr
2]
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