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Abstract: The control of inclusions in steel components is essential to guarantee strong performance.
The reliable characterization of inclusion populations is essential not only to evaluate the quality of the
components but also to allow the use of analytical procedures for the comparison and discrimination
of inclusion populations. In this work, inclusion size distributions in wire rod specimens from six
plant-scale heats were measured and analyzed. For the measurements, the metallographic procedure
specified in the ASTM E2283 standard was used. The population density function (PDF) approach
and the extreme value statistical procedure specified in the ASTM E2283 standard were used to
analyze the whole size distribution and the upper tail of the size distribution, respectively. The PDF
approach allowed us to identify differences among inclusion size distributions and showed that new
inclusions were not formed after the liquid steel treatment process. The extreme value statistical
procedure led to the prediction of the maximum inclusion length for each heat, which was used for
the statistical discrimination of heats. Furthermore, the estimation of the probability of finding an
inclusion larger than a given inclusion size using the extreme value theory allowed us to order the
heats for different critical inclusion sizes.
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1. Introduction

Control over inclusion cleanliness in steel products is necessary to ensure their per-
formance under specific conditions. Inclusion size distribution is one of the parameters
used to evaluate steel quality, and therefore its control during the steelmaking process
is required [1,2]. Hence, the successful control of the inclusion size distribution must be
based on analysis procedures that provide information on the formation and evolution of
inclusions. Furthermore, predictive and discriminative analysis procedures are desirable.

The size distribution of an inclusion population is frequently estimated from metallog-
raphy measurements and image analysis and represents an inclusion cleanliness parameter.
Higgings [3] represented the particle size distribution by the population density function
(PDF) as an alternative to the classic histogram format. The PDF approach presents the
advantage of being user-independent compared to the histogram and the corresponding
density function, which assumes a normal distribution [4]. Furthermore, the PDF is unique
for a given inclusion population, provides information on the formation and evolution of
inclusions [5] and enables the comparison of size distributions from different specimens.
The logarithmic representation of PDFs is linear or quadratic and can be described by fractal
(power law) and lognormal distributions, respectively [6]. Zinngrebe et al. [7] introduced
the PDF approach in the analysis of inclusion size distribution and used it to study the
formation of inclusions during the secondary steelmaking and casting process of Ti-alloyed
Al-killed steel. The logarithmic representation of PDF showed a quadratic shape just after
Al addition and became linear with time. A quadratic shape characterizes the transient de-
oxidation process where the transfer of the matter occurs between steel and inclusions, i.e.,
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the formation and growth of inclusion process, whereas a linear behavior indicates that the
equilibrium inclusion-steel was reached, and consequently the inclusion size distribution is
the result of effective collisions and breakage phenomena and the removal of inclusions.
Hence, it is expected that estimated PDFs in specimens obtained in later stages of processing
can provide information on the size distribution at the end of the liquid steel treatment
and its subsequent evolution. This provides evidence of the occurrence of phenomena,
such as the reoxidation process, that form new inclusions after liquid treatment. It is worth
mentioning recent works that use the PDF approach. Piva and Pistorius [8] used the PDF
to show the evolution of the size distribution for different processing routes for steel Ca
treatment, while Qifeng et al. [9] used it to analyze results obtained from the modeling of
the nucleation, growth, and agglomeration of Al2O3 inclusions.

On the other hand, the generalized extreme value (GEV) theory based on
Murakami et al.’s pioneering work [10] has been used to describe the large inclusion
size tail of the size distribution, in which standard probability distributions, such as the
log-normal distribution, are insufficient [4]. The method is based on measuring the max-
imum inclusion size in random inspection areas and fitting the Gumbel distribution to
these measurements. This allows to predict the maximum inclusion length (Lmax), i.e., the
longest inclusion expected to be found in a predetermined area. The fitting of the Gumbel
distribution to the size distributions of different specimens enables the statistical compar-
ison and discrimination of Lmax. Variations in the procedures used for the application of
GEV led to the development of the ASTM E2283 standard “Standard Practice for Extreme
Value Analysis of Nonmetallic Inclusions in Steel and other Microstructural Features” [11]
as a guide to evaluate inclusion cleanliness. The standard was shown to be a reliable
tool to assess inclusion cleanliness. Recently, Kumar and Balachandran [12] showed the
standard as an effective tool for estimating the largest inclusion, which has the potential for
crack nucleation that leads to fatigue failure in steel specimens. Fuchs et al. [13] confirmed
the effectiveness of the standard in the evaluation of inclusion cleanliness in ultraclean
gear steels. Furthermore, the standard has been used in the evaluation of the maximum
inclusion size of heat-treated wire rod specimens [14]. More recently, the results using the
standard showed relatively good agreement with measurements of large inclusions based
on the X-ray microcomputed tomography method [15]

In this work, size distributions were measured in steel wire rod specimens from six
different plant-scale heats following the metallographic procedure indicated in the ASTM
E2283 standard. The PDF approach was used to analyze the whole size distribution, whereas
the GEV theory was employed to describe the upper tail of the size distributions following
the procedure specified in the ASTM E2283 standard and to estimate the survival probability.

2. Background
2.1. PDF Approach

The PDF concept, introduced by Higgins [3], is expressed by the following equation:

PDF =
nv (LXY)

(LY − LX)
(1)

where nv (LXY) is the frequency of inclusions in a given size bin (particle number per
volume), and (LY − LX) is the bin width with units of length. The logarithmic representa-
tion of PDFs can be linear or quadratic and can be described by fractal (power law) and
lognormal distributions, respectively [6]. The probability density function of the fractal
distribution is given by

f (x) =
C
xD (2)
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where C is the constant of proportionality, and D is the fractal dimension. The probability
density function of the lognormal distribution is

f (x) =
1

x σ(2π)1/2 exp

[
[ln(x)− ln(µ)]2

2σ2

]
(3)

where m and s are the mean and standard deviation, respectively.

2.2. ASTM E2283 Standard

The ASTM E2283 standard [11] describes a procedure to statistically characterize the
distribution of the largest particles in a solid matrix. It can be used in the case of inclusions
in a steel matrix. Herein, essential aspects allowing us to understand the use of the standard
in this work are introduced.

The ASTM E2283 procedure is based upon quantitative optical metallographic measure-
ments and their analysis via statistical GEV theory. Six specimens per analysis are required for
metallographic measurements. An area of 150 mm2 (control area Ao) must be evaluated in four
different metallographically prepared planes in each specimen, and the largest measured inclu-
sion in each Ao is recorded. The measurements must be made using the correct magnification
to ensure that the detected largest inclusion is a minimum of 20 pixels in length. The procedure
provides a dataset of the 24 largest inclusions, which are listed in ascending order and can be
represented as xi. The cumulative probability Pi is calculated by the following equation:

Pi =
xi

(N + 1)
(4)

where N = 24.
The prediction of Lmax is based on the fitting of the Gumbel extreme value distribution

to the 24 recorded inclusion lengths. The probability density function of the Gumbel
distribution is expressed by

f(x) =
1
δ

[
exp
(

x − λ

δ

)]
× exp

[
−exp

(
− x − λ

δ

)]
(5)

where x is the random variable (maximum inclusion length), and l and d are the location
and scale parameters, respectively. The corresponding cumulative distribution is

F(x) = exp
(
−exp

(
− x − λ

δ

))
(6)

which can be rewritten by introducing the reduced variate y:

F(y) = exp(−exp(− y )) (7)

where
y =

x − λ

δ
(8)

Solving Equation (8) for x,
x = δ y + λ (9)

From Equation (7), y can be expressed in terms of the cumulative function as

y = −ln(−ln(F(y))) (10)

Equation (10) can be related to Equation (4), and the expression for y is rewritten as

y = −ln(−ln(F(y))) = − ln(− ln(P)) (11)



Materials 2022, 15, 7681 4 of 16

On the other hand, the return period T is used to predict how large an inclusion could
be expected to be found if a reference area (Aref) larger than Ao were to be evaluated. That is,

T =
Are f

Ao
(12)

In the ASTM E2283 standard, Aref is chosen to be 1000 times larger than Ao.
Furthermore, T is statistically defined as

T =
1

1 − P
(13)

For a T value of 1000, the corresponding P value is 0.999 (99.9%).
Thus, for P = 0.999, the y(P=0.99) value is calculated using Equation (11), and the

corresponding x(P=0.99) value is calculated by Equation (9). The calculated x(P=0.99) value
corresponds to Lmax, and Equation (9) is rewritten as

x(P=0.99) = Lmax = δ y(0.99) + λ (14)

The δ and λ parameters are calculated using the maximum likelihood method ML
from the log of the distribution function:

LL =
n

∑
i=1

ln
(

1
δ

)
−
(

xi − λ

δ

)
− exp

(
− xi − λ

δ

)
(15)

The estimated parameters are referenced as λML and δML and are used to construct
the best-fit line through the data points using Equation (9).

The standard error SE for any inclusion of length x is

SEx = δML

√
(1.109 + 0.514y + 0.608y2)/n (16)

The approximate 95% confidence interval is given by

95% CI = ±2 SE(x) (17)

The comparison of differences in sizes of large inclusions in two steels, denoted A and
B, is calculated by the approximate 95% confidence interval for Lmax(A) − Lmax(B) by the
following equation:

C.I = Lmax(A)− Lmax(B)± 2
√

S.Ere f (A)2 + S.Ere f (B)2 (18)

If the lower to upper bounds of the 95% CI include 0, then it is concluded that there is
no difference in the characteristic sizes of the largest inclusions in heats A and B.

3. Materials and Methods

Measurements and analyses of inclusion size distributions in wire rod specimens from
six plant-scale heats were conducted. The PDF approach was used to analyze the whole size
distribution, and GEV theory was employed to analyze the upper tail of the size distributions.

Specimens from six different heats of high carbon rod wire produced at the plant
scale were studied. The heats were produced by an electric arc furnace-ladle treatment-
degassing-continuous casting route, and the liquid steel was deoxidized with Si. The
studied steel corresponded to SAE 9254, and Table 1 shows the chemical composition
expressed in weight percent (wt. %) for two specimens of each heat. The chemical analysis
of C and S was performed using the infrared combustion technique, while the content of
other elements was determined using the spark emission spectroscopy technique.
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Table 1. Chemical composition (wt. %) of the studied heats.

Content (wt. %)
Heat Specimen

C Mn Si Cr P S

1 1 0.57 0.70 1.45 0.66 0.008 0.014
2 0.58 0.70 1.44 0.67 0.007 0.012

2 1 0.54 0.68 1.43 0.65 0.008 0.014
2 0.57 0.70 1.45 0.66 0.007 0.014

3 1 0.64 0.71 1.51 0.71 0.009 0.019
2 0.65 0.72 1.52 0.71 0.009 0.019

4 1 0.59 0.70 1.5 0.70 0.008 0.019
2 0.60 0.71 1.48 0.69 0.008 0.019

5 1 0.60 0.70 1.5 0.66 0.007 0.17
2 0.58 0.71 1.52 0.70 0.008 0.17

6 1 0.54 0.71 1.52 0.71 0.009 0.15
2 0.61 0.70 1.49 0.69 0.008 0.15

Inclusion size distributions were estimated using the metallographic procedure detailed
in the ASTM E2283 standard, which was rigorously followed. For each heat, six specimens
of wire rod in as-rolled conditions of 25 mm diameter and 200 mm length were available.
Each specimen was cut into a probe of 25 mm length and sectioned longitudinally as shown
in Figure 1. The plane denoted as A was progressively dry ground using 80-, 220-, 300-,
500-, 800-, 1000-, and 1200-grit SiC paper and polished with 3 and 1 µm diamond paste.
The measurements were conducted under a Nikon Eclipse MA200 light optical microscope
(Minato ku, Japan) at 100X magnification on 150 fields by image analysis, and the total
analyzed surface was 150 mm2. Three additional planes were analyzed, ensuring that the
space between neighboring planes was at least 0.3 mm, thus avoiding inclusions being counted
more than once. The total number of analyzed fields per heat was 600.
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Figure 1. Obtention of probes for metallographic measurements.

The totality of the analyzed inclusions in each heat was considered to estimate the
corresponding PDF using Equation (1). The frequency of inclusions per volume unit
specified in that equation was estimated from the two-dimensional inclusion measurements
obtained by image analysis, which were transformed into three-dimensional data using a
procedure based on the Saltikov method [16,17].

By applying the ASTM E2283 standard, the measured maximum inclusion size in each
of the inspected planes (24) was used for the statistical analyses described in the standard
and synthetized in the previous section of this paper.
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4. Results and Discussion

Figure 2 shows the measured inclusion frequency (inclusions/mm2) and area fraction
for the six specimens of each heat. In general, Heats 5 and 6 presented the highest values
for both parameters, whereas Heats 1 and 2 presented the lowest values. Furthermore,
Heats 5 and 6 showed more variability among specimens of the values of both parameters.
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4.1. Population Density Function PDF

Figure 3 shows the calculated PDF for each heat. The inclusion size is referred to as the
inclusion equivalent diameter, which is defined as the diameter of a circle with the same area
as the recorded particle [5]. Great differences were observed at small inclusion sizes, which
decreased as the inclusion size increased. Below 10 µm, Heat 2 presented the lowest PDF
values and was followed by Heats 1 and 3, while the rest of the heats presented similar values.
In the range of 10–20 µm, Heat 2 continued to present the lowest values, followed by Heat 1,
whereas Heat 6 presented the highest values; the rest of the heats presented similar values.
Furthermore, the magnification of the PDF scale (inner figure) shows that at larger inclusion
sizes, differences are also observed in PDF values and that Heats 2 and 6 showed the lowest
and highest values of PDF, respectively. Thus, it can be stated for the studied heats that as the
frequency of small inclusions increased, the population of large inclusions also increased, i.e.,
that the presence of large inclusions was due to the processing of liquid steel rather than to an
eventual phenomenon.
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The logarithmic representation of the calculated PDFs is shown in Figure 4. A general
linear power law behavior, represented by a reference straight line plotted in the figure, was
observed. The reference straight line was estimated from the totality of the PDF data. The
most notable deviations from the reference line corresponded to Heats 2 and 6, respectively,
whereas the other heats fit better to the reference line. To clarify the observed behavior,
the logarithmic representations of the PDFs of Heats 2 and 6 are shown in Figure 5, in
which the data of Heat 4 were included because of its better fit to the reference line. Heat
6 presented both a higher frequency of inclusions and a larger inclusion size; in contrast,
Heat 2 presented a lower frequency of inclusions and a smaller inclusion size, and Heat
4 exhibited intermediate values of both parameters. To individually analyze the heats of
Figure 5, the data corresponding to the associated six samples of each heat are shown in
Figure 6. As expected from a statistical point of view, more dispersion between the data
were observed as the frequency decreased (Heat 2), although the linear trend continued to
be observed. Thus, the heats can be ordered in decreasing order of cleanliness as follows:
Heat 2, 4 and 6. Furthermore, Heats 3 and 5 had a similar behavior to Heat 4.

Then, the differences between the slopes of the straight lines of each heat can be
deduced. The slope of the straight line is associated with the refining process and is specific
to each process. Van Ende et al. [5] showed results for Ti-alloyed Al-killed steel produced in
different plants. At the end of the refining process, a linear behavior of log PDF with a good
fit was shown, and the slope values of the straight line were similar regardless of the plant of
production. The slope value (−3.5) was associated with the Al-deoxidation process. Thus,
the average slope value of the reference line (−0.089) in Figure 4 can be associated with
the Mn–Si deoxidation process. In previous work [18], SiO2-Al2O3-MnO inclusions were
observed at the beginning of the ladle treatment, which evolved to SiO2-Al2O3-CaO-MgO
inclusions during treatment. Of note, SiO2-Al2O3-CaO-MgO inclusions were observed
in this work under as-rolling conditions, as shown in Figure 7 for inclusions of different
sizes. This result suggests that the estimated slope of the reference line is associated with
the formation of SiO2-Al2O3-MnO inclusions during the Mn-Si deoxidation process and
their evolution to SiO2-Al2O3-CaO-MgO inclusions during ladle treatment. Furthermore,
the linear behavior indicates that the new inclusions were not formed after liquid steel
treatment and that inclusion populations evolved by the growth of inclusions, breakage,
and removal of inclusions. In addition, the inclusions found in all samples were embedded
in a matrix similar to that presented in Figure 8. The microstructure of the matrix did not
vary due to the similarity of the chemical composition (Table 1) and because the inclusions
were subjected to the same thermomechanical treatment.
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Figure 5. Log-log plot of PDFs versus inclusion equivalent diameter for Heats 2, 4 and 6.
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2            6 
Figure 6. Log-log plot of PDFs versus inclusion equivalent diameter for specimens of Heats 2, 4 and 6.
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Figure 8. Typical microstructure of the steel matrix for the studied heats.

4.2. Extreme Value Distribution Analysis

Figure 9 shows a representation of the inclusion size distribution in histogram format.
In this section, “length inclusion” is used to denote the inclusion size, just as the ASTM
E2283 standard does. Of note, the inclusion length corresponds to the “equivalent diameter”
used in the previous section. Two main observations can be highlighted. Below 20 µm, the
highest frequency was shown by Heat 2; above 70 µm, however, Heat 6 had the highest
frequency. For intermediate inclusion sizes, it is difficult to describe a trend.

Table 2 shows the 24 measured values of maximum inclusion length obtained for
each heat from four analyzed planes in each of the six available specimens. The maximum
inclusion length values are listed in increasing order as specified by the ASTM E2283
standard. The reduced variate was calculated using Equation (11) and is shown in Figure 10
for each heat as a function of the inclusion length. In general, a linear behavior for individual
heats was observed. The fit of the straight lines was better at small inclusion lengths, and
scattering was observed at longer inclusion lengths. It is also observed that steeper slopes
correspond to lines located at shorter inclusion lengths, and consequently, the interception
with the horizontal axis was different for each line.
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Table 2. Inclusion maximum length Lmax (µm) for analyzed plans in each heat.

N◦ Inclusion
Heat

1 2 3 4 5 6

1 7.5 10.4 16.7 20.2 16.7 24.8
2 8.1 11.0 19.0 20.8 21.4 36.9
3 8.7 11.5 19.6 24.8 25.4 39.2
4 10.4 11.5 20.2 26.0 26.0 43.9
5 11.6 12.1 20.2 31.2 26.5 57.1
6 12.1 12.7 20.8 31.7 31.2 60.6
7 12.1 12.7 20.8 31.7 31.7 64.0
8 12.1 13.3 21.4 32.9 34.0 64.0
9 12.7 13.3 22.5 32.9 34.6 64.6
10 14.4 13.3 23.1 32.9 35.2 65.8
11 15.0 14.4 23.7 33.45 35.2 69.8
12 15.0 14.4 24.2 34.0 39.2 69.8
13 17.3 14.4 24.8 34.6 40.4 71.0
14 19.0 15.0 25.4 35.2 45.0 72.1
15 21.9 16.2 30.0 35.8 46.2 73.3
16 22.5 16.2 30.0 35.8 46.7 75.0
17 23.7 16.2 31.7 39.8 47.9 75.0
18 26.5 17.9 32.3 39.8 48.5 76.2
19 30.0 17.9 34.0 41.5 49.0 77.9
20 31.7 17.9 35.2 43.3 50.8 77.9
21 32.9 17.9 38.1 46.2 73.0 78.5
22 38.1 22.6 42.7 49.0 80.2 79.0
23 38.7 24.2 48.5 53.1 80.8 79.6
24 40.4 29.4 52.5 53.7 93.5 83.1

Table 3 lists the values of the estimated statistical parameters according to the procedure
of the ASTM E2283 standard. The values of λ, δ, and Lmax are plotted in Figure 11, in which it
is observed that the lower the values of λ and δ are, the lower are the values of Lmax. Thus,
the heats can be listed in increasing order of Lmax values as follows: Heat 2, Heat 1, Heat 3,
Heat 4, Heat 5, and Heat 6. This behavior is illustrated in Figure 12, where the probability
distribution functions calculated via Equation (5) and using the values of λ and δ included in
Table 3 are plotted.
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Figure 10. Reduced variate versus inclusion length.

Table 3. Values of statistical parameters (µm).

Parameters
Heat

1 2 3 4 5 6

λ 15.4 13.8 24.1 32.2 35.6 57.5
δ 7.6 2.9 6.5 8.8 14.1 18.0

L average 20.0 15.7 28.2 35.8 44.1 65.8
Standard deviation (Sdev) 10.4 4.6 9.6 11.8 19.8 15.3

Maximum length (Lmax) 68.2 34.2 69.0 92.7 132.9 181.9
Minimum length Y (Lmin) 6.9 6.9 6.9 6.9 6.9 6.9

Standard error (S.E.) 8.9 3.5 7.7 10.4 16.7 21.3

To determine whether the observed differences in Lmax values were statistically significant,
Lmax values were compared according to the procedure described in the ASTM E2283 standard.
The criterion of a 95% C.I. was calculated from the predicted value of Lmax for each heat as
well as the corresponding standard error. Table 4 lists the results of a round-robin comparison
in matrix format, where the column and arrow titles correspond to the identification of heats.
The interception of a column with an arrow denotes the range of bounds of the 95% C.I. of the
corresponding heats. A C.I. range that does not include 0 is denoted in red and indicates a
difference between the compared Lmax; otherwise, it is denoted in green and indicates that
there was no difference. The Lmax of Heats 5 and 6 did not differ from each other; in contrast,
they differed from the Lmax of the rest of the heats. Furthermore, Lmax of Heat 2 was different
from other Lmax, and Lmax of Heats 1, 3 and 4 were not different from each other. Thus, using
the Lmax parameter as the cleanliness index, it can be stated that Heat 2 is the cleanest and
significantly different from the rest of the heats; Heats 5 and 6 are the worst and significantly
different from the rest of the heats; Heats 1, 3 and 4 are not different from each other, and their
inclusion cleanliness is intermediate between Heat 2 and Heats 5 and 6.
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Figure 12. Probability density function for heats.

Although Lmax represents a useful indicator that enables the comparison and discrimi-
nation of inclusion populations, there is often interest in knowing the probability of finding
inclusions greater than a certain “critical” size depending on the specific application of the
steel component. For example, in components subjected to fatigue, it is accepted that the
size of the inclusion is important because cracks can form at the inclusion–steel interface.
In this context, the survival function S(x) (probability of finding an inclusion larger than
a given length, equal to the complement of the cumulative density function) rather than
Lmax is more convenient. Figure 13 presents S(x) as a function of the inclusion length for all
heats. The order of heats previously stated as a function of Lmax is confirmed for inclusion
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lengths greater than 35 µm, where no overlapping of curves is observed. At 35- and 10 µm
inclusion lengths, the curves of Heats 3 and 4 and Heats 1 and 2 overlapped, and therefore,
the order of heats was modified.

Table 4. Range of bounds of 95% confidence interval C.I.

Heat 2 Heat 3 Heat 4 Heat 5 Heat 6

Heat 1
53.23 22.82 2.87 −26.84 −67.43
14.79 −24.40 −51.96 −102.63 −159.96

Heat 2
−17.89 −36.64 −64.63 −104.49
−51.70 −80.46 −132.87 −190.94

Heat 3
2.10 −27.18 −67.56

−49.60 −100.72 −158.26

Heat 4
−0.87 −41.71
−79.52 −136.60

Heat 5
5.21

−103.14
 

6 

 

 
 
 
 
 
13 
  

Figure 13. Survival function S(x) for each heat.

S(x) is plotted in Figure 14 from the data of Figure 13 for three critical inclusion lengths:
10, 20 and 30 µm. The heats can be ordered by increasing the S(x) value for each critical value;
for example, for an inclusion length shorter than 10 µm, the order is Heat 1, Heat 2, Heat 3,
Heat 4, Heat 5 and Heat 6. This order is altered when the critical value of 20 µm is selected,
changing the order to Heat 2, Heat 1, Heat 3, Heat 5, Heat 4 and Heat 6. The observed
difference is explained by the overlapping probability density curves and S(x) curves for
Heats 1 and 2 and for Heats 4 and 5. For example, in Heat 1 and Heat 2, overlapping can be
observed in the upper left corner in Figure 13, or the overlapping of probability density
functions in the lower left corner in Figure 11. The same explanation can be used for the
inversion of order between Heats 4 and 5. Furthermore, for critical values greater than
35 µm, where no overlapping of curves is observed, the order is Heat 2, Heat 1, Heat 3,
Heat 4, Heat 5 and Heat 6. This is the same when parameter Lmax is considered as the
cleanliness parameter.
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5. Conclusions

Inclusion size distributions in wire rod specimens from six plant-scale heats were
measured and analyzed. The measurements were taken following the metallographic
procedure specified in the ASTM E2283 standard. The analysis of size distributions was
developed using two approaches: (1) the estimation of PDFs according to the Higgins
formalism [3] to obtain information on the whole inclusion size distribution and (2) the use
of the extreme value theory to describe the upper tail of the size distributions. Thus, the
following conclusions can be drawn.

• Heats were listed in decreasing order of inclusion cleanliness based on the analysis of
the linear logarithmic representation of PDFs.

• No new inclusions were formed after the ladle treatment process, as inferred from the
linear behavior of the logarithmic representation of PDFs, a power-law-type with time.
Hence, the evolution of inclusion distribution was associated with growth, breakage,
and the removal of inclusions.

• Heats were listed in decreasing order of inclusion cleanliness using the maximum
inclusion length parameter Lmax. The use of the extreme value statistics procedure
specified in the ASTM E2283 standard led to a statistical comparison of Lmax.

• Heats were ordered by considering the survival function S(x) values (probability of
finding an inclusion larger than a “critical” inclusion length) estimated using the GEV
theory. It was shown that the order can change depending on the critical value.
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