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Abstract: In this study, the effects of different fine aggregates on the properties of polyethylene
fiber engineered cementitious composite (PE-ECC) were systematically investigated. The PE-ECCs
were prepared with four fine aggregates, respectively. Furthermore, their flowability, compressive
strength, and uniaxial tensile properties were studied experimentally and comparatively analyzed
by microscopic techniques including X-ray diffraction (XRD), scanning electron microscope (SEM),
energy-dispersive spectroscopy (EDS), and mercury intrusion porosimetry (MIP). The results showed
that all the different types of fine aggregates exhibited little effect on the flowability of PE-ECC, but
a greater effect on the compressive strength, uniaxial tensile strength, and ultimate tensile strain.
PE-ECC prepared from untreated desert sand showed the best comprehensive performance, with
compressive strength, uniaxial tensile strength, and ultimate tensile strain of 47.92 MPa, 6.26 MPa,
and 3.638%, respectively. Moreover, it was found that the ultra-fine particles in the desert sand
promoted the hydration reaction of cement and produced more C–S–H gels. The pore structures
of ECC prepared with different aggregates exhibited obvious fractal characteristics, and the fractal
dimension ranged from 2.8 to 2.9. The fractal dimension showed a strong correlation with parameters
including ultimate tensile strain and pore structure, and the larger the fractal dimension, the smaller
the ultimate tensile strain, porosity, and average pore size of ECC.

Keywords: engineered cementitious composites; polyethylene fiber; desert sand; uniaxial tensile;
fractal dimension

1. Introduction

Engineered cementitious composites (ECCs) with high ductility and high toughness
as well as the advantage of achieving multiple cracking loads [1] have attracted significant
research attention on the global scale as an efficient replacement for concrete and potential
candidate with frequent applications in practical engineering structures. However, the
concrete fine aggregate used for the preparation of ECC-standard sand, and even its
substitute river sand exhibit serious imbalance between supply and demand and the cost
is also gradually increasing, thus the world is facing potentially disastrous shortage of
standard sand [2]. Nonetheless, at the same time, desert sand resources are abundant and
the cheapest material in desert area, and the fine grain size of desert sand is also more
suitable for the requirements of ECC materials.

Current studies on desert sand-based ECC mainly focus on its macroscopic properties
as well as its microscopic morphology [3–16], and a few of them compared the perfor-
mance differences between ECC prepared from desert sand and ECC prepared from other
sands [11–16]. Comparative analysis reported in a literature study [11] indicated that desert
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sand-based polyvinyl alcohol engineered cementitious composites (PVA-ECC) exhibited su-
perior uniaxial tensile properties than river sand PVA-ECC, and desert sand could improve
the interfacial properties of PVA and matrix and enhance the fiber pull-out slip. Moreover,
another study showed that the flexural properties of river sand-based ECC panels and
desert sand-based ECC panels were relatively close [12] and the compressive ductility
and toughness as well as the bending properties of desert sand-based ECC far exceeded
those of river sand-based ECC [13]. However, Yang et al. [14] found that the hydration
of desert sand-based ECC was slower than that of ordinary sand-based ECC, which was
analyzed because of the higher C–H production that hindered the cement hydration rate.
Li et al. [15] prepared ECC by completely replacing microquartz sand with desert sand
and found that desert sand-based ECCs were comparable to microquartz sand-based ECCs
in terms of mechanical properties such as tensile and compressive resistance. However,
they were less ductile as well as less capable of bending densification. Sheng et al. [16]
found that the tensile resistance of ECC prepared from desert sand was better than that
prepared from standard sand; however, worse than that prepared from river sand, which
might be caused by the existence of high number of large pores in desert sand-based ECC.
The above-mentioned studies proved that it is feasible to use desert sand to prepare ECC;
nonetheless, different scholars have reached different conclusions. We also found that
compared with the commonly used fine aggregates such as river sand, desert sand exhibits
a small grain size offset and poor grading, which results in a difference in the pore structure
of the ECC prepared from desert sand and ordinary sand, which in turn produces a huge
difference in the mechanical properties of ECC.

Furthermore, many studies on the pore structure of concrete and ordinary sand ECC
have been reported till date. The characterization parameters of pore structure in concrete
include pore diameter distribution, pore surface area, porosity, etc. However, it is not
accurate to express the pore structure by using only single parameters. Notably, fractal
dimension shows advantages in characterizing the discontinuity and irregularity of the
pore structure [17–19], which can effectively quantify and compare the complexity of the
material pore structure. Zeng et al. [17] investigated the fractal dimension of cement paste
and mortar with/without ground granulated blast-furnace slag (GGBS) and obtained by
different maintenance methods. The results confirmed that both maintenance methods
and GGBS affected the fractal dimension; moreover, it was also demonstrated that the
fractal dimension was related to the material water–cement ratio, curing age, and fly ash
content [20]. Wang et al. [21], on the one hand, investigated the pore structure and fractal
dimension of concrete prepared with fly ash and silica fume, and revealed the relationship
between the porosity of concrete and the fractal dimension. The results showed that the
fractal dimension affected the porosity of concrete. On the other hand, the relationship
between pore structure parameters and fractal dimension was investigated, and the results
showed that the pore fractal dimension exhibited a more significant effect on the porosity
and the most probable pore size [22]. Zhang et al. [23] explored the relationship between
the fractal dimension of high-strength cementitious materials and their pore structure
parameters and compressive strength. The results revealed that the pore structure of
high-strength cementitious materials exhibited obvious fractal characteristics, and the
correlation between the fractal dimension and the compressive strength and porosity of
the materials was found to be poor. The larger the fractal dimension, the larger the pore
diameter and the larger the pore surface area of high-strength cementitious materials,
and the fewer the pores smaller than 20 nm and larger than 100 nm. Clearly, the fractal
dimension shows a significant correlation with the material properties and pore structures,
and different aggregates cause large differences in the pore structure of the material. At
present, information regarding the relationship between the fractal dimension of desert
sand-based ECC materials and their pore characteristics and properties still lacks, as well
as the similarities and differences between fractal dimensions of desert sand-based ECC
and ordinary sand-based ECC materials have never been investigated till date.
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In summary, the use of local resource desert sand to replace fine aggregate in tradi-
tional ECC can not only aid in reasonable utilization of natural resources and cost saving,
but also be conducive to the regionalized development and application of ECC. Moreover,
comparative analysis of the differences in pore structure between ECCs prepared from
some different fine aggregates including desert sand and investigation of their variation
pattern between the fractal dimension and its performance are valuable for establishing the
relationship between pore structure and mechanical properties of ECC from microscopic
aspects, as well as for the performance design of ECC. Therefore, in this study, the macro-
scopic properties and microstructure of ECC prepared from four different fine aggregates
were investigated based on the previous studies, and the pore structure was tested by the
mercury-pressure method. According to the thermodynamics-based pore structure fractal
model previously proposed by authors [24], the relationship between the fractal dimension
of ECCs with different fine aggregates and their micro–macro properties as well as pore
structure characteristic parameters was explored to provide a reference idea for evaluating
the performance of desert sand-based ECC by using the fractal dimension.

2. Materials and Methods
2.1. Materials and Mix Proportion

The raw materials used in this study included 42.5 ordinary Portland cement (C),
fly ash (FA), four types of fine aggregates, tap water (W), high-efficiency water reducing
agent (SP), redispersible latex powder (RLP) (supplied by Jinzhou Baoyi Building Materials
Technology Co), and polyethylene (PE) fiber. Among them, four types of fine aggregates
included untreated desert sand (DSN), washed desert sand (DSY), river sand (RS), and
standard sand (SS). Figure 1 shows the particle size distribution of raw materials.
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Figure 1. Particle size distributions of raw materials. (a) Powder material. (b) Different fine aggregates.

Table 1 lists the chemical composition of raw materials, measured by X-ray fluorescence
(ARL PERFORM’X). Table 2 presents the basic physical properties of PE fibers, and Table 3
summarizes the specific mix proportions used in the test. Table 1 illustrates that the CaO
content in FA is 13.37%, which is known as Class C high calcium fly ash by GB/T 1596
(Chinese Standard 2017) [25].
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Table 1. Chemical compositions of raw materials.

Compositions (wt. %) CaO SiO2 Al2O3 Fe2O3 MgO SO3 K2 O Na2O Others

C 65.26 18.69 3.95 4.32 1.52 3.72 0.62 0.83 1.09
FA 13.37 45.68 16.72 10.42 4.37 1.73 2.10 3.18 2.43

DSN 9.52 57.18 12.84 7.46 2.77 2.38 2.61 3.28 1.96
DSY 8.03 61.97 12.85 6.30 2.10 1.09 2.55 3.61 1.50
RS 2.85 69.97 12.68 4.80 1.63 0.13 3.58 3.32 1.04
SS 1.01 90.98 3.42 0.56 0.20 0.63 1.96 0.26 0.98

Table 2. Basic physical properties of PE fibers.

Length/mm Diameter/µm Tensile strength/MPa Tensile modulus/GPa Elongation at break/% Density/(g·cm−3)

12 24 3000 110 2–3 0.98

Table 3. Mix proportion (by weight ratio) used in the test.

Mixtures C FA Sand W SP RLP PE Fiber (vol%)

DSN-ECC

1.0 1.5 1.55 0.34 0.004 0.004 1.5
DSY-ECC
RS-ECC
SS-ECC

2.2. Test Methods
2.2.1. Flowability

Flowability of fresh mortar was determined using GB/T 2419 (Chinese Standard
2005) [26] recommended jumping table test method. The fresh mortar was added into a
high truncated cone die with the upper and lower diameter of 70 and 100 mm and wall
thickness of 5 and 60 mm, respectively, and then pounded. Subsequently, the truncated
cone die was gently lifted vertically upward, with a frequency of once per second moving
25 times, and then the diffusion diameter of the paste was quickly measured. The average
value in the two vertical direction was measured as the test results of the flow. The
reported results were calculated as the average of three independent tests to obtain the
reliable results.

2.2.2. Specimen Molding

After the completion of the flowability tests, the fresh ECC mixtures were cast into the
corresponding molds for compression and uniaxial tension tests. Specimens were placed in
a natural environment with a temperature of 18 ± 2 ◦C and relative humidity of 65 ± 5%.
After 24 h, they were demolded and numbered. Next, the samples were placed in the
standard curing box (temperature = 20 ± 2 ◦C and relative humidity = 95 ± 5%) for 28 d.

2.2.3. Macroscopic Mechanical Properties

The compression test was carried out on three cube-shaped specimens each with a
dimension of 70.7 × 70.7 × 70.7 mm3 according to JGJ/T 70-2009 [27]. The uniaxial tension
test was carried out on three dog bone-shape specimens, and their dimensions are shown
in Figure 2. By referring to JC/T 2461-2018 [28], tensile deformation was measured using
an extensometer with a loading rate of 0.5 mm·min–1. After the tensile test was completed,
the average crack spacing and average crack width were obtained, while the number of
cracks was calculated.
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Figure 2. Dimensions of the dog bone specimen for the uniaxial tension tests.

2.2.4. Microstructure Characterization

After the corresponding tensile test, the central part of the specimens was taken and
soaked in anhydrous ethanol to terminate the hydration reaction of the material, and
then dried in an oven at 60 ◦C for 48 h for X-ray diffraction (XRD) and scanning electron
microscopy/energy-dispersive spectroscopy (SEM/EDS) testing. SEM (TESCAN MIRA
LMS) was used to characterize the microscopic morphology of ECC specimens prepared
with different aggregates. Before the test, the sample was made into a square block of size
no more than 5 mm. Furthermore, the elements in some areas of the sample were analyzed
using an energy spectrometer attached to the electron microscope. The resolution of the
instrument was 1.2 nm-30 keV, 3.5 nm-1 keV, the acceleration voltage was 200 eV–30 keV,
and the magnification was 2–1,000,000 times. XRD (BrukerAXS D8) study was used for
qualitative analysis of the phase compositions in ECC powder samples with different fine
aggregates. The samples were taken from the middle part of the tensile failure sample,
which were crushed and sampled after hydration and drying, and then ground in a mortar
and sieved with a sieve having a mesh size of 200 µm. The sieve residue powder was
the representative sample, and the sample dosage was generally more than 0.5 g. The
instrument target was Cu target, the tube voltage was 40 kV, the current was 30 mA, the
scanning rate was 5◦·min−1, and the scanning angle was 5–90◦.

The pore structure of cubic samples with the size of no more than 15 mm from the
middle of the tensile failure sample was tested using a pore size analyzer (mercury intrusion
porosimetry, MIP, AutoPore 9500). The pressure range of the instrument was 0.5–33000 psi,
and the pore size range was 350 µm–5 nm. Thermodynamic models are usually used for the
study of fractal dimension [24], and the calculation of the fractal dimension D is as follows [29].

Wn =
n

∑
i

pi∆Vi (1)

Qn =
V1/3

n
dn

(2)

lg
(

Wn

d2
n

)
= DlgQn + lgC (3)

where pi is the average pressure of the ith mercury feeding operation, Pa, ∆Vi is the amount
of mercury fed in the ith feeding operation, m3, n is the number of intervals applied in
the mercury feeding operation, dn is the pore diameter corresponding to the nth mercury
feeding, m, Vn is the cumulative amount of mercury fed in pressure intervals 1 to n, m3;
C is a constant; Wn is the accumulated surface energy in the mercury intrusion process
up to the nth stage, Qn is the function of pore radius rn and pore volume Vn at the nth
stage of mercury intrusion process, and D is the fractal dimension calculated based on
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thermodynamic relations. The corresponding groups of Wn/d2
n and Qn were obtained from

the experimental mercury compression data, and then the logarithm of these two was
plotted for linear regression. The slope of the obtained curve was the fractal dimension D.

3. Results and Discussion
3.1. Flowability

The working performance of ECC was measured by testing the maximum flow diame-
ter of fresh mortars. Figure 3 illustrates that the flow diameter of the ECC mortars prepared
from different fine aggregates is between 156 and 158 mm, and the flowability of the four
mixtures is not much different. According to the literature [30], the influence of aggregates
on the working properties of materials is mainly determined by their particle size distri-
bution and structural characteristics. The better roundness of desert sand particles helps
to reduce the friction between particles and improve the workability. However, Figure 1b
presents that the particles in desert sand are finer compared to river sand, which can lead
to a larger specific surface area and increased water demand. Therefore, the flowability
of desert sand-based ECC is comparable with that of ECC prepared from river sand or
standard sand under the mutual influence.
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3.2. Compressive Strength

Figure 4 summarizes the compressive strength of ECC corresponding to different
aggregates. Figure 4 illustrates that the order of compressive strength of ECC is: DSN-ECC
> DSY-ECC > SS-ECC > RS-ECC, and the strength of DSN-ECC could reach 1.16 times
that of RS-ECC. The results indicate that the ultra-fine particles with a particle size of
less than 175 µm in desert sand exhibited heterogeneous nucleation and pozzolan effects.
Particle size led to the reduction in the distance between nucleation sites and cement
particles, promoted the hydration reaction of cement, and resulted in the generation of
more hydration products, which not only optimized the matrix structure, but also enhanced
the compressive strength of the matrix [31,32]. Furthermore, smaller desert sand particles
and thinner slurry thickness can improve the structure and strength of the interfacial
transition zone by inhibiting ion migration in the interfacial transition zone [33]. Moreover,
the CaO/SiO2 ratio (calculated from Table 1: 0.166) is larger for desert sand compared
to that for river sand and standard sand, which also exhibits a positive effect on the
development of compressive strength [34].
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3.3. Ultimate Tensile Performance

The tensile stress–strain curves of ECC prepared from different fine aggregates are
shown in Figure 5a. Figure 5b shows the changes of ultimate tensile strength and ultimate
tensile strain of ECC under different fine aggregates, and the main characteristics are
summarized in Table 4. The table illustrates that f fc, f tu, and εtu are the initial cracking
strength, ultimate tensile strength, and ultimate tensile strain of the specimens, respectively.
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Table 4. Uniaxial tensile properties of ECC in different fine aggregates.

Mixtures f fc/MPa f tu/MPa εtu/%

DSN-ECC 2.74 6.26 3.638
DSY-ECC 2.63 6.05 1.827
RS-ECC 2.49 4.64 2.752
SS-ECC 3.16 6.66 3.282

Figure 5a intuitively shows that the ECC prepared from different fine aggregates show
good ductility, and the stress continues to increase with the increase of strain until failure.
Among them, DSN-ECC exhibits the best overall tensile performance, and RS-ECC shows
the worst tensile performance.

Figure 5b demonstrates that the ultimate tensile strength of SS-ECC is the largest at
6.66 MPa, and the strength order of the remaining three ECCs is DSN-ECC > DSY-ECC >
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RS-ECC. The peak intensity of DSN-ECC is 6.26 MPa, reaching 94% that of SS-ECC. The
order of ultimate tensile strain is as follows: DSN-ECC > SS-ECC > RS-ECC > DSY-ECC.
DSN-ECC shows the largest ultimate tensile strain, reaching 3.638%, which is 1.99 times
that of DSY-ECC. Desert sand particles are small and well rounded, which is advantageous
for fiber dispersion and fiber bridging. On the other hand, the desert sand underwent
some changes in its composition after washing with water (see Table 1), among which
the reduction in Ca content may be the reason for the decrease in its tensile properties.
Standard sand has a rougher appearance than desert sand, and the uneven surface leads
to the increase in the friction with the fibers, which is beneficial for strength development.
However, it weakens the fiber bridging, and therefore, leads to weakening of ultimate
tensile strain. The large particle size of river sand can adversely affect the dispersion of
fibers, resulting in poorer tensile properties [35].

3.4. SEM Analysis

SEM was used to observe the tensile damage sections of ECC specimens prepared
with different fine aggregates, and the microscopic morphology of the transition zone at
the interface between the aggregate and the matrix and the fibers was mainly observed.
The corresponding results are shown in Figure 6, wherein Figure 6a–c show images for
DSN-ECC, Figure 6d–f for DSY-ECC, Figure 6g–i for RS-ECC, and Figure 6j–l show images
for SS-ECC.

Figure 6b reveals the presence of more intact fiber ends and obvious pull-out marks
on the surface of the DSN-ECC samples, which indicates that the fibers were slowly sliding
in the matrix rather than being pulled off directly from the matrix, i.e., the PE fibers in
DSN-ECC produced good crack bridging capacity. Furthermore, Figure 6c shows that the
transition zone at the interface between the matrix and the aggregate has a denser structure,
resulting in excellent mechanical properties of the matrix, which may be the reason for the
optimal tensile properties of DSN-ECC.
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Figure 6c exhibits that the DSN-ECC matrix is well compacted and the desert sand
is tightly wrapped by the matrix material. At the same time, combined with the EDS
elemental analysis presented in Table 5, both Ca/Si and Al/Si of the products generated at
the interface bond between the desert sand and the matrix are higher in DSN-ECC than
in DSY-ECC, implying that the untreated desert sand may have undergone a volcanic ash
reaction, while promoting the hydration of the surrounding cement and producing more
dense gels [36,37]. As a result, the desert sand is more tightly bound to the matrix, which
will facilitate the development of strength in DSN-ECC. Figure 6d,e presents that the fibers
in DSY-ECC are most severely damaged with clear filamentary damage, which shows a
worse effect on the tensile properties of the specimens. Figure 6g,h shows that the fiber
ends of the river sand ECC specimens are relatively intact and have few surface scratches,
which indicates that the fibers do not play a good bridging role. Furthermore, Figure 6i
exhibits that some gaps appear between the river sand and the matrix, which indicates that
the weak zone at the interface between the river sand and the matrix may be damaged
first under mechanical action, affecting the mechanical property development. Figure 6j,k
reveals that the fiber ends of SS-ECC were fractured and a large number of obvious
scratches were produced on the fiber surface, indicating that the fibers also underwent
bridging action. However, fibers were pulled off due to the tight bond with the fiber matrix,
which is detrimental to the ductility development of the specimen, but may enhance the
tensile strength.

Table 5. Elemental composition and content of different fine aggregates at the junction with the
matrix (%).

Mixtures O Na Mg Al Si K Ca Fe Ca/Si Al/Si

DSN-ECC 38.51 1.08 3.24 8.22 14.66 0.69 25.24 8.36 1.722 0.561
DSY-ECC 36.34 0.21 2.02 2.64 30.76 0.45 23.57 4.01 0.766 0.086
RS-ECC 49.07 0.67 0.51 2.33 31.14 0.28 14.39 1.61 0.462 0.075
SS-ECC 39.24 0.00 0.15 0.54 22.05 0.04 37.38 0.60 1.695 0.024
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3.5. X-Ray Diffraction Analysis

The composition of the matrix phases of the four ECC is shown in Figure 7. The figures
show that the main phases in the four types of ECCs are AFt, Ca(OH)2, silica (SiO2), C–S–H
gel, and calcium oxide (CaO), and a small amount of dicalcium silicate (C2S). Moreover,
AFt, Ca(OH)2, and C–S–H gel are the main hydration products of ECC. Compared with
the other three sands, the peak intensities of C–S–H gels (29.4◦) in the XRD spectrum of
DSN-ECC are the largest, which indicates that more C–S–H gels are produced in desert
sand-based ECC. This may be attributed to the volcanic ash effect of some active fines in the
desert sand, which promotes the cement hydration [36]. In turn, the matrix structure was
optimized, which led to an effective improvement of all aspects of DSN-ECC performance.
In contrast, DSY-ECC produced less C–S–H gel than DSN-ECC, probably because some
active desert sand particles were washed away during the washing process. This attenuated
the hydration process of DSY-ECC and resulted in poorer mechanical properties.

Materials 2022, 15, x FOR PEER REVIEW 10 of 18 
 

 

Mixtures O Na Mg Al Si K Ca Fe Ca/Si Al/Si 
DSN-ECC 38.51 1.08 3.24 8.22 14.66 0.69 25.24 8.36 1.722 0.561 
DSY-ECC 36.34 0.21 2.02 2.64 30.76 0.45 23.57 4.01 0.766 0.086 
RS-ECC 49.07 0.67 0.51 2.33 31.14 0.28 14.39 1.61 0.462 0.075 
SS-ECC 39.24 0.00 0.15 0.54 22.05 0.04 37.38 0.60 1.695 0.024 

3.5. X-Ray Diffraction Analysis 
The composition of the matrix phases of the four ECC is shown in Figure 7. The 

figures show that the main phases in the four types of ECCs are AFt, Ca(OH)2, silica 
(SiO2), C–S–H gel, and calcium oxide (CaO), and a small amount of dicalcium silicate 
(C2S). Moreover, AFt, Ca(OH)2, and C–S–H gel are the main hydration products of ECC. 
Compared with the other three sands, the peak intensities of C–S–H gels (29.4°) in the 
XRD spectrum of DSN-ECC are the largest, which indicates that more C–S–H gels are 
produced in desert sand-based ECC. This may be attributed to the volcanic ash effect of 
some active fines in the desert sand, which promotes the cement hydration [36]. In turn, 
the matrix structure was optimized, which led to an effective improvement of all aspects 
of DSN-ECC performance. In contrast, DSY-ECC produced less C–S–H gel than 
DSN-ECC, probably because some active desert sand particles were washed away dur-
ing the washing process. This attenuated the hydration process of DSY-ECC and result-
ed in poorer mechanical properties. 

 
Figure 7. XRD patterns of hydrate of ECC under different fine aggregates. 

3.6. Pore Structure Parameters 
Figure 8 presents the cumulative mercury intake curve and pore size distribution 

differential curve of ECC under four fine aggregates, and Table 5 lists the specific pore 
structure characteristic parameters. Among them, the critical pore size is defined as the 
pore size at the beginning of the steeply descending section of the curve in the cumula-
tive mercury intake-pore size curve. Critical pore size is defined as the maximum pore 
level of each pore that can connect the larger pores, which effectively reflects the pore 
connectivity. The most probable pore size is the peak corresponding to the pore size in 
the pore size differential curve, which represents the most concentrated range of pore 
sizes in the matrix and is closely related to the pore size distribution pattern [38]. 

Figure 7. XRD patterns of hydrate of ECC under different fine aggregates.

3.6. Pore Structure Parameters

Figure 8 presents the cumulative mercury intake curve and pore size distribution
differential curve of ECC under four fine aggregates, and Table 5 lists the specific pore
structure characteristic parameters. Among them, the critical pore size is defined as the
pore size at the beginning of the steeply descending section of the curve in the cumulative
mercury intake-pore size curve. Critical pore size is defined as the maximum pore level of
each pore that can connect the larger pores, which effectively reflects the pore connectivity.
The most probable pore size is the peak corresponding to the pore size in the pore size
differential curve, which represents the most concentrated range of pore sizes in the matrix
and is closely related to the pore size distribution pattern [38].

Figure 8 and Table 6 present that among the ECCs prepared with four different fine
aggregates, DSY-ECC showed the smallest total pore volume, porosity, and average pore
size; however, DSN-ECC exhibited the largest total pore volume, porosity, and average
pore size. In other words, compared to DSN-ECC, the porosity and average pore size of
the matrix got reduced more significantly after the washing away of the desert sand from
the composite. The void structure is optimal even when compared to SS-ECC and RS-ECC,
which indicates that the water washing of desert sand is advantageous for producing a
matrix with excellent pore structure. This may be attributed to the reduction of the very
fine particles in the desert sand after water washing, thus it has a greater effect on its
pore structure. Moreover, the critical pore sizes of both DSN-ECC and DSY-ECC are the
largest, indicating that the inter-pore connectivity of ECC prepared from desert sand is
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strong, which also implies that very fine particles exhibit little effect on the inter-pore
connectivity of ECC materials. The small critical pore sizes of RS-ECC and SS-ECC indicate
poor inter-pore connectivity, which may be attributed to the effect of their own morphology.
For the most pore size, DSY-ECC is the smallest, which indicates that the most probable
pore size in its matrix is small, while RS-ECC shows the largest pore size, which may be
related to its particle gradation.
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Table 6. Characteristic parameters of pore structure under different fine aggregate.

Mixtures Pore
Volume/(mL-g−1) Porosity/% Average Pore

size/nm
Critical Pore

size/nm
Most Probable
Pore Size/µm

DSN-ECC 0.1800 29.57 41.53 120.76 178.971
DSY-ECC 0.1294 22.88 25.74 120.76 0.007
RS-ECC 0.1558 26.02 34.79 95.44 223.637
SS-ECC 0.1691 27.57 41.59 95.32 179.206

Figure 9 presents a comparison chart of the content of different pore sizes in the total
pore size of different fine aggregates. According to the pore size, the pores can be divided
into harmless (<20 nm), less harmful (20–50 nm), harmful (50—200 nm), and multi-harmful
(>200 nm) [39]. The figure illustrates that DSN-ECC and SS-ECC have low harmless pore
content and DSN-ECC shows high harmless pore content. However, DSN-ECC and SS-ECC
exhibit superior tensile strain resistance. It indicates that the more the content of harmless
pores in ECC, the detrimental they are to the development of tensile strain resistance of
the specimens.

3.7. Fractal Dimension

The fractal dimension D of different ECCs was calculated based on the MIP data, and
the results are presented in Table 7, and the specific pore structure fractal characteristics
and their fitting results are shown in Figure 10.



Materials 2022, 15, 7666 12 of 18Materials 2022, 15, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 9. Pore diameter distribution of ECC under different fine aggregates. 

3.7. Fractal Dimension 
The fractal dimension D of different ECCs was calculated based on the MIP data, 

and the results are presented in Table 7, and the specific pore structure fractal character-
istics and their fitting results are shown in Figure 10. 

  
(a) (b) 

Figure 9. Pore diameter distribution of ECC under different fine aggregates.

Table 7. The D values of ECC with different fine aggregates.

Mixtures D R2

DSN-ECC 2.8329 0.9953
DSY-ECC 2.9070 0.9938
RS-ECC 2.8586 0.9940
SS-ECC 2.8328 0.9917

Materials 2022, 15, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 9. Pore diameter distribution of ECC under different fine aggregates. 

3.7. Fractal Dimension 
The fractal dimension D of different ECCs was calculated based on the MIP data, 

and the results are presented in Table 7, and the specific pore structure fractal character-
istics and their fitting results are shown in Figure 10. 

  
(a) (b) 

Figure 10. Cont.



Materials 2022, 15, 7666 13 of 18Materials 2022, 15, x FOR PEER REVIEW 13 of 18 
 

 

  
(c) (d) 

Figure 10. Fractal properties of pore structure in ECC with different fine aggregates. (a) DSN-ECC. 
(b) DSY-ECC. (c) RS-ECC. (d) SS-ECC. 

Table 7. The D values of ECC with different fine aggregates. 

Mixtures D R2 
DSN-ECC 2.8329 0.9953 
DSY-ECC 2.9070 0.9938 
RS-ECC 2.8586 0.9940 
SS-ECC 2.8328 0.9917 

Based on the principle of fractal theory, when the fractal dimension D value is equal 
to 2, it indicates that the object under test is a smooth plane, while D values close to 3 
imply that the morphology and spatial distribution of the pores are very complex 
[40,41]. Therefore, D values between 2 and 3 [17,20,42] for the pore structure are mean-
ingful. Table 7 presents that the D values of all ECC specimens vary between 2.8 and 2.9, 
which indicates the pore structure of ECC prepared with different fine aggregates shows 
a clear fractal character. Meanwhile, the fractal dimension provides a good characteriza-
tion of the pore structure of ECCs with different fine aggregates. Table 7 presents that 
for ECC prepared with different aggregates, the D values are as follows: DSY-ECC > 
RS-ECC > DSN-ECC > SS-ECC and the DSY-ECC has the most complex pore structure. 
The above results indicate that the complexity of the pore structure of ECC prepared 
from different fine aggregates is different, which may be related to the particle sizes and 
chemical composition of different fine aggregates. 

3.8. Analysis of Relationship between Fractal Dimension and Properties 
3.8.1. Relationship between Fractal Dimension and Compressive Strength 

Figure 11 shows the relationship between the fractal dimension and compressive 
strength of ECC. The figure illustrates the absence of any strong correlation between the 
compressive strength of ECC and the fractal dimension, which is consistent with the re-
search results presented in a literature study [23], but different from the research results 
of other related studies [43–45], which may be related to the composite characteristics of 
ECC itself. It is not difficult to find that the water-washed desert sand leads to a more 
complex pore structure and also a decrease in compressive strength compared to 
DSN-ECC, which indicates that the water-washing process is detrimental to the devel-
opment of mechanical properties of desert sand-based ECC. 

Figure 10. Fractal properties of pore structure in ECC with different fine aggregates. (a) DSN-ECC.
(b) DSY-ECC. (c) RS-ECC. (d) SS-ECC.

Based on the principle of fractal theory, when the fractal dimension D value is equal
to 2, it indicates that the object under test is a smooth plane, while D values close to 3
imply that the morphology and spatial distribution of the pores are very complex [40,41].
Therefore, D values between 2 and 3 [17,20,42] for the pore structure are meaningful. Table 7
presents that the D values of all ECC specimens vary between 2.8 and 2.9, which indicates
the pore structure of ECC prepared with different fine aggregates shows a clear fractal
character. Meanwhile, the fractal dimension provides a good characterization of the pore
structure of ECCs with different fine aggregates. Table 7 presents that for ECC prepared
with different aggregates, the D values are as follows: DSY-ECC > RS-ECC > DSN-ECC >
SS-ECC and the DSY-ECC has the most complex pore structure. The above results indicate
that the complexity of the pore structure of ECC prepared from different fine aggregates is
different, which may be related to the particle sizes and chemical composition of different
fine aggregates.

3.8. Analysis of Relationship between Fractal Dimension and Properties
3.8.1. Relationship between Fractal Dimension and Compressive Strength

Figure 11 shows the relationship between the fractal dimension and compressive
strength of ECC. The figure illustrates the absence of any strong correlation between
the compressive strength of ECC and the fractal dimension, which is consistent with the
research results presented in a literature study [23], but different from the research results of
other related studies [43–45], which may be related to the composite characteristics of ECC
itself. It is not difficult to find that the water-washed desert sand leads to a more complex
pore structure and also a decrease in compressive strength compared to DSN-ECC, which
indicates that the water-washing process is detrimental to the development of mechanical
properties of desert sand-based ECC.
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3.8.2. Relationship between Fractal Dimension and Ultimate Tensile Performance

Figure 12 show the relationship between the fractal dimension and the tensile prop-
erties of ECC. Figure 12a demonstrates that the fractal dimension of ECC with different
aggregates is weakly correlated with the ultimate tensile strength, which is consistent with
the findings on compressive strength. Compared to desert sand and standard sand, river
sand shows a large particle size (see Table 1), and this may affect issues such as fiber dis-
persion and pore structure in ECC, resulting in large differences in mechanical properties.
However, comparative analysis of the desert sand-based ECC and standard sand-based
ECC with similar particle size indicates that the fractal dimension is negatively correlated
with the compressive strength and tensile strength. That is, the larger the fractal dimension,
the more unfavorable it is to the strength development. Figure 11 illustrates that with the
increase of the fractal dimension, the ultimate tensile strain gradually decreases. Fitting of
the relationship shows that the fractal dimension of ECC has a power function relationship
with the ultimate tensile strain, and R2 is 0.9479, which is in good agreement. It indicates
that the fractal dimension can be used to characterize and calculate the ultimate tensile
strain of ECC.
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3.8.3. Relationship between Fractal Dimension and Pore Structure Parameters

Figure 13 displays the plot of fractal dimension versus pore structure parameters. The
specific fitting result parameters of the fractal dimension and the pore diameter distribution
are presented in Table 8.
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Table 8. Fractal dimension and pore size distribution fitting result parameters.

Pore Volume Fractions
Parameters

Formula a b R2

<20 nm

y = a + b ∗ x

−374.2093 138.3060 0.9999
20 nm–50 nm −232.2389 86.9600 0.9234

50 nm–200 nm −225.2806 83.6215 0.8101
>200 nm 931.3645 −308.7512 0.9639

Figure 13a,b exhibit that with the increase in the fractal dimension, the porosity and
average pore size gradually decrease, and this is different from the results presented in
the literature report [9], which may be the effect of the existence of aggregate category.
The fitting of the results shows that the fractal dimension exhibits a linear relationship
with the pore surface area and the average pore diameter, and R2 is 0.8580 and 0.9891,
respectively, which is within the acceptable range. Figure 13c shows that with the increase
in the fractal dimension, the pore surface area gradually increases, which is consistent
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with the results reported in the literature [9]. The fitting results show that the fractal
dimension is linearly related to the pore surface area, and R2 is 0.8922, which is within
the acceptable range. Figure 13d and Table 8 present that with the increase in the fractal
dimension, the pore size content changes inconsistently, among which the pore size content
in the range of <20 nm, 20–50 nm, and 50–200 nm gradually increases with the increase
of fractal dimension; however, the pore size content of >200 nm gradually decreases. The
relationships were fitted and found to be linear, and the agreement was good. Thus,
clearly, the fractal dimension can be used to characterize and calculate the pore structure
parameters of ECC.

4. Conclusions

In this study, the flowability, mechanical properties, and microstructure of polyethy-
lene fiber-engineered cementitious composites (PE-ECC) with different fine aggregates
were investigated, and the pore structure of PE-ECC was analyzed using fractal dimension.
Based on the results, the following conclusions can be drawn.

(1) For ECC flowability, aggregate type exhibits little effect on it. Compared with river
sand, standard sand, and washed desert sand, the comprehensive performance of
untreated desert sand ECC is superior, and desert sand as fine aggregate for PE-ECC
production offers certain advantages.

(2) The presence of certain active powder particles in the desert sand synergistically
promotes the hydration reaction of cement and generates more C–S–H gel, which
closely combines the desert sand with the matrix and leads to effective improvement
in the mechanical properties of the matrix, such as compressive strength and tensile
strength. The mechanical properties of the desert sand ECC get reduced after water
washing, which may be the reason for the washing away of some of the active
micronized powder in the desert sand.

(3) The fractal dimension of the ECC prepared from the four sands varies in size, but all
are within the range of 2.8–2.9, indicating that they have obvious fractal characteristics.
Moreover, the correlation fit coefficients are all greater than 0.99, indicating that the
fractal model assumed in this study shows good applicability.

(4) The fractal dimension is not significantly correlated with the compressive strength
and ultimate tensile strength of ECC, but excluding river sand, the fractal dimension
of the other three sands is negatively correlated with the tensile strength and com-
pressive strength. The ultimate tensile strain decreases with the increase of the fractal
dimension, showing a good correlation.

(5) The fractal dimension exhibits good correlation with the pore structure parameters,
wherein porosity and average pore size are negatively correlated with fractal dimen-
sion, and pore surface area is positively correlated with fractal dimension. The higher
the content of large pores (>200 nm), the smaller the fractal dimension. In contrast,
the higher the number of pores <200 nm, the larger the fractal dimension.
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