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Abstract: This paper proposed an efficient two-dimensional fatigue crack growth simulation program
for linear elastic materials using an incremental crack growth procedure. The Visual Fortran pro-
gramming language was used to develop the finite element code. The adaptive finite element mesh
was generated using the advancing front method. Stress analysis for each increment was carried
out using the adaptive mesh finite element technique. The equivalent stress intensity factor is the
most essential parameter that should be accurately estimated for the mixed-mode loading condition
which was used as the onset criterion for the crack growth. The node splitting and relaxation method
advances the crack once the failure mechanism and crack direction have been determined. The
displacement extrapolation technique (DET) was used to calculate stress intensity factors (SIFs) at
each crack extension increment. Then, these SIFs were analyzed using the maximum circumferential
stress theory (MCST) to predict the crack propagation trajectory and the fatigue life cycles using the
Paris’ law model. Finally, the performance and capability of the developed program are shown in the
application examples.

Keywords: adaptive mesh; finite element method; linear elastic fracture mechanics; node splitting;
crack growth; stress intensity factors

1. Introduction

In terms of structural integrity, two of the most significant issues are fatigue and
fracture. Over the last years, this particular field of study has attracted a lot of attention,
particularly regarding to the main failure procedures. An understanding of these mech-
anisms is essential to the process of developing components that are both more durable
and more reliable. Computational design of structural components and materials with
embedded cracks requires a comprehensive assessment of their reliability and a predic-
tion of their remaining service life. The simulation of cracks growth has been conducted
for various issues, including determining the fatigue life of a structure. This is often
achieved by setting up a linear elastic fracture mechanics (LEFM) problem for each load
step. Typically, in LEFM, the SIF of the crack is employed to simulate crack propagation by
successive crack growth [1–5]. The stress intensity factors (SIFs) at the crack tip determine
the fatigue crack growth rate according to linear elastic fracture mechanics (LEFM). To
effectively predict the behavior of crack growth, a precise assessment of the SIFs at the
crack tip are necessary, which has been expressed as a function of crack geometries and
applied loads. Analytical SIFs solutions for idealized crack configuration and loading
conditions existed in many handbooks and they could be applied to simple and regular
structures [6–8]. However, in many structures the fatigue crack configurations are typically
complicated and irregular, resulting in a variety of different failure modes. Therefore, ana-
lytical solutions will be inappropriate to predict the SIF solutions which can be estimated
for these fatigue cracks using the results of finite element analysis. The two most common
methods for the predictions of SIFs are the displacement extrapolation technique [9,10]
and J-integral method [11,12]. Many numerical approaches have been developed over the
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years, including the finite element method (FEM), extended finite element method [13–16],
method of Element Free Galerkin [17], discrete element method (DEM) [18–20], phase-field
method [21], and cohesive element method [22,23]. In engineering applications, the finite
element method is a sophisticated methodology for simulating complicated geometries
and components. Two-dimensional crack propagation simulations were developed using
many software tools and finite element packages with the aid of fracture mechanics, such
as FRANC2D/L [24], ADAPCRACK2D [25,26], and ViDa [27]. The most time-consuming
part of the analysis is characterizing the displacement and stresses fields, which is essential
for estimating the SIFs. With the computing power available today, it is possible to perform
structural analysis on large structure using conventional computers by using the developed
program. For the modeling of two-dimensional fatigue crack growth using the LEFM
assumptions, the development of this program was started in 2004 and since then, a wide
range of features has been added with each new version [28–36]. Achieved results with the
developed source code are comparable to those obtained with the available fracture me-
chanics’ commercial software. The robustness of the developed program was demonstrated
in several scenarios, e.g., [28–35]. In terms of knowledge, using source code is appropriate
for at least two reasons: first, understanding the basic algorithm that it uses, and second,
acquiring programming skills in its development. This study also represents a scientific
procedure that can be simply utilized by the researchers to use it as a guideline to construct
their own program with the lowest amount of cost compared to commercial software.

2. Procedure of the Developed Program

The 2D fatigue crack growth analysis began with specifying the geometrical dimen-
sions, loads, material properties, and other constraints. During the pre-processing step, the
finite element method is used to carry out an incremental stress analysis. At each stage of
crack growth, the DET is used to determine the SIFs, that were then used by the MCST
to predict the crack propagation trajectory and the fatigue life cycles are predicted using
Paris’ law. Next, the advancing front method is implemented for generating the mesh
which requires the description of the domain boundary, the generation of the elements, the
mesh smoothing, and the renumbering of nodes [36]. The specific scale of every element,
which is estimated by the error estimator, will be used to control mesh refinement. The
solution components (stresses, displacement, strains, and so on) are transferred from the
old mesh into the new mesh after the new mesh has been generated. In the next sections,
a comprehensive explanation of the crack kinking criteria, background mesh creation,
crack development increment, as well as node splitting and relaxation are provided. The
computational scheme of the fatigue crack propagation program is shown in Figure 1.
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2.1. Crack Kinking Criteria

Two crucial factors are taken into consideration at every incremental crack growth step.
First, determine whether the crack propagates and, if so, in what direction. Second, two
criteria should be used based on two conditions: one for crack kinking and another for crack
propagation. The criterion for crack growth is either the conventional energy approach
or by the stress intensity approach. According to the conventional energy approach, a
crack grows whenever the energy release rate reaches a significance value of the material’s
fracture toughness [37]. On the other hand, according to the stress intensity approach, a
crack grows whenever the stress intensity factor at the crack tip exceeds the material’s
fracture toughness in the case of static loading or the equivalent stress intensity factor
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exceeds the threshold stress intensity factor in the case of fatigue loading. The maximum
circumferential stress theory was used in this study to calculate the crack direction angle [38].
According to this theory, when isotropic materials are subjected to mixed mode loading,
the crack grows in a normal direction to the direction in which the tangential tensile stress
is maximum. The following expressions provide the formulas for calculating the tangential
stresses in polar coordinates for the two modes of SIFs, KI, and KII [38,39]:

σr = 1√
2πr

cos(θ/2)
(
KI [1 + sin2(θ/2)] + 3

2 KI I sin θ − 2KI I tan(θ/2)
)

σθ = 1√
2πr

cos(θ/2)
[
KI cos2(θ/2)− 3

2 KI I sin θ
]

τrθ = 1√
2πr

cos(θ/2)
2 [KI sin θ + KI I(3 cos θ − 1)]

(1)

where σr represents the radial component of normal stress, σθ represents the tangential
component of normal stress, and τrθ represents the shear stress component. When solving
dσθ/dθ = 0 for θ, the solution is given as:

KI sin θ + KI I(3 cos θ − 1) = 0 (2)

From which the kinking angle can be obtained as:

θ = cos−1

3K2
I I + KI

√
K2

I + 8K2
I I

K2
I + 9K2

I I

 (3)

The sign of θ must be opposite to the sign of KII to ensure the maximum stress
associated with the crack increment [40].

2.2. The Background Mesh Generation

An appropriate technique must be used during each load step to ensure that the gen-
erated background mesh covers the whole computational domain. The background mesh
is generated by using the dichotomy approach, which uses all of the original boundary
nodes or mainly the external boundary nodes of the shape to build the background mesh
triangular. In this method, the computing area was modeled as a polygon. The boundary
triangulations were acquired by splitting and repeatedly dividing the computational area
into two sub-sets till the simplest polygon sub-sets were generated. Consequently, any
internal boundaries, such as holes, must be connected to the external boundary by connect-
ing lines. The internal boundaries would be compelled to be a part of the continuous line
of the external boundaries, resulting in a polygonal computational domain. The clockwise
direction is used to set the orientation of internal borders, whereas the counterclockwise
direction is used to set the orientation direction of external boundaries. The shortest
path between internal and external boundary points is used to construct the connector
line [41]. The proposed method is shown in Figure 2, which begins by separating each
initial identified boundaries points with a large face angle and producing an angle range
for determining the closest nonadjacent point to be connected with a division line. The
angle range has been selected in order to facilitate the generation of high quality polygon
subset forms by the division. In the event that the search for a point not neighboring is
unsuccessful, the division will begin at a position on the border that has a smaller face angle.
In accordance with the precedence, the identification for the face angle size is as follows:
π ≤ θ1 < 2π, π/2 < θ2 < π, 0 < θ3 ≤ π/2. As a result, in order to precisely represent
the field singularity near the crack tip, singular elements must be constructed. As the ad-
vancing front technique creates triangle elements beginning from the boundaries faces, the
region surrounding the crack tip is must to be separated before constructing of the singular
elements [36]. This area is separated by creating nodes in the rosette form surrounding the
crack tip and extracting the node at the crack tip and the connected boundaries segments.
By introducing new boundary segments connecting the new nodes, the template region is
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temporarily “cut off” from the initial domain followed by the triangulation of the whole
domain using the advancing front method. The triangles of the rosette elements are then
formed, as shown in Figure 3. Finally, a mid-side is added to each triangle edge to create
six node triangles, with the exception of the rosette components, where the mid side nodes
for the triangle edges related to the crack tip are shifted a quarter of the edges length closer
to the tip of the crack. The flow chart for generating the background mesh is shown in
Figure 4.
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2.3. Crack Growth Increment

The ratio of the two modes of SIFs (KII/KI) is indirectly proportional to the crack growth
increment (∆a), which was chosen to be 5–10 percent of the initial crack length which was
more appropriate for the smoothed crack propagation curvature trajectory. When KII is
comparatively larger than KI, it implies a mixed-mode relation. Consequently, a shorter
incremental size is necessary in order to adequately justify the smooth crack propagation
trajectory. It was observed that the length of crack-extension increments had no effect on
the results of stress intensity factors for increments that were less than 5% of the initial
crack length [42].

This percentage range, however, may be changed as appropriate, as several previ-
ous studies utilizing a 20–50 percent range [38,43,44]. As a direct consequence of this,
the Lagrange interpolation provides an approximation of the incremental crack growth
as follows:

∆a =

((
1−

∣∣∣∣KI I
KI

∣∣∣∣)(20%) +

∣∣∣∣KI I
KI

∣∣∣∣(5%)

)
a (4)

where KI and KII are the first and second modes of SIFs.

2.4. Node Splitting and Relaxation

Relaxation of the split nodes is the release of the nodes in accordance with their
mechanical properties. When the criterion for crack propagation are satisfied at a particular
crack tip, the crack tip node has to be split into two separate nodes so that the crack
opening can be simulated. If it is necessary to display the deformation, the displacement
should be continually updated using the coordinates of the boundary nodes. The splitting
direction is determined by dividing the angle between the segment that initially includes
the present crack-tip and the segment that connects the present crack-tip to the predicted
next crack-tip, upwards and downwards. Figure 5 shows the node splitting and relaxing
procedure. Assuming that a and c are the initial nodes that come before and after the
crack tip b, respectively, and that d is the estimated next crack tip. The incrementally crack
length will be |bd|, and the trajectory will be as indicated in Figure 5a. As illustrated in
Figure 5b, the angle α between segments ab and bd is divided and the splitting direction
is chosen at α/2 as shown in Figure 5c, which involves both upwards and downwards
directions. If the length of the splitting is set to ∆s, the length of each splitting node b1 and
b2 from the original crack tip is ∆s/2 as shown in Figure 5d. The new segments connecting
the new crack tip to the split nodes should be the same length. If they are not, it will be
ridiculous to create the uniform rosette template later. As a result, two additional boundary
nodes must be inserted, as seen in Figure 5e. Finally, only a total of three nodes need to be
added in every step of the crack growth as shown in Figure 5f, and the geometry can now
be updated.

In order to restart the process from the beginning, the constraint, loading, and crack
tip data must all be updated to reflect the inclusion of new boundary segments.
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2.5. Refinement of the Adaptive Mesh

Refining the adaptive mesh is an optimization approach used in the field of finite
element mesh. Refinement of meshes along the crack and towards its tip is initially achieved
using a customized adaptive mesh refinement. This approach is based on an a posteriori
error estimate derived from the previous mesh generation. The relative stress norm error
is the metric that is used to provide a reasonable approximation of the error in the mesh
refinement. The ratio of the standard stress error of the elements to the average standard
stress error of the whole area was determined by using the adaptive mesh optimization of
the h-type. In this manner, the mesh size of each element is represented as follows:

he =
√

2Ae (5)

where Ae is the area of the triangular element. The representation of the average norm
stress error throughout the entire domain is expressed as:

‖ê‖2 = 1
m

m
∑

e=1

∫
Ωe

σTσdΩ

= 1
m

m
∑

e=1

∫
Ωe


σx
σy
τxy
σz


T

σx
σy
τxy
σz

dΩ
(6)

where m denotes the total number of domain elements. In the finite element method, the
integration with the triangular isoparametric domain is converted by the summation of
quadratics in accordance with the Radau principle as following:

‖ e ‖2
e =

1∫
−1

1∫
1




σ(ξ, η)x
σ(ξ, η)y
τ(ξ, η)xy
σ(ξ, η)z

−


σ(ξ, η)∗x
σ(ξ, η)∗y
τ(ξ, η)∗xy
σ(ξ, η)∗z




T


σ(ξ, η)x
σ(ξ, η)y
τ(ξ, η)xy
σ(ξ, η)z

−


σ(ξ, η)∗x
σ(ξ, η)∗y
τ(ξ, η)∗xy
σ(ξ, η)∗z


tedetJedξdη

=
3
∑

p=1




σ
(
ξp, ηp

)
x

σ
(
ξp, ηp

)
y

τ
(
ξp, ηp

)
xy

σ
(
ξp, ηp

)
z

−


σ
(
ξp, ηp

)∗
x

σ
(
ξp, ηp

)∗
y

τ
(
ξp, ηp

)∗
xy

σ
(
ξp, ηp

)∗
z




T


σ
(
ξp, ηp

)
x

σ
(
ξp, ηp

)
y

τ
(
ξp, ηp

)
xy

σ
(
ξp, ηp

)
z

−


σ
(
ξp, ηp

)∗
x

σ
(
ξp, ηp

)∗
y

τ
(
, ηp
)∗

xy
σ
(
ξp, ηp

)∗
z


tedetJeWp

(7)

and similarly

‖ ê ‖2=
1
m

m

∑
e=1

3

∑
p=1




σ
(
ξp, ηp

)
x

σ
(
ξp, ηp

)
y

τ
(
ξp, ηp

)
xy

σ
(
ξp, ηp

)
z




T


σ
(
ξp, ηp

)
x

σ
(
ξp, ηp

)
y

τ
(
ξp, ηp

)
xy

σ
(
ξp, ηp

)
z


tedetJeWp (8)

where te is the element thickness for a plane stress and te =1 for a plane strain. WP is a
weighting factor, and Je is the Jacobian matrix, which is represented as:

Je =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
=


r
∑

i=1

∂Ne
i

∂ξ xe
i

r
∑

i=1

∂Ne
i

∂ξ ye
i

r
∑

i=1

∂Ne
i

∂η xe
i

r
∑

i=1

∂Ne
i

∂η ye
i

 (9)

As a consequence, the relative stress norm error ζe for each element is much less than
5%, which is an acceptable range for a broad range of engineering applications [36]. Hence,

ζe =
‖e‖e
‖ê‖ ≤ ζ (10)
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and the permissible error level for the new element is defined as follows:

εe =
‖e‖e
ζ‖ê‖ ≤ 1 (11)

It indicates that each individual element with εe > 1 must undergo further refinement,
and the new mesh size must be expected. In this instance, the asymptotic convergence rate
criterion are applied, which assumes the following:

‖e‖e ∝ hp
e (12)

where p is the approximation of the polynomial order. For the quadratic polynomial, the
new element size is estimated as:

hN =
1√
εe

he (13)

The old mesh will be used as the new background mesh and the advancing front
method is repeated, depending on the user-specified number of mesh refinements.

2.6. Displacement Extrapolation Technique

The displacement extrapolation technique is used for linear elastic materials to calcu-
late the SIFs from finite element nodal displacement. In this method, the crack extremity is
totally surrounded by triangular quarter-point singular elements, while the remaining areas
are covered by six-node isoparametric elements. The displacement component of the partial
nodes located around the tip and along the crack line is calculated during this extrapolation.
The required formulas are used for this component in order to obtain the stress intensity
factors that correspond to these nodes. Figure 6 shows the detailed rosette triangle elements
formed around the crack tip using the displacement extrapolation technique.
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KI =
E

3(1 + ν)(1 + κ)

√
2π
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4(v′b − v′d)−

(v′c − v′e)
2

]
(14)

KI I =
E

3(1 + ν)(1 + κ)

√
2π

L

[
4(u′b − u′d)−

(u′c − u′e)
2

]
(15)
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where E is the elastic modulus, ν is the Poisson’s ratio, κ is the elastic factor represented as:

κ =

{
3− 4ν f or plane strain
(3−ν)
(1+ν)

f or plane stress
(16)

and L denotes the length of the quarter-point element. Where u′ and v′ are the displacement
components in the x′ and y′ directions, respectively, as denoted in Figure 5.

3. Numerical Results and Discussion
3.1. Single Edge Notched Specimen under Shear Load

As shown schematically in Figure 7, the growth of an edge crack in a rectangular plate
subjected to a shear stress, τ = 1 unit is considered. The initial crack length is a = 3.5 cm,
the width of the plate is W = 7 cm, and the height is 2h = 16 cm. The material properties
are selected as modulus of elasticity, E = 30 × 106 N/mm2 and the Poisson’s ratio, ν = 0.25.
It is assumed that the plane strain condition is applied in this case. Figure 8 displays the
initial adaptive mesh as well as the contour distribution of the maximum principal stress
and von Mises stress for the first step before crack growth. The highest values of maximum
principal stress and von Mises stress are visible at the tip of the crack.

Figure 9 depicts the crack growth trajectory in four selected steps, each representing
an adaptive mesh distribution. The adaptive mesh refinement initially occurs in local area
near crack front. As the number of adaptive local refinements increases, the refinement
domain shrinks to a smaller area in the surrounding area of the crack tip. At the beginning
of crack growth, the mode II stress intensity factor dominated the crack direction. How-
ever, as the crack trajectory proceeds, the magnitude of the mode I stress intensity factor
becomes significantly higher, as demonstrated by the straight crack path at the end of the
crack trajectory.
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The predicted stress intensity factors were KI = 34.00 N cm−3/2 and KI I = 4.55 N cm−3/2

that were compared to the reference values [43,45,46] of 34.00 and 4.55, 34.1 and 4.52, and
34.00 and 4.55 respectively. The predicted crack propagation trajectory in this study matches
the crack growth trajectory obtained in [42] using a singular edge-based smoothed finite
element method. Moreover, the predicted crack growth path obtained by [43] using FEM
and the adaptive Delaunay triangulation, the predicted crack growth path obtained by [46]
using adaptive extended isogeometric analysis (XIGA) based on locally refined B-splits,
as well as the predicted crack growth path obtained by [47] using extended element-free
Galerkin method are shown in Figure 10a–e respectively. Figure 11 shows the predicted
values of stress intensity factors for each step of crack growth. The overall steps of crack
propagation are depicted in Figure 12 as a contour of the maximum principal stress.

Figure 10. Predicted crack growth path, (a) present study, (b) numerical results [46], (c) numerical
results [43] (d) numerical results [45], (e) numerical results [47].
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shear load.

3.2. Modified Four-Point Bending Beam

Figure 13 depicts a modified four-point bending specimen with a single crack and one
hole located 9.3 mm from the left side of the crack center. This specimen was simulated
under fatigue loading with constant amplitude load ratio R = 0.1, and the amount of the
applied loads are P = 100 N. The initial mesh of this geometry is displayed in Figure 14
with two types of mesh density. The material properties are elastic modulus, E = 205 GPa,
Poisson’s ratio, υ = 0.333, yield strength, σy = 491 MPa, threshold stress intensity factor,
Kth = 11.6 MPa

√
m, Paris’ law coefficient, C = 4.5× 10−10 and Paris law exponent, m = 2.1.

It was found that the estimated crack growth path agreed the experimental path
observed by [48]. In addition, the predicted crack propagation direction agrees with the
predicted trajectories of other previous numerical [49,50], and [47]. The study in [49]
utilizes FEM based on local Lepp–Delaunay meshes refinement, the work [50] uses FEM
with configurational forces, and the method in [47] applies coupled extended mesh free–
smoothed mesh free method. The results were compared to the finite element results
obtained in [27] uses ViDa program as shown in Figure 15a–f, respectively. It is important
to observe, in the early stages of the expansion of the crack, that the crack expands in a
straight path. That is because the crack tip is still relatively distant from the hole. However,
since the hole influences the direction in which the crack grows, the direction in which
the crack propagates changes at a significant angle and progressively moves closer to the
hole. Figure 16 depicts the von Mises stress, together with an enlarged view of the region
around the crack tip. Figure 17 illustrates the distribution of the maximum principal stress
distribution, with an enlarged view of the region around the crack tip.



Materials 2022, 15, 7632 15 of 21

Materials 2022, 15, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 13. Geometrical dimensions and load positions of the modified four-point bending beam 
(mm). 

 
(a) 

 
(b) 

Figure 14. Adaptive mesh for the modified four-point bending beam, (a) dens mesh and (b) coarse 
mesh. 

It was found that the estimated crack growth path agreed the experimental path ob-
served by [48]. In addition, the predicted crack propagation direction agrees with the pre-
dicted trajectories of other previous numerical [49,50], and [47]. The study in [49] utilizes 
FEM based on local Lepp–Delaunay meshes refinement, the work [50] uses FEM with 
configurational forces, and the method in [47] applies coupled extended mesh free–
smoothed mesh free method. The results were compared to the finite element results ob-
tained in [27] uses ViDa program as shown in Figure 15a–f, respectively. It is important to 
observe, in the early stages of the expansion of the crack, that the crack expands in a 
straight path. That is because the crack tip is still relatively distant from the hole. How-
ever, since the hole influences the direction in which the crack grows, the direction in 
which the crack propagates changes at a significant angle and progressively moves closer 
to the hole. Figure 16 depicts the von Mises stress, together with an enlarged view of the 

Figure 13. Geometrical dimensions and load positions of the modified four-point bending beam (mm).

Materials 2022, 15, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 13. Geometrical dimensions and load positions of the modified four-point bending beam 
(mm). 

 
(a) 

 
(b) 

Figure 14. Adaptive mesh for the modified four-point bending beam, (a) dens mesh and (b) coarse 
mesh. 

It was found that the estimated crack growth path agreed the experimental path ob-
served by [48]. In addition, the predicted crack propagation direction agrees with the pre-
dicted trajectories of other previous numerical [49,50], and [47]. The study in [49] utilizes 
FEM based on local Lepp–Delaunay meshes refinement, the work [50] uses FEM with 
configurational forces, and the method in [47] applies coupled extended mesh free–
smoothed mesh free method. The results were compared to the finite element results ob-
tained in [27] uses ViDa program as shown in Figure 15a–f, respectively. It is important to 
observe, in the early stages of the expansion of the crack, that the crack expands in a 
straight path. That is because the crack tip is still relatively distant from the hole. How-
ever, since the hole influences the direction in which the crack grows, the direction in 
which the crack propagates changes at a significant angle and progressively moves closer 
to the hole. Figure 16 depicts the von Mises stress, together with an enlarged view of the 

Figure 14. Adaptive mesh for the modified four-point bending beam, (a) dens mesh and
(b) coarse mesh.



Materials 2022, 15, 7632 16 of 21

Materials 2022, 15, x FOR PEER REVIEW 17 of 22 
 

 

region around the crack tip. Figure 17 illustrates the distribution of the maximum princi-
pal stress distribution, with an enlarged view of the region around the crack tip. 

 
 

(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 15. A comparison of the four point bending beam’s crack growth path, (a) present study, (b) 
experimental results [48], (c) numerical [49], (d) numerical [50], (e) numerical [47], (f) numerical [27]. 

 
Figure 16. The distribution of a von Mises stress (MPa) at the last step of the crack’s propagation. 

Figure 15. A comparison of the four point bending beam’s crack growth path, (a) present study, (b) ex-
perimental results [48], (c) numerical [49], (d) numerical [50], (e) numerical [47], (f) numerical [27].

Materials 2022, 15, x FOR PEER REVIEW 17 of 22 
 

 

region around the crack tip. Figure 17 illustrates the distribution of the maximum princi-
pal stress distribution, with an enlarged view of the region around the crack tip. 

 
 

(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 15. A comparison of the four point bending beam’s crack growth path, (a) present study, (b) 
experimental results [48], (c) numerical [49], (d) numerical [50], (e) numerical [47], (f) numerical [27]. 

 
Figure 16. The distribution of a von Mises stress (MPa) at the last step of the crack’s propagation. Figure 16. The distribution of a von Mises stress (MPa) at the last step of the crack’s propagation.



Materials 2022, 15, 7632 17 of 21Materials 2022, 15, x FOR PEER REVIEW 18 of 22 
 

 

 
Figure 17. The distribution of the maximum principal stress (MPa) at the last step of the crack’s 
propagation. 

As can be seen in the Figure 17, at the beginning of the crack growth process, the 
crack started to grow in a straight line while the first mode of SIFs controlled the crack 
propagation path. The second mode of stress intensity components increased in value as 
the crack grew toward the hole and altered its direction when the hole’s existence influ-
enced the crack’s direction. 

When determining the crack propagation rate and the fatigue life of a component, 
the SIFs are the most critical factors to be considered. Following is the analytical solution 
of the normalized stress intensity factor solution for the regular four-point bending beam 
that does not include a hole [51]: 

2

6 ( )( / ) /I
P s r af a W K

W t
π−

=  (17) 

where KI represents the first mode of SIFs, f(a/W) refers to the normalized SIF, W is the 
specimen width, t is specimen thickness, P is the applied load, s and r are the distances 
represented in Figure 1, and a is the crack length. 

To demonstrate the influence of the presence of a hole on the crack propagation di-
rection, which is correlated to the associated SIFs, the predicted values of the normalized 
SIF were compared to the calculated values from the analytical solution represented in 
Equation (17). Additionally, the dimensionless SIF values were calculated by [27] using 
the boundary element method (BEM) with BemCracker2D (BC2D) program, as depicted 
in Figure 18. It was noticed that the hole’s insertion significantly influences the normalized 
stress intensity factor values. 

 
Figure 18. Normalized SIFs for the regular and modified four-point bending beam compared to 
Gomes and Miranda [27]. 

Figure 17. The distribution of the maximum principal stress (MPa) at the last step of the
crack’s propagation.

As can be seen in the Figure 17, at the beginning of the crack growth process, the
crack started to grow in a straight line while the first mode of SIFs controlled the crack
propagation path. The second mode of stress intensity components increased in value as the
crack grew toward the hole and altered its direction when the hole’s existence influenced
the crack’s direction.

When determining the crack propagation rate and the fatigue life of a component, the
SIFs are the most critical factors to be considered. Following is the analytical solution of the
normalized stress intensity factor solution for the regular four-point bending beam that
does not include a hole [51]:

f (a/W) = KI/
6P(s− r)

√
πa

W2t
(17)

where KI represents the first mode of SIFs, f(a/W) refers to the normalized SIF, W is the
specimen width, t is specimen thickness, P is the applied load, s and r are the distances
represented in Figure 1, and a is the crack length.

To demonstrate the influence of the presence of a hole on the crack propagation
direction, which is correlated to the associated SIFs, the predicted values of the normalized
SIF were compared to the calculated values from the analytical solution represented in
Equation (17). Additionally, the dimensionless SIF values were calculated by [27] using
the boundary element method (BEM) with BemCracker2D (BC2D) program, as depicted in
Figure 18. It was noticed that the hole’s insertion significantly influences the normalized
stress intensity factor values.
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Figures 19 and 20 show the estimated values of both modes of SIFs. At the beginning of
the crack’s propagation, KI dominated the crack’s direction because KII values were smaller
than to KI values. KII was then steadily raised to a maximum value of 4.323 MPa(mm)1/2

as the second mode of stress intensity factors, resulting in a change in the trajectory of the
crack to grow toward the hole.
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Figure 19. First mode of stress intensity factors.
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As shown in Figure 21, the calculated fatigue life cycles are compared to the experi-
mental data obtained by [27], and the numerical results obtained by the same authors using
two different software: Vida and BemCracker2D (BC2D). While ViDa and BemCracker2D
are two-dimensional crack growth programs based on the finite element method and the
dual boundary element method. In contrast to the BemCracker2D findings, which deviated
from the experimental data in the last stages of crack growth, this figure shows that the
present study’s results were in line with both the experimental data and the numerical
results produced by Vida 98 software.
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4. Conclusions

In this study, a fatigue crack propagation methodology based on the adaptive FEM
applies to analyze fractures with mixed-mode of crack growth behavior. The displacement
extrapolation method uses to evaluate the SIFs, and the maximum circumferential stress
theory uses to calculate the crack growth angles. The crack propagation of two case studies
is simulated with the help of the developed program, which uses an adaptive finite element
mesh generation approach. The predicted values of the stress intensity factors agreed
closely with the available numerical results. During the crack propagation, a particular
criterion of the Crack Growth increment utilizes the magnitude of the crack increment. In
addition, the Paris law’s expression calculates the fatigue life. Depending on the position
of the hole from the crack tip, holes act as crack stoppers and cause cracks to propagate
toward them. The program’s results have been verified by comparing them directly to the
relevant experimental data and numerical simulations conducted by other researchers.
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