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Abstract: The study investigated short, thin-walled Z-shaped carbon–epoxy laminate columns.
Z-columns were compressed while considering the eccentric force realized from the center of gravity
of the column section. The study involved performing a nonlinear analysis of the structures with
implemented geometric imperfections reflecting the first buckling modes. The nonlinear analysis
was performed by using the Tsai–Wu criterion to determine the effort of the composite material. The
computations were run until the critical parameter was reached in the Tsai–Wu criterion, allowing for
a description of the failure initiation mechanism in the composite material. The first signs of damage
to the composite material were determined by using the acoustic emission method. Based on the
results, postcritical equilibrium paths of the numerical models were determined. The equilibrium
paths were then compared with the experimental characteristics of real structures. The numerical
results and experimental findings show a satisfactory agreement. The results confirmed that the
numerical models were adequate for estimating the performance of composite structures in the
postcritical range, depending on the amplitude of compressive load eccentricity. The research topic
undertaken is important because the thin-walled structure design relates to actual loads which, in
most cases, differ from the idealized theoretical load conditions.

Keywords: thin-walled structures; laminates; eccentricity of load; postcritical state; finite element method

1. Introduction

Modern thin-walled contractions are mainly made of advanced composite materials
characterized by low specific weight and high mechanical parameters. It mainly concerns
thin-walled stiffeners [1–7], which are usually designed as open and closed profiles with
complicated cross-section shapes. The role of such structures is to carry axial and bending
loads, meaning that they are subject to buckling, particularly in compression. However,
although the loss of stability of these members may result in a localized weakening of
the load-bearing structure, it does not affect the immediate risks to the safe use of such a
construction [8–11]. Available research has shown that thin-walled composite members
can still carry loads in the buckling state, provided that the buckling is elastic and the
equilibrium path after buckling is stable [12–22]. Therefore, in addition to investigating
member buckling, it is also necessary to investigate the buckling behavior of the entire
structure and its buckling capacity. Loss of stability in thin-walled stiffeners usually
takes the form of local buckling of the walls and web of the thin-walled column and
is manifested by the occurrence of a certain number of half-waves along the column
axis [23–28]. Thin-walled composite structures of this type are distinguished by the fact
that they are able to continue to carry the load after the critical load has been exceeded,
provided that their postcritical characteristics are stable. From this fact, the possibility of
describing the workings of the structure in a post-critical state is of great importance, both
for cognitive [29–36] and application aspects.

An additional noteworthy aspect of the design of thin-walled structures concerns
the real loads, which, in most instances, deviate from the idealized, theoretical loading
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conditions. A very significant problem in this field is the possibility of load eccentricity
resulting, for example, from inaccurate installation or unstable boundary conditions. This is
important because the response of a structure operating under eccentric loading conditions
differs significantly from the idealized response to axial loading. Eccentricity of load
application can result in premature loss of stability, with buckling in the service load
range [37,38]. Under the influence of load eccentricity, changes may occur in the way the
column walls are loaded, as the eccentricity of force application generates an additional
flexural load condition, which may contribute to accelerated buckling. If the structure
enters buckling too early, the strength performance of the structure is reduced, and this can
lead to a more rapid failure of the loaded structures. Most design solutions do not take
this phenomenon into account at the design stage, making it more dangerous to the actual
performance of the structure.

This study aimed to determine qualitative and quantitative effects of compressive load
eccentricity on the behavior of thin-walled composite columns in the postcritical state up
to the first signs of failure of the composite structure. Different load eccentricity values
were tested by numerical and experimental methods. The manuscript presents a novel
approach for determining the load initiating failure to first composite layer. This consisted
of using AEM (acoustic emission method) in the experiment, with which the first indication
of damage in the composite was recorded. The experimental study was compared with an
FEM analysis, with which the damage-initiating force of the first layer was determined by
using the well-known Tsai–Wu criterion.

The finite element method (FEM) was chosen for the numerical analysis. FEM is
currently one of the most widely used computational methods for the analysis of solid
structures with a large number of degrees of freedom. Commercially available commercial
FEM calculation packages allow for simple linear analyses, as well as complex calculations
involving geometrically and physically non-linear issues [39–46]. It is also worth mention-
ing that this study involved using the popular finite element method, which is widely used
in many fields [47–55].

2. The Test Object

Short, thin-walled Z-shaped carbon–epoxy laminate columns were axially and eccen-
tricity loaded in compression. Columns were standard thin-walled constructions with
perpendicular walls. Every column consisted of three flat plate elements that were joined
together [56–61]. The column material was an eight-layered carbon–epoxy laminate manu-
factured by autoclave (Figure 1).
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Thin-walled columns were made from a unidirectional prepreg strip of the HexPly sys-
tem carbon–epoxy composite with the designation M12/35%/UD134/AS7. The matrix of
the composite was epoxy resin (density: ρ(m) = 1.24 g/cm3; Tg(m) = 128 ◦C; Rm(m) = 64 MPa;
ν(m) = 0.4; E(m) = 5.1 GPa), while the reinforcement was AS7J12K carbon fibers (density:
ρ(f) = 2.5 g/cm3; Rm(f) = 4830 MPa; ν(f) = 0.269; E(f) = 241 GPa). The nominal volume
proportion of reinforcing fibers in the composite was approximately 60%.

The manufacturing process involved the preparation of a hermetic vacuum package
in a special air-conditioned “clean room” on a prepared mold, enabling the dimensions
and shape of the profiles to be reproduced. The fabricated vacuum package was connected
to a vacuum pump, providing a vacuum of approximately 0.08 MPa, and then subjected to
a polymerization process in an autoclave. The curing process in the autoclave is achieved
by a rapid temperature rise under controlled pressure, isothermal annealing for the time
required for the process to take place, and then cooling down. The process parameters
(vacuum in the package, overpressure, temperature, and process time) are selected individ-
ually depending on the composite being produced. For the carbon–epoxy composite, an
overpressure value of 0.4 MPa in the autoclave and a heating temperature of 135 ◦C for
about 2 h were assumed.

The composite Z-shaped columns had four layups, and they are shown in Table 1.
The columns consisted of eight layers symmetrically arranged with respect to the central
plane. The test object had the overall dimensions of the column cross-section: a web width
of 60 mm, a wall width of 30 mm, and a length of 250 mm (Figure 2).

Table 1. Composite layup configurations.

Specimen Configuration
z_1 [0/-45/45/90]s
z_2 [90/-45/45/0/]s
z_3 [45/-45/90/0/]s
z_4 [90/0/90/0]s
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Figure 2. Geometrical Z-shaped column model with the schematic of the eccentricity load.

A schematic of a cross-section of a Z-shaped construction under the eccentric com-
pressive load was presented in Figure 2, demonstrating that eccentricity is caused by a
shift in the point of application of the compressive force with respect to the longitudinal
axis of the column. The point was moved from center of gravity of the column (Test 1) to
the 0◦ axis by a value of 6 mm (Test 2), and then the column was rotated by 90◦ (Test 3),
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with its midpoint located in the center of gravity of the column, as shown in Figure 2. The
mechanical properties (Young’s modulus parallel to fibers, E1; Young’s modulus normal
to fibers, E2; the Poisson’s ratio in the layer plane, ν12; and Kirchhoff’s modulus, G12) and
limit properties (Tensile Strength parallel to fibers, FT1; Tensile Strength normal to fibers,
FT2; Shear Strength, FS; Compressive Strength parallel to fibers, FC1; and Compressive
Strength normal to fibers, FC2) of a single composite ply shown in Table 2.

Table 2. Mechanical properties of CFRP composite.

E1 (0◦) E2 (90◦) G1,2 ν12 FT1 (0◦) FT2 (90◦) Fs (45◦) FC1 (0◦) FC2 (90◦)
GPa MPa MPa - MPa MPa MPa MPa MPa
143 5826 3846 0.36 2221 49 84 641 114

3. Methodology

The scope of the research carried out included the analysis of the postcritical state up to
the load value corresponding to the failure initiation of the first laminate layer, considering
the eccentricity of the compression load application. A detailed analysis of the critical state
of this type of structure is presented in other works by the author [62]. Investigations were
carried out experimentally, and a numerical analysis was performed [63]. The finite element
method (FEM) was chosen for the numerical analysis. In this paper, the ABAQUS/CAE
2020 system, using the finite element method, was used for the numerical computations.

Load eccentricity tests on composite Z-columns were carried out up to a condition
corresponding to the moment of initiation of composite damage. In order to investigate
this, the time course of the force was recorded during the experimental tests and acoustic
effects were measured by using the acoustic emission method (AEM), which can indicate
the first signs of damage to the composite material. The result of the experimental research
conducted was the identification of the form of deformation of composite columns and the
determination of the value of the force initiating failure of the specimen for a given value of
load eccentricity. In parallel, a non-linear numerical analysis was carried out to identify the
failure initiation of compressed Z-columns, using the tensor failure criterion of Tsai–Wu
composites. The load corresponding to the compression of the Tsai–Wu criterion was the
numerical value of the force initiating the failure of the first laminate layer.

4. Experimental Test

Experimental tests were carried out by using the static testing machine at 21 ◦C, with
a constant displacement speed of the upper crosshead (Figure 3a). Figure 3b shows the test
stand where experimental compression testing of thin-walled composite Z-columns was
carried out.

In the experimental study, wall displacements of the Z-column were measured in
the direction perpendicular to the wall plane, using the laser sensor. The results of the
measurements carried out made it possible to develop postcritical equilibrium paths that
allow the behavior of the columns to be described in terms of the compression load realized.
Special clamping heads mounted on the pins of the testing machine were used to ensure
articulated support conditions for the column’s end sections, incorporating spherical hinges.
In addition, shims of deformable polymer material were used to eliminate imperfections
in the boundary conditions and to ensure uniform loading of the individual edges of the
column end sections. Specially designed sliding tables were mounted on the clamping
heads, which, with the use of a micrometric screw, allowed for the precise introduction of
compression load eccentricity values by appropriately positioning the profile with relation
to axis of the testing machine. The position of load eccentric was determined by moving
the Z-column profile in the 0◦ axis by 6 mm relative to the axis of the testing machine and
then rotating it by 90◦.
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5. Numerical Model

Numerical investigations using the FEM for non-linear analysis of the postcritical state
were carried out up to the failure initiation value of the CFRP structure. The numerical
value of the load initiating the failure of the first composite layer was determined based on
the iterative failure criterion of Tsai–Wu [64]:

F11σ2
1 + 2F12σ1σ2 + F22σ2

2 + F66τ2
12 + F1σ1 + F2σ2 = 1 (1)

where the components of the strength tensors with the exception of F12 could be determined
by simple strength tests. The values of these components could be represented as follows:

F1 =
1

Xt
− 1

Xc
(2)

F2 =
1
Yt

− 1
Yc

(3)

F11 =
1

XtXc
(4)

F22 =
1

YtYc
(5)

F66 =
1
S2 (6)

where Xt is the tensile strength of the composite in the fiber direction, Xc is the compression
strength of the composite in the fiber direction, Yt is the tensile strength of the composite in
the direction crossed to the fibers, Yc is the compressive strength of the composite in the
direction crossed to fibers, and S is the shear strength of the composite in the plane of the
layer (assumed to be S = S’ the same value for shear in both directions).

The non-linear computation was carried out on a Z-column model with an imple-
mented initial value of geometric imperfections corresponding to the obtained first buckling
form of column, whose amplitude was w0C = 0.05 mm. The initial imperfection value used
was determined by numerical validation of the postcritical equilibrium paths of the tested
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columns with the results of experimental tests. The non-linear stability solution was solved
by using the incremental–iteration Newton–Raphson method (Figure 4).
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The discretization of the column was carried out by using SHELL-type layered shell
elements, having three translational and three rotational degrees of freedom at each node
of the element. In the developed numerical model of the column, a finite-element-type
designated S8R was used, representing an 8-node element with a second-order shape
function and reduced integration. In the case of the plates modeling the support planes of
the column end sections, finite elements of type R3D4 were assumed, being rigid 4-node
elements of type RIGID (Figure 5). The FEM numerical analysis did not consider large
displacements. The numerical models prepared were characterized by a finite-element
mesh structure with an individual element size of 4 mm × 4 mm. This allowed for a
uniform partitioning of the individual profile walls by generating a constant density mesh.
This approach enabled accurate observation of the deformation and stress states during the
working of the compressed thin-walled Z-columns. The finite element size of the discrete
model mesh was chosen after preliminary FEM analyses [65,66]. In addition, it should be
added that there is the X-FEM (mesh-independent) method [67–70] in which the size of the
finite element is not affected by the computational results. According to References [71–75],
the FEM mesh size is of negligible significance in the X-FEM method.

The type of finite element used allowed for the definition of the layered composite
structure along the vector normal to the surface of the element. The laminate structure was
modeled by using the layup/ply modeling technique, which allows for the configuration
of the composite layer structure to be modeled along the thickness of the finite element
by defining the following parameters: layer thickness, type of material, and direction of
fiber arrangement in the layer. The value of the thickness of a single laminate layer is t
= 0.105 mm (total column wall thickness g = 0.84 mm), and this was determined from
geometric measurements of the real composite structure. The numerical models developed
defined an orthotropic material model in the plane stress state, based on the experimentally
determined mechanical properties of the composite material, as shown in Table 2.

The boundary conditions of the FEM model reproduced the real support of the Z-
column at both ends on the testing machine. The reference points used were those corre-
sponding to the location of the centers of gravity of ball joints of the attachment heads,
where simple support boundary conditions were defined. The two translational degrees of
freedom (Ux = Uy = 0—Figure 5) and rotation about the column axis (URz = 0—Figure 5)
were limited at the point reproducing the upper ball joint, while the three translational
degrees of freedom (Ux = Uy = Uz = 0—Figure 5) and rotation (URz = 0—Figure 5) were
limited at the reference point for the lower ball joint. Reference points were connected to
rigid plates that support the ends of the columns by coupling all the degrees of freedom of
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the points and plates. The column was subjected to a compressive force concentrated at
the upper reference point. The value of eccentricity parameter given was used by moving
column from axial position (Test 1) toward the 0◦ axis by 6 mm in relation to the axis of the
machine (Test 2) and then rotating it by 90◦ (Test 3). The contact relationship between the
ends of the columns and the plates was defined.
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6. Results

The analysis of the postcritical state was based on a comparison of the experimental
and numerical postcritical equilibrium paths of the Z-column. Experimental compressive
load: Increased deflection equilibrium paths were made on the basis of the recorded force
and laser pointing perpendicularly to the half-wave formed on the wall of the Z-column,
which was characterized by the largest deflections. Figure 6 shows a comparison between
the experimental tests and the results of the numerical analysis of columns z_1÷z_4 for the
case of axial compression (Test 1) and the cases of load eccentricity values realized in Test 2
and Test 3.

The characteristics obtained show a high agreement between the experimental results
and the FEM numerical analysis. In both cases, the obtained characteristics have a similar
stability character of work, and this confirms the ability of the structure to continue to
carry the load in the postcritical range. The determined postcritical equilibrium paths
of the compressed columns with Z-shape sections for all the configurations tested show
a tendency for the stiffness of the structure to decrease due to the introduction of the
load eccentricity, as shown in Figure 6. In the case of the real structure, the postcritical
equilibrium paths showed slightly lower stiffness than the numerically determined curves.

By subjecting the change in stiffness of the structure caused by the introduction of
compressive load eccentricity to numerical analysis, it could be concluded that the level of
reduction in the stiffness of the structure in the postcritical range varies depending on the
position of implementation of the load eccentricity. The introduction of the load eccentricity
of Test 2 reduced the rigidity of the structure (depending on the layout of the composite) in
the range of 12÷22%, while in Test 3, it caused a reduction in stiffness that was higher and
was in the range of 46÷64%. Table 3 shows the changes in the stiffness of the Z-column
under eccentric loading for all the composite-layer-configuration variants considered. From
the results, it could be seen that the eccentricity of the compressive load has the greatest
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effect on the performance of the real structure in the postcritical state for configuration z_2
a, while it has the least effect for configurations z_1.
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Figure 6. Postcritical EXP-FEM equilibrium paths in the realization of compressive load eccentricity:
(a) z_1 column, (b) z_2 column, (c) z_3 column, and (d) z_4 column.

Table 3. Changes in column stiffness—axis load to the eccentricity of the load.

Difference Column—z_1 Column—z_2 Column—z_3 Column—z_4
EXP FEM EXP FEM EXP FEM EXP FEM

Test 1
to Test 02 12% 8% 22% 19% 21% 18% 20% 19%

Test 1
to Test 3 46% 43% 64% 61% 58% 55% 53% 52%
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The compression tests on columns with Z-shape cross-sections were carried out until
the first signs that could indicate the initiation of failure in the composite material were
recorded by using the acoustic emission method. The scope of the experimental inves-
tigations included conducting 2 tests for all laminate configurations analyzed, covering
Test 1 (axial compression) and Test 3. The measurements carried out on the real specimens
allowed verification of the results of the numerical analyses. In the AEM tests, the charac-
teristics of the signal amplitude compared with the time and the force were used to assess
the moment of initiation of damage to the composite material.

The objective of the numerical analysis was to determine the compressive load at
which the initiation of failure of the first layer of the laminate structure occurs. The failure
of the composite material was assessed on the basis of the Tsai–Wu composite failure
criterion (tensor criterion) implemented in the ABAQUS program. Non-linear structural
computations were performed on models with the first form of buckling initiated by
using the incremental–iterative Newton–Raphson method. Numerical computations were
performed until the failure criterion of reaching critical parameter 1 (on a scale of 0÷1) was
reached. The regions of the structure in which the critical value of the failure parameter
has been reached define critical zones for which there is a high probability of failure of
the composite layer. The presented FEM results show the state of reaching the critical
parameter in the first composite layer and the corresponding value of the force initiating
the failure of the composite material.

The compressive-force waveform and the amplitude of the acoustic emission signal
over time, determined during the experimental tests, allowed us to determine the value of
load initiating failure of the first layer of composite of actual structure. The experimental
value of the force initiating the failure of the composite material was determined on the basis
of the first clear decrease in the waveform of the force in time, which was simultaneously
accompanied by a clear increase in the amplitude of the EA signal. In the conducted tests,
the experimental value of the force initiating failure was, in most cases, the maximum of
the local extremum of the force-time characteristic. Figures 7–10 show the methodology
for the graphical determination of the experimental value of the force initiating failure of
composite columns with Z-shape sections.
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The graphs presented show the value of the load initiating damage to the composite 
structure of the real structure, corresponding to the recorded increased value of the EA 
amplitude (triangles). The determined load values were confronted with the results of 
numerical analyses, which are marked on the diagrams with a blue dotted line drawn 
parallel to the time axis. For the numerical analysis, maps of the critical parameter 
corresponding to the failure criterion were determined. Figures 11–14 present the areas 
where damage initiation of the first composite layer occurred, corresponding to the 
achievement of the value 1 of the critical parameter determined according to the Tsai–Wu 
criterion. The results of numerical calculations were compared with experimental forms 
of deformation in order to verify the applied FEM models. In all analyzed cases, the 
experimental and numerical forms of deformation were consistent. 

Figure 9. Column z_3—failure initiation force: (a) axial compression—Test 1; (b) eccentricity—Test 3.

The graphs presented show the value of the load initiating damage to the composite
structure of the real structure, corresponding to the recorded increased value of the EA
amplitude (triangles). The determined load values were confronted with the results of nu-
merical analyses, which are marked on the diagrams with a blue dotted line drawn parallel
to the time axis. For the numerical analysis, maps of the critical parameter corresponding
to the failure criterion were determined. Figures 11–14 present the areas where damage
initiation of the first composite layer occurred, corresponding to the achievement of the
value 1 of the critical parameter determined according to the Tsai–Wu criterion. The results
of numerical calculations were compared with experimental forms of deformation in order
to verify the applied FEM models. In all analyzed cases, the experimental and numerical
forms of deformation were consistent.
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The results obtained from the numerical analyses of the critical parameter map allowed
us to identify the areas where there was a high probability of damage to the composite
material structure. The analysis of the maps presented showed that these were mainly
areas located close to the end sections of the analyzed Z-columns. Depending on the value
of the load eccentricity, the area of initiation of the first layer appears on the web: Test 1
and on the profile wall of Test 2.

Table 4 presents the experimental and numerical values of the load initiating composite
failure and the layer numbers (in brackets) where the critical value of failure parameter 1
was identified in the numerical computations. The results were compared for the analyzed
Z-columns from z_1 to z_4.

Table 4. The failure-initiation force value for composite configuration.

Test 1 Test 3

z_1
EXP 7374 N 1497 N
FEM 7496 N (7) 1504 N (2)

difference 1.60% 0.50%

z_2
EXP 7992 N 1349 N
FEM 8229 N (2) 1466 N (1)

difference 2.90% 8%

z_3
EXP 7417 N 1762 N
FEM 7802 N (8) 1875 N (7)

difference 4.90% 6%

z_4
EXP 9141 N 1349 N
FEM 9301 N (2) 1381 N (7)

difference 1.70% 2.30%
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The test results in Table 4 confirmed the high agreement between the value of the load
initiating the failure of the composite material of the real structure and the corresponding
value obtained for the numerical model. The maximum percent divergences were as
follows: column z_1, 1.7%; column z_2, 8%; column z_3, 6%; and column z_4, 2.3%. This
is a high level of agreement between the test results, confirming the correctness of the
adopted test methodology.

On the basis of the test results obtained, it was noted that, irrespective of the configu-
ration of the composite layers, the effect of the load eccentricity on the value of the force
initiating the failure of the first layer is qualitatively the same for all considered columns
with Z-shape cross-section. The realization of the load eccentricity in Test 3 resulted in
a decrease in the composite-failure-initiating force. The percentage values of the load
initiating composite failure in relation to the axial compression case are presented in Table 5.
The quantitative analysis of the results obtained showed that the highest decrease in the
value of the force initiating composite failure occurred in the case of laminate configuration
z_4 and amounts to 85%, while the lowest decrease at the level of 76% was characterized
by configuration z_3.

Table 5. Change in composite failure initiation load as a function of maximum compression load eccentricity.

Difference Sample—z_1 Sample—z_2 Sample—z_3 Sample—z_4
EXP FEM EXP FEM EXP FEM EXP FEM

Test 1 to
Test 3 79.7% 79.9% 83.1% 82.2% 76.2% 76% 85.2% 85%

Producing structures from carbon–epoxy composites is expensive, making this type of
research out of the reach of the researcher. In the author’s opinion, FEM modeling [76–79]
may be of interest for considering progressive failure and failure processes in compos-
ites [80–88]. For this, future research directions will focus on the analysis of the covered
state over the full range of loads leading to complete failure.

7. Conclusions

The study investigated the influence of compressive load eccentricity on the post-
buckling behavior of thin-walled composite Z-columns. A combined qualitative and
quantitative study of the influence of compressive load eccentricity on the post-buckling
state up to load initiating the failure of the first composite layer was performed. The
postcritical equilibrium paths of the structure (load deflection) determined in the tests
showed a significant decrease in the stiffness of the structure due to the application of
load eccentricity values of Test 2 and Test 3 compared to axial attrition of Test 1. The
analysis of the Z-columns confirmed the high influence of the applied eccentricity of the
compressive load on the working of the structure in the postcritical state. It should be
noted that the highest stiffness of the Z-column was achieved during the axial force (ideal
loading conditions, Test 1). The decrease in the stiffness of the structure z_1÷z_4 caused
by the load eccentricity in the direction of axis 0◦ Test 2 and amounted to 12%÷22%.
Significantly negative effects on the working of the structure were observed in the case of
implementation of the load eccentricity in the 90◦ axis direction (Test 3). The existence of
such a load eccentricity weakened the stiffness of the analyzed Z-columns z_1÷z_4 in the
range of 46%÷64%. In addition, the results showed that the eccentricity of loading realized
at the points: Test 2 and Test 3 had no change in the form of the postcritical deformation in
relation to the compressive axial test (Test 1). The results from using the acoustic emission
method (AEM) and the finite element method (FEM) showed agreement between the
experimental and numerical results of the loads initiating composite failure. The applied
test methodology allowed us to determine the effect of compression load eccentricity on
the value of the load initiating composite structure failure. It was confirmed that the
realization of load eccentricity for Test 3 causes a decrease in the value of the load initiating
composite failure in comparison with axial compression (Test 1). This significantly leads
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to a reduction in the strength of the compressed structure. The observed reduction in the
value of the load initiating composite failure was at the level of 76÷85%. The occurrence of
such load eccentricity significantly weakened the strength of the compressed column. It
could potentially result in premature failure of the CFRP material and ultimately reduce
the load-carrying capacity of the construction. This is a dangerous effect, especially in
the range of maintenance loads. The results obtained from this research have practical
relevance, especially in the designing of thin-walled composite constructions, which are
subject to unexpected inaccuracies that can significantly affect the performance.
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42. Rzeczkowski, J.; Paśnik, J.; Samborski, S. Mode III Numerical Analysis of Composite Laminates with Elastic Couplings in Split
Cantilever Beam Configuration. Compos. Struct. 2021, 265, 113751. [CrossRef]
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