
Citation: Zou, G.; Zhou, J.; Li, K.;

Zhao, H. An HGA-LSTM-Based

Intelligent Model for Ore Pulp

Density in the Hydrometallurgical

Process. Materials 2022, 15, 7586.

https://doi.org/10.3390/

ma15217586

Academic Editors: Jaroslaw

Krzywanski, Yunfei Gao, Marcin

Sosnowski, Karolina Grabowska,

Dorian Skrobek, Ghulam Moeen

Uddin, Anna Kulakowska,

Anna Zylka and Bachil El Fil

Received: 9 October 2022

Accepted: 26 October 2022

Published: 28 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

An HGA-LSTM-Based Intelligent Model for Ore Pulp Density
in the Hydrometallurgical Process
Guobin Zou 1,2, Junwu Zhou 1, Kang Li 3,* and Hongliang Zhao 4

1 College of Information Science and Engineering, Northeastern University, Shenyang 110004, China
2 State Key Laboratory of Process Automation in Mining and Metallurgy Research, Beijing 100160, China
3 BGRIMM Technology Group, Beijing 100160, China
4 School of Metallurgical and Ecological Engineering, University of Science and Technology,

Beijing 100083, China
* Correspondence: likang@bgrimm.com; Tel.: +86-10-5906-9777; Fax: +86-10-5906-6979

Abstract: This study focused on the intelligent model for ore pulp density in the hydrometallurgical
process. However, owing to the limitations of existing instruments and devices, the feed ore pulp
density of thickener, a key hydrometallurgical equipment, cannot be accurately measured online.
Therefore, aiming at the problem of accurately measuring the feed ore pulp density, we proposed
a new intelligent model based on the long short-term memory (LSTM) and hybrid genetic algorithm
(HGA). Specifically, the HGA refers to a novel optimization search algorithm model that can optimize
the hyperparameters and improve the modeling performance of the LSTM. Finally, the proposed
intelligent model was successfully applied to an actual thickener case in China. The intelligent model
prediction results demonstrated that the hybrid model outperformed other models and satisfied the
measurement accuracy requirements in the factory well.

Keywords: intelligent model; thickening process; ore pulp density; long short-term memory; hybrid
genetic algorithm

1. Introduction

Hydrometallurgy is important in mineral resources. The hydrometallurgical process
can deal with low-grade mines, complex ores, and generates fewer emissions to the envi-
ronment [1]. The thickening process is a typical process of hydrometallurgy. The optimized
control technology for hydrometallurgical processing is of great applicational value for
the efficient utilization of metal mineral resources [2]. Optimal control of the thickening
process usually depends on quality variables, such as feed density [3], which are difficult
to measure online because the density of the feeding ore usually fluctuates substantially
due to the existence of nonlinearity [4]. However, there is no research on the application
of real-time online measurement methods of thickener feed pulp density in the actual
production process [5].

To alleviate these problems, intelligent models have been used to predict wind flow
around buildings by establishing inferential mathematical prediction models [6]. Owing to
rapid response, accurate prediction results, and low maintenance costs, intelligent models
have currently become one of the main methods for detecting quality variables in industrial
processes, such as wind-induced pressure prediction [7], temperature prediction for roller
kiln [8], and surface crack detection [9].

Considering the wide implementation of distributed control systems and the massive
amount of available data, soft sensors based on data-driven systems are receiving increasing
attention [10]. Typical data-driven modeling methods include many multivariate statistical
and machine-learning methods [11–13]. Because of the limitations of the structures and
parameters, some methods are limited to present strong nonlinearities and dynamics. In the
past decade, deep learning has drawn increasing attention in many fields, such as intelligent
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model applications [14], image classification [15], and process monitoring [16]. Compared
with existing modeling methods, deep neural networks (DNNs) have a significant ability to
express complex functions and learn the primary highlights of data [17]. The DNN model
has shown excellent performance in processing complex and strongly nonlinear data for the
development of intelligent industrial models. Most of these existing intelligent models are
deep static models based on the assumptions of steady state, such as stacked auto-encoders
(SAEs) [18] and deep belief networks (DBNs) [19]. Nevertheless, industrial processes are
naturally dynamic, and the data series is sampled in real-time from a continuous process.
Thus, to model such data sequences more accurately, the dynamic characteristics must also
be considered; that is, the models must utilize past states and information to predict the
present state.

Recurrent neural networks (RNNs) are dynamic neural networks. They can suffer
from gradient explosion and gradient disappearance because of the memory function of
past information [20]. Thus, a long short-term memory (LSTM) network which adds gate
units to retain short and long-term memories is proposed to deal with this problem [21].
Recently, Zhang set up an LSTM-based network in the zinc flotation circuit to estimate
the tailings grade of the first rougher [22]. Pan proposed an intelligent model based on
an LSTM network to estimate the oxygen content of boiler flue gas [23]. Wensi devel-
oped a soft sensor method based on an LSTM network structure to handle the strong
dynamics and nonlinearity of the process and verified its power using a sulfur recovery
unit benchmark [24].

To satisfy the measurement requirements, the intelligent model focuses on constructing
an accurate estimation. However, it is worth noting that LSTM network models have
numerous hyperparameters that need to be continuously modified to obtain the most
suitable results, such as the time window size and network structure [25]. Selecting the
best hyperparameters is essential to optimize the validation errors, but it is extremely time-
consuming. Therefore, the most commonly used method in hyperparameter estimation is
the trial-and-error method based on heuristics. However, the limitations of computation
level and time make it impossible to traverse the entire parameter space [26]. Thus, a new
method is needed to optimize the verification error for both boosting accuracy and saving
time, which can ensure the accuracy of the soft sensors in industrial processes. The genetic
algorithm (GA) is a classic global optimal method developed by imitating the natural
biological evolution mechanism and has attracted much attention in hyperparameter
optimization. Most recently, Alshwaheen proposed an LSTM-RNN model to forecast
the deterioration of ICU patients and used a modified GA to optimize the observation
window to increase the accuracy [27]. Danial developed both ANN and GA-based ANN
techniques for the prediction of AOP [28]. Zhang et al. combined a support vector machine
(SVM) with GA to predict the moisture in oil-immersed insulations and obtained highly
accurate results [29].

In this research, an intelligent model method based on LSTM and the hybrid genetic
algorithm (HGA) was proposed to measure the feed ore pulp density in the thickener
process. In particular, we applied the sequential quadratic programming (SQP) algorithm,
which can perform fast and accurate local searches in GA and significantly increase the
global searching ability of the algorithm. The GA-SQP, also called HGA, is used to optimize
the hyperparameters to determine the time window and the structure parameters of the
LSTM network based on the lowest verification error, which can enhance the performance
of the LSTM. Finally, an intelligent modeling method was applied to a real thickener
in China.

The contributions of this study:

1. We introduced an intelligent model to resolve the difficulty encountered in measuring
the feed density in the thickener through online real-time detection in hydrometallurgy.

2. A novel intelligent modeling method combining SQP, GA, and LSTM was developed
to address the nonlinear and dynamic background. The HGA algorithm was used to
optimize the hyperparameters of the LSTM.
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3. From the perspective of actual cases, the results show that the method fulfills the
measurement requirements in the factory.

2. Methodology
2.1. LSTM Network

An RNN is a dynamic neural network with an internal connection that can utilize past
information and past states for the present state estimation [30]. Figure 1 is the structure of
the RNN in the time step. RNNs also have a hidden state vector or memory and generate
an output. The RNN has difficulty learning long input sequences and can easily produce
gradient explosion or disappearance.
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Figure 1. The simplified structure of RNN.

LSTM, a variant of the RNN architecture, designs a unique LSTM unit that can pre-
serve past information and past states and learn sequential information with long-term
dependencies. In Figure 2, the structure of the LSTM is presented, and the LSTM forward
calculation formulas are as follows [21]:

ft = σ(Wf × [ht−1, xt, ct−1] + bf) (1)

it = σ(Wi × [ht−1, xt, ct−1] + bi) (2)

ĉt = tanh(Wc × [ht−1, xt, ct−1] + bc) (3)

ct = ft × ct−1 + it × ĉt (4)

ot = σ(Wo × [ht−1, xt, ct−1] + bo) (5)

ht = ot × tanh(ct) (6)

ŷt = (Wy × ht + by) (7)

where σ and tanh represent the sigmoid and tanh activation functions, W and b represent
the matrices of the weight parameter and the bias, respectively, and the subscripts “i”,
“f ”, “c”, “o”, and “y” represent the input-gate, forgetting-gate, update-gate, and output-
gate, respectively.
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Through the calculation method, the long-term dependence on traditional RNN train-
ing can be overcome by the LSTM architecture effectively [31].

2.2. Hybrid Genetic Algorithm

GA is an adaptive heuristic optimization algorithm based on a computational model
simulating the natural evolution process and has been used to determine near-optimal
solutions. The algorithm uses mathematics and computer simulation to transform the
process of problem-solving into a process of chromosome mutation and crossover in
natural biological evolution mechanisms. Compared with some traditional optimization
methods, the GA can usually obtain better optimization results more quickly when solving
more complex system problems. However, the local search efficiency of a typical GA is
low and time-consuming. With the stage of evolution, lower search efficiency and multiple
calculations are required to achieve the final convergence [32].

The SQP algorithm is an effective method for solving nonlinear optimization prob-
lems [33]. Compared with other methods, the SQP has high computational efficiency, good
convergence, and strong boundary-searching ability. The nonlinear optimization problem
is expressed as follows:

min f (x)
subject to gi(x) ≤ 0 (i = 1, 2, . . . , mp

)
gi(x) = 0 (i = mp + 1, . . . , m)

(8)

where f (x) represents the objective optimization function and gi(x) represents the bound-
ary conditions. The subproblem is obtained by approximating the language function
quadratically and linearizing the nonlinear constraints.

L(x, λ) = f (x) +
m

∑
i=1

λigi (9)

where λi is a language factor. The Hessian matrix is approximated by the quasi-Newtonian.
At each xk, the quadratic programming (QP) subproblem is obtained by linearizing the
nonlinear constraints.

min 1
2 dT HKd +∇ f (xk)

Td
subject to ∇gi(xk)

T + gi(xk) ≤ 0 (i = 1, 2, . . . , mp

)
∇gi(xk)

T + gi(xk) = 0 (i = mp + 1, . . . , m)

(10)

xk, λk, and Hk are the approximations of the solution, multiplier, and Hessian of the
language function, respectively.

The search direction dk of the current iteration can be obtained using the above formula,
and an iteration point is calculated using the formula:

xk+1 = xk + akdk (11)

As a result, an HGA has been proposed by integrating the SQP algorithm and GA [34].
The HGA refers to a novel optimization search algorithm model, and the SQP can perform
a fast and accurate local search in the GA to significantly increase the global search ability.
First, using the excellent global search ability of the GA, all solutions in the solution space
can be searched quickly, and some convergence values can be obtained without falling into
the trap of local optimal solutions with rapid gradient descent. Moreover, the convergent
result of each iteration can be the initial value of the SQP. Subsequently, the SQP search
algorithm is used to implement a powerful local search designed to pursue a global optimal
solution. Briefly, the HGA perfectly unites excellent global and fast local search capabilities.

In Figure 3, the specific steps of the hybrid algorithm are listed below. First, we
determined a series of convergent populations that fulfilled the constraints through the
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GA and selected and retained suitable individuals to solve the initial value of the SQP.
Second, we constructed a multiplier function to determine whether the prediction criteria
were satisfied. When the prediction criteria were not met, the vector of the local search was
identified, and the minimum point in the direction was continuously determined.
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3. Process Description

This work focused on mineral processing and attempted to solve the dilemma of the
online measurement of the feed density in a thickener for gold smelting in China, as shown
in Figure 4.
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Figure 4. Layout of the thickener.

Under the flotation process, the ore slurry is concentrated by a thickener. In this
work, to measure the feed concentration properly, we focused on the feed process. The
slurry produced by the flotation process is merged into the slurry pump pool and then
discharged from the slurry pump to the thickener for the thickening process. The slurry
pipeline is equipped with a flow meter. The velocity of the feed slurry discharged into the
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thickener can be detected online but not the density. The feed slurry enters the thickener for
settlement, and the slurry flows out from the bottom discharge port into the dehydration
process. It is impossible to calculate the real-time output and cumulative output of the
slurry, which makes it difficult to achieve optimal control of the production process. Because
the feed density in the thickener is currently the key index for the thickening process, this
study focused on the online measurement of the feed density. The process flow chart from
flotation to thickening is shown in Figure 5.
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4. Intelligent Model Based on HGA-LSTM

The intelligent model modeling process based on the LSTM network is shown in Figure 6.
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4.1. Data Preprocessing

The data were measured using local detection devices, which have gross errors and
random errors. Therefore, raw data cleaning was necessary.

The 3σ criterion was used to eliminate abnormal data in this study, as follows:
The sample was set as x1, x2,..., xn, and then the 3σ of the sample was calculated

according to the following formulas.

x =
1
n

n

∑
i=1

xi (12)

σ =

√
1

n− 1

n

∑
i=1

(xi − x)2 (13)

When data xd(1 ≤ d ≤ n) satisfies Equation (13), the data are considered abnormal
data or error data and should be removed.

|xd − x| > 3σ (14)

In addition, the normalized and de-normalization equations are expressed as:

Xi =
xi − xmin

xmax − xmin
(15)
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xi = Xi × (xmax − xmin) + xmin (16)

xmax and xmin represent the maximum and minimum values of the sample set, Xi
represents the normalized value, and xi represents the de-normalized value.

4.2. LSTM Network Training and Hyperparameter Optimization

As mentioned above, hyperparameter optimization, including the time window and
network structure parameters, can affect the results of the LSTM network. Therefore, this
work adopted an HGA-LSTM network model. Usually, neural networks with better struc-
tures have advantages in updating weights, which also may lead to additional calculations
and longer training and testing times. Thus, the structure parameters of the neural network
must be suitable for the training set. In addition, because the LSTM network can make
good use of the past time in the training process, selecting an appropriate sliding time
window size results in a vast difference in the performance of the network. A window
with a small size causes the model to ignore significant information, and that with a large
size overuses the data during training. As a result, to achieve better performance of the
intelligent model, it is necessary to identify the best parameters, especially the time window
and the network structure.

The learning process of the HGA-LSTM algorithm has two main stages. In the first
stage, the learning involved designing and selecting reasonable LSTM network parameters.
Using the HGA method, the time window size, number of units per hidden layer, and
number of hidden layers are calculated. Two activation functions are commonly used
in the LSTM model: the tanh function, which is utilized as a state activation function of
the input nodes and hidden nodes, and the sigmoid function is used for the gates. To
improve the generalization ability of the LSTM model, dropout is necessary to effectively
reduce data overfitting. Furthermore, a gradient-based “Adam” optimizer adjusts the
initialized random weight of the network, which is appropriate for problems with large-
scale parameters and data.

In the second stage, to evaluate the fitness of the HGA strategy, various optimization
parameters were utilized. First, the population of chromosomes with a feasible solution
was initialized with random values. Each chromosome[N] contains the hyperparameters
in LSTM, i.e., [N] = [time windows, number of LSTM hidden-layers, number of fully
connected hidden-layers, number of units per hidden layer].

In addition, the initialized chromosomes were encoded in binary bits in this study,
which represented the time window size, the number of hidden layers, and the number of
units per hidden layer. Based on the selection, crossover, and mutation, the solution space
was constantly searched to identify the optimal solution. In the fitness function, the perfor-
mance of this model is evaluated by the root mean square error (RMSE) and the average
relative error (ARGE). The RMSE and ARGE were calculated using the following formulas:

ARGE =

N
∑

i=1

∣∣∣ yi−predi
yi

∣∣∣
N

(17)

RMSE =

√√√√√ N
∑

i=1
(yi − predi)

2

N
(18)

For population selection, this study used both the roulette wheel selection and the
elitism policy such that chromosomes with higher fitness values had a higher probability
of being selected, and the best chromosome in the current chromosome could always
be selected. Meanwhile, the SQP algorithm was utilized to quadratically optimize the
convergence value of the GA; that is, the set convergence value was used as the SQP initial
value, and a new fitness function was fitted such that the SQP could be used for an accurate
search to achieve a more accurate convergence. When selecting additional decision vectors
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of the GA to fit a new fitness function, bad initial vectors may be introduced into the result,
and when fewer decision vectors are selected, the fitness function cannot be fitted more
realistically. Therefore, we selected five decision vectors to fit the SQP fitness function
through trial experiments. Finally, we discretized the decision vector obtained through the
optimization of the SQP algorithm.

min f itness(x)
subject to gi(x) ≤ 0 (i = 1, 2, . . . , mp

)
gi(x) = 0 (i = mp + 1, . . . , m)

(19)

f itness(x) represents the objective optimization fitted by the decision vector, that
is, the RMSE of the LSTM test set, and gi(x) represents the boundary conditions or the
limitation of the LSTM network structure and time window. The HGA-LSTM flow diagram
is shown in Figure 7.
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In Algorithm 1, the pseudo-code of the HGA-LSTM is shown.

Algorithm 1 HGA–LSTM steps

1. Divide the raw data into a test set and training set;
2. Use the test data to evaluate the LSTM;
3. Set GA parameters, and initialize population p randomly;
4. Select the RMSE of LSTM in the testing set as the fitness function of GA;
5. While the prediction criteria are not satisfied:
(a) Select befitting parents from the population;
(b) Generate a new population through crossover and mutation of chromosomes;
(c) Consider the individual chromosome that includes the time window, hidden layers, and
number of hidden units per hidden layer into the LSTM to evaluate the fitness of the
new population;
End
6. Set the five fast convergence values x0 of output GA as the initial values of SQP, fit a modified
fitness function, and set k = 0;
7. Calculate the quasi-Newton approximation matrix Hk of the language function using the BFGS
method at xk;
8. Calculate the search direction dk, and select the appropriate step length parameter ak;
If satisfactory, stop; else set xk+1 = xk + akdk, k = k + 1, and return to step 7;
9. Discrete and output the optimal solution of the SQP, which is the hyperparameter of the
LSTM network;
10. Use the well-trained LSTM network for soft sensor modeling, and evaluate the
predicted results.

5. Experimental Results
5.1. Dataset Description

In industrial applications, when the nature of the conveying feed slurry is stable,
the pump runs stably, the power frequency of the pump motor is fixed, and the pipeline
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characteristics are stable, there is a corresponding relationship between the feed density
and the current, frequency, and velocity of flow [35]. Thus, the three related indicators were
selected as the auxiliary variable set and are listed in Table 1.

Table 1. Auxiliary variables used in the soft sensing models.

Variable Description

x1 current of the pump
x2 frequency of the pump
x3 flow rate of the pump

Raw data is collected at a sampling rate of one high-quality sample every 10 s in
24 h from an actual thickener working in China. There were 8640 samples in the dataset,
including one target variable and three process variables. The time series data of the
variables listed in Table 1 were selected as the input, and the feed density in the dataset
served as the output. To develop the intelligent model, the initial 80% of the data is used to
train the network; 20% of the data is used to test the performance of the method.

5.2. Results Analysis

The development work of the intelligent model was conducted on a computing server
with an Intel(R) Xeon(R) CPU E5-2620 v4 @2.10 GHz (two processors) and NVIDIA GeForce
RTX 2080 Ti. The software environment was Windows Server 2019, Tensorflow-gpu 1.14.0,
Python 3.7, and Keras 2.3.1. Taking full advantage of GPU computing, the LSTM training
time for each epoch was less than 2mathrm{~s] with a total of 30 epochs. In view of the
proposed HGA-LSTM model, a simulation on the abovementioned dataset was conducted.
The experimental results and analysis are presented as follows: first, the output of the
hyperparameter optimization from the HGA process is illustrated. Then, the prediction
results of the HGA-LSTM are provided. Finally, we compare the performance of the
proposed model with other models.

In the experiment, the initial population size of the GA was set to 30, with a mutation
rate of 0.1, a crossover rate of 50%, and the generations set to 20 as the stop condition. For
the feed density prediction, the structure of the LSTM network and time windows were
optimized using the GA and HGA, respectively. In both the GA and HGA, the hidden layer
contains a fully connected layer and two LSTM layers. The other parameter configurations
of the HGA-LSTM and GA-LSTM were consistent with those of the LSTM. In Table 2, the
specific optimization outcomes are listed.

Table 2. Specific optimization outcomes based on GA and HGA.

Parameter GA-LSTM HGA-LSTM LSTM

Time windows 11 11 10
Number of LSTM hidden-layers 2 2 2

Number of fully connected hidden-layers 1 1 1
LSTM units on the first layer 94 88 90

LSTM units on the second layer 55 53 60
Fully connected units on the third layer 70 72 80

In addition, a dropout is necessary for reducing data overfitting effectively, and thus,
it improves the model generalization ability. Selecting a befitting dropout rate is crucial
because if the dropout probability is very low, it leads to an underfitting phenomenon, while
an excessively high dropout probability loses the benefits of adding layers. Therefore, when
the accuracy of the predicted outcome does not reach the required value, the outcome is
refreshed continuously by updating the dropout to ensure the required prediction accuracy.
The results are presented in Figure 8.
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When the dropout probability reached 0.2, the RMSE of the predicted value of the feed
density in the thickener was approximately 3.08, and there was a good match between the
actual and predicted data. However, when the dropout probability increased or decreased,
the RMSE significantly increased, and the mismatch became significant. In summary, the
dropout probability was optimized in a trial-and-error manner using feedback from the
predictive data. Finally, the model results of the feed ore density based on the HGA-LSTM,
GA-LSTM, and LSTM were obtained, as presented in Figure 9.
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The LSTM model was optimized through trial and error based on heuristics using the
feedback of the predicted data. The performance of the LSTM, GA-LSTM, and HGA-LSTM
on the testing dataset is presented in Table 3.

Table 3. Comparison results of LSTM, GA-LSTM, and HGA-LSTM.

Method RMSE Improvement (%) ARGE Improvement (%)

LSTM 3.83 - 0.119 -
GA-LSTM 3.21 15.45 0.0839 26.5

HGA-LSTM 3.08 19.5 0.0752 36.8

As shown in Table 3, the HGA-LSTM model is significantly better than the GA-LSTM
and LSTM models. The predicted RMSE values of the LSTM, GA-LSTM, and HGA-LSTM
models were 3.83, 3.21, and 3.08, respectively, and the predicted result was enhanced by
15.45% and 19.5% compared to those of the GA-LSTM and LSTM models, respectively. The
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predicted ARGE values of the GA-LSTM and HGA-LSTM models were 0.0839 and 0.0752,
respectively, and the predicted outcome was enhanced by 26.5% and 36.8% compared to
those of the GA-LSTM and LSTM models, respectively.

The outstanding performance derived from the HGA-LSTM model was probably
because the architecture of the LSTM network and time window were optimized effectively
by combining the excellent global and local searching capabilities. The results demonstrate
that the proper adjustment of parameters plays a critical role in achieving the desired
performance. Thus, the highly effective proposed method can be used to ascertain the
optimal hyperparameters for intelligent models based on deep learning algorithms, and
this work expresses the potential for its application in actual industrial cases.

6. Conclusions

In this study, an efficient and potentially intelligent model was proposed to determine
the feed ore density in a thickener. The main strategy was to employ an LSTM function
optimized by an HGA combining the SQP algorithm and GA. In this method, the HGA
was used to search the appropriate hyperparameters of the LSTM to improve the modeling
performance. Finally, the proposed intelligent model based on the HGA-LSTM was suc-
cessfully applied to an actual thickener case. This work can be extended to other scenarios
where online measurement of pulp concentration is required.
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