
Citation: Feng, C.; Yang, R.; Niu, B.;

Meng, X. DDSM: Design-Oriented

Dual-Scale Shape-Material Model for

Lattice Material Components.

Materials 2022, 15, 7428. https://

doi.org/10.3390/ma15217428

Academic Editor: Evgeny V. Shilko

Received: 23 September 2022

Accepted: 20 October 2022

Published: 23 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

DDSM: Design-Oriented Dual-Scale Shape-Material Model for
Lattice Material Components
Chao Feng, Rui Yang, Bin Niu * and Xiangpeng Meng

School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
* Correspondence: niubin@dlut.edu.cn

Abstract: This paper proposes a new CAD model for the design of lattice material components.
The CAD model better captures the user’s design intent and provides a dual-scale framework to
represent the geometry and material distribution. Conventional CAD model formats based on B-Rep
generate millions of data files, which also makes design intent and material information missing.
In the present work, a new shape-material model for lattice material components is proposed. At
the macroscopic scale, a compact face-based non-manifold topological data structure is proposed to
express the lattice shape-material information without ambiguity. At the microscopic scale, implicit
function is adopted for the representation of lattice material components. Numerical experiments
verify that the proposed CAD model provides a powerful support for design intent with minor space
costs. Meanwhile, the representation method supports solid modeling queries of geometric and
material information on each scale.

Keywords: lattice material components; dual-scale model; non-manifold topology; implicit representation

1. Introduction

Different from conventional components made of the same material uniform, lattice
material component (LMC) refers to objects with spatially homogeneous material and
different periodic microstructures. The LMC is widely used in the lightweight design of
aerospace structures due to its excellent mechanical properties (e.g., high specific strength,
stiffness [1] and shock absorption [2]). Based on homogenization theory, the LMC is
regarded as a component consisting of multiple homogeneous materials at the macroscopic
scale. At the microscopic scale, the LMC is composed of a periodic array of different types
of unit cells. The LMC provides more design freedom for designers to further control the
distribution of equivalent properties of materials at the macroscopic scale by controlling
both material compositions and their microstructures [3,4].

The CAD model, as an explicit reflection of the user’s design intent, is the basis for
subsequent simulation and manufacturing. It is crucial to propose a new CAD model for the
LMC dual-scale characteristics. Conventional CAD models are not efficient at representing
lattice structures [5]. Since the manufacturing of lattice structures is mostly achieved by
additive manufacturing [6], about 80% of lattice files are stored in stereolithography format
(STL) [7]. However, the triangular mesh-based CAD model can only reflect the geometric
information of the components discretely, ignoring the dual-material information (i.e.,
homogenized equivalent materials and manufacturing materials). In addition, the STL file
will be useless when the microstructures need to be modified. Consequently, a CAD model
that can completely and efficiently represent and handle the shape-material information of
the LMC is extremely critical. The shape information includes geometric information and
topological relationships. Additionally, the material information includes homogenized
equivalent materials and manufacturing materials. Therefore, there are two basic challenges
which require a solution to the CAD model. Firstly, the model needs to reflect clear design
intent. Secondly, it needs to contain the complete shape-material information with minor
space costs.
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Spatial decomposition as a CAD model scheme includes the voxel model and the
mesh model [8]. A voxel-based method was proposed for the generation of trimmed lattice
structures [9]. The overall material distribution is determined by specifying a material
composition to each voxel directly. However, the problems with this method are the
large memory overhead [10] and the complexity of the material information query [11].
In terms of the volume mesh-based model, the shape-material model is represented as a
collection of polyhedrons [12–14]. Each polyhedron is represented as a list of vertices, where
the geometric position, as well as the material composition information, can be stored.
However, the homogenized equivalent material information makes internal boundary
vertices appear ambiguous in the storage process.

In contrast to the spatial decomposition, the analytical models separate geometric and
material information. The representations based on the analytical models can be divided
into two categories. In the first analytical model representation, the boundary represen-
tation (B-Rep) is used to represent geometric information. The material information is
described by some specific functions (e.g., explicit functions [15] and distance function [16]).
For example, The B-spline volume is utilized to represent the shape-material model. Ad-
ditionally, the material information of the model is attached to each control point [17,18].
Second, the implicit functions are used to represent point set geometry and the material
distribution. Specifically, the implicit function-based models reduce memory consumption
compared to the STL files [19]. However, the dual-material information distributed on two
scales is not represented by such an analytical model.

The composite model is used to represent components with two or more types of
material distributions. The composite model is proposed based on the idea of spatial
decomposition. There are two main modeling methods as follows. Firstly, the component
is modeled by regularized operators of sub-objects, such as difference, intersection, union,
etc. However, this approach faces the problem of heavily data redundant [20], cumbersome
for regularized Boolean operations [21], and material ambiguity [22]. Secondly, the non-
manifold geometric representation is used to produce a composite model [23]. However, it
requires complex data structures and algorithms to construct the topological relationships
for sharing the same boundary.

According to the existing material component modeling methods, the LMC CAD
model representation has the following problems to be solved.

1. Lack of dual-material model representation: Due to the dual-material properties
on the lattice CAD model, the geometric model based on STL file format does not
provide a complete representation of the material information. Moreover, this renders
the model computationally expensive for the material query. Therefore, there is an
urgent need to propose a dual-scale shape-material model, which supports material
information queries on two scales.

2. Large storage cost. As mentioned before, most lattice structures are stored in the STL
format. A large number of hollowed-out structures produce huge triangular facets to
store geometry information. These triangular facets take up large memory and make
the information redundant extremely.

3. Missing design intent: In the design-oriented process, designers prefer to focus on the
overall equivalent material properties (elastic modulus, Poisson’s ratio, etc.) embod-
ied in design domain, rather than on the specific configuration and manufacturing
material of the unit cell. However, the existing CAD tools and model representation
format (e.g., Delaunay triangulation) lack equivalent macroscopic material properties,
which makes CAD models poorly designable and revisable.

In this paper, we strive to develop a new CAD shape-material model to solve the above
problems. We refer to our model as Design-oriented Dual-scale Shape-material Model
(DDSM). The main contributions of this work are summarized as: First, a new model
representation method is proposed to meet the modern LMC design needs. Second, a new
non-manifold topological data structure is used to represent macroscopic shape-material
model. Third, an implicit function-based representation of truss-like struts is introduced
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at the microscopic scale. Consequently, this new dual-scale representation provides more
intuitive the design intent and more efficient storage than conventional CAD model.

The remainder of the paper is organized as follows. Section 2 presents a mathematical
framework of DDSM. Section 3 proposes a new data structure for finite non-manifold
characteristic at the macroscopic scale. Section 4 provides geometric representation based
on implicit functions at the microscopic scale. Section 5 proposes the DDSM formulation
and advantages. Section 6 is the conclusions of this research.

2. Mathematical Frameworks for the DDSM

The CAD models of lattice structure are usually converted into STL files. Therefore, it
is less convenient for designers to capture the design intents. Firstly, for the design process
of the LMC, the ideal design should be optimized for performance based on the specific
functional requirements. Then, each sub-design domain obtains the optimal material
distribution such as elastic modulus [24,25], Poisson’s ratio [26], shear modulus [27] etc.
Finally, the unit cell configuration is chosen based on macroscopic material distribution.
The ideal design process for the LMC is shown in Figure 1. The corresponding CAD
model needs to reflect the ideal design process of the LMC and not just the discrete
geometric information.
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Figure 1. The CAD model of the ideal lattice material component.

Depending on the design intent of the lattice material component, a material space
is introduced based on the geometric space. The material space is made up of equivalent
material properties with corresponding unit cell configurations. The LMC model repre-
sentation is essentially a product space consisting of the geometric space as the base space
and the material space as the bundle space. Thus, the information of any point in space
can be expressed by a dual pair of geometric space and material space. The dual pairs
realize the partitioning of the geometric space. The partitioning results in a collection of
sub-objects, and each sub-object corresponds to a material space. From the perspective
of topology, the point set partitioning forms a finite number of continuous open subsets,
and the intersection of each open subset is empty. The union of all open subsets is the
original geometric region. Therefore, the CAD model S for the LMC can be composed of
several sub-objects. Each sub-object is described by geometric information and material
information, i.e.,

S = {S1, S2, . . . , Sn}
Si =

{
(P, M)

∣∣∣P ∈ Ω(i)
g , M ∈ Ω(i)

m , 1 ≤ i ≤n
} (1)

where Si is the i-th sub-object, P is the geometric description of the sub geometric space
Ω(i)

g , and M is the material description in the sub material space Ω(i)
m .

In summary, the LMC CAD model describes geometric and material information in
two dimensions: macroscopic scale and microscopic scale. The dual-scale CAD model
needs to consider the material information while representing the geometric information on
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each scale. The correspondence in mechanical behavior between the two scales is expressed
in terms of equivalent material properties computed by the unit cell [28,29].

3. Macroscopic Scale: A Compact Face-Based Topological Data Structure
3.1. Finite Non-Manifold Characteristic

The geometric information, as the base space of the material information, is the
key to the LMC CAD model. However, the conventional model representation based
on Regular Set and Manifold Theory mathematically faces ambiguous representation
of boundary materials as shown in Figure 2. For example, C1 and C2 correspond to
different material space. Points on the internal boundary MN cannot define their equivalent
material attribution when storing material information by B-Rep. The ambiguity of material
information causes the typical non-manifold of CAD models at the macroscopic scale.
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Figure 2. The ambiguity of inner boundary. MN is the edge shared by adjacent material spaces.

According to Ellul [30] “in 3D, for the manifold to be valid, the neighborhood of each
point within the sub-space must be able to be deformed into a sphere. Thus, self-intersecting
surfaces are non-manifold”. It usually consists of a finite number of manifolds sharing
boundaries as shown in Figure 3.
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Figure 3. A non-manifold object formed by sharing (a) a vertex; (b) an edge; (c) a face.

Due to the internal boundary material ambiguity, the LMC model appears as a “finite
non-manifold”, i.e., it is simply limited to the presence of shared boundaries between
material regions as shown in Figure 3c. Our goal is to design efficient and simple topolog-
ical data structures for the finite non-manifold characteristic. The current non-manifold
data structures are classified as the edge-based data structure and the face-based data
structure. The edge-based data structures often utilize pseudo-manifold representation
for non-manifold geometry. For example, a non-manifold shape with shared edges can
be transformed into a manifold with two edges infinitely close to each other [31]. The
face-based data structure was proposed for non-manifold and non-regular simplicial com-
plexes. However, the storage of topological information in intermediate dimensions causes
unnecessary memory overhead [32].
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3.2. A compact Half-Face Data Structure Design

A well-defined CAD data structure defines the topological relationships of geometric
entities completely. For the macroscopic LMC model, it is desirable to meet the follow-
ing requirements:

• Generality: support for macroscopic non-manifold geometry CAD representations.
• Time efficiency: support specific topology queries without performing global search.
• Memory overhead: require a minimal amount of storage.

In this paper, we propose a mesh-based data structure to represent the LMC macro-
scopic model. The data structure establishes complete topological relationships. We refer to
our data structure as the Compact Array-based Half-Face (CAHF) data structure oriented
to finite non-manifold. First, we define several entity concepts. If a face has two incident
elements, we refer to such face as twin half-face. A face without any twin is a border
half-face. Vertices incident on only one element are called manifold border vertices.

The local numbering conventions in the CAHF data structure is shown in Figure 4.
Moreover, the elements in the volume mesh carry more topology information. For example,
the order of storing vertices implicitly expresses the order of faces(2-D) and edges(1-D),
which does not be stored but referenced implicitly. This representation makes full use of the
implicit topology information between vertices and faces within the element. Additionally,
this effectively reduces memory overhead.
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Figure 4. Local numbering conventions and implicit topology information for 3-D elements. The
circled numbers correspond to local face IDs, and the unmarked ones correspond to local vertex IDs
in the standard 3-D element.

More specifically, each face ID is composed of a pair of numbers 〈Eid, Fid〉, where Eid
denotes the element ID (starting from 1), and Fid denotes the local face ID. The number of
elements in a complex mesh model can be in the millions, and the element ID requires a
large range of integer data. Additionally, the maximum local face ID is six. To avoid the
space consumption caused by memory alignment, the face ID is coded as a single 32-bit
unsigned integer. The element ID is stored in the first twenty-nine bits and the last three
bits store the local face ID [33]. Therefore, about 500 million elements can be stored based
on the half-face coding.

Based on the above topological conventions, the CAHF data structure oriented to finite
non-manifold characteristic is proposed as shown in Figure 5. Volume meshes contain
element connectivity and node coordinates. The element connectivity and node coordinates
are used as input. These are stored in Class Element. Class Element also opens a one-
dimensional array that stores the twin half-face of each face in the element. Class HalfFacet
is an encoding and decoding operation for half-face information. Class VtxHalfface is used
to store the topological relationships by Mesh Topology Reconstruction.
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Figure 5. Class diagram of the CAHF volume mesh model. Let CellIndex, FaceIndex and VtxIndex
denote the ID of element, half-face and vertex, respectively. SmallIndex is the local ID of the face. The
type of these variables is unsigned int.

3.3. Macroscopic CAD Model Topology Reconstruction

For the DDSM macroscopic model to handle geometric information, it is desirable to
reconstruct the topological relationships. Therefore, we define the arrays for the CAHF
data structure similar to that in Dyedov et al. [34]:

• m2hfs: Map each half-face to the ID of its twin half-face;
• v2hfs: Map each non-manifold vertex to its incident half-face;
• b2hfs: Map manifold border vertex to its incident element ID and its local ID;
• bhfsm: Map each border half-face to its incident element ID and its local ID.

Specifically, the topology reconstruction consists of the following two algorithms.
Algorithm 1 describes the identification of twin half-faces. The identification starts by
traversing the faces on each element and storing the index of the largest vertex on each face
in the temporary array v2fs. Then, the adjacent vertices of the largest vertex on each face
are stored in the temporary array v2adj. Finally, the twin half-face is matched through two
temporary arrays.
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Algorithm 1: Construction of twin half-faces

Input: element connectivity, CElement
Output: mutual mapping of twin half-faces, m2hfs
begin

Allocate the initial Element and define m2hfs zeros
for each e in CElement do

f←traverse each face in e;
IDmax←get the maximum node identification on f ;
set mapping IDmax to the corresponding face into v2fs;
set mapping IDmax to adjacent vertices into v2adj;

end for
for each e in CElement do

f←traverse each face in e;
if m2hfs (f) = 0 then

IDmax←get the maximum node identification on f ;
get candidate faces of mutual mapping on f ;
match twin half-face of f in v2adj;

end if
end for

end

Algorithm 2 implements the mapping between the different dimensional entities.
Specifically, non-manifold vertices are mapped in the array v2hfs. This is a one-to-many
mapping. The manifold border vertices are stored in the array b2hfs. Meanwhile, it is useful
to extract the geometric boundaries for numerical analysis. Therefore, the map b2hfsm is
used to store all the manifold faces.

Algorithm 2: Construction of topological relationship

Input: element connectivity, CElement
mutual mapping of twin half-faces, m2hfs

Output: vertex to incident half-faces, v2hfs
border vertex to incident half-faces, b2hfs
border half-faces mapping, bhfsm

begin
Allocate array marked initialized to false and it is the same size as m2hfs;

for each e in CElement do
f ←traverse each face in e;
if not m2hfs (f) and not marked(f) then

set mapping vertices on face to f into v2hfs;
end if

end for
for each e in CElement do

f ←traverse each face in e;
if not m2hfs(f) then

set mapping f into bhfsm;
v←traverse each vertex in f ;

V←set of elements incident on v in v2hfs;
if not V then

append f to b2hfs;
end if

end if
end for

end

3.4. Topology Information Query

The purpose of reconstructing topological relationships is to enable efficient querying
and processing of mesh information. We summarize the basic queries as follows.
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1. Adjacency query:

• Given an edge, return vertex-connected adjacent edges;
• Given a face, return edge-connected adjacent faces;
• Given an element, return face-connected adjacent elements;

Algorithm 3 describes adjacency query for the given element as an example. Figure 6
shows the example of the operation. The complete topological relationship supports the
adjacent query time complexity of O(1).

Algorithm 3: Adjacency query for shared sub-entity

Input: element identification number, elem
mutual mapping of twin half-faces, m2hfs

Output: adjacent three-dimensional entities, cadj
begin

for each face f in elem do
if m2hfs (f) then

e←decode to obtain face-connected adjacent elements;
append e to cadj;

end if
end for

end
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Figure 6. An example of a 3-D element adjacency query. For (a) a given blue element, it shows
(b) adjacent red elements.

2. Incidence query:

• Given a vertex, return incident elements;
• Given an edge, return incident elements;

As an example, Algorithm 4 for querying the incident elements of an edge is as follows.
Figures 7 and 8 show examples of these operations.
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Algorithm 4: Upscaling incidence query

Input: An edge defined by two vertices, s
vertex to incident half-faces, v2hfs
border vertex to incident half-faces, b2hfs

Output: incident three-dimensional entities, cinc
begin

v1←vertex with larger ID in s;
V1←set of elements incident on v1 found in v2hfs(v);
if not V1 then

V1←set of elements incident on v1 found in b2hfs(v);
end if
v2←adjacent vertex to v1 in s;
V2←set of elements incident on v2 found in v2hfs(v);
if not V2 then

V2←set of elements incident on v2 found in b2hfs(v);
end if
cinc←the intersection of V1 and V2;

end
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The topology query results show that the proposed CAHF data structure is effective.
It can achieve topology reconstruction and topology queries within a limited complexity.
The CAHF exploits the implied topological relationships between geometries and greatly
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reduces the memory overhead. This data structure is a solution to the finite non-manifold
characteristic of adjacent geometries sharing faces. Therefore, the LMC can be viewed as a
component consisting of the volume mesh at the macroscopic scale. Each mesh corresponds
to an equivalent material. The CAHF data structure constructs the complete topology
relationships so that the boundary geometric information between different materials can
be achieved easily.

4. Microscopic Scale: Lattice Unit Cell Based on Implicit Representation
4.1. Implicit Function of Truss-like Struts

At the microscopic scale, we propose an implicit representation of truss-like strut.
In this work, the composition of the material at the microscopic scale can be considered
as homogeneous. The CAD model based on implicit function greatly supports material
evaluation. Specially, the shape is determined by the implicit function Φ(X). Given a
geometric point Xi,Φ(Xi) ≤ 0 means that material is present at that point. When Φ(Xi) > 0,
it means that there is no material at that point.

As shown in Figure 9, the shape of the strut can be regarded as a composite of two
tangent circles C1, C2 and a conic curve. Given two points as the center of the circle and
radius, the shape is entirely determined by the conic curve. In the modeling coordinate
system (Figure 9), the shape can be represented by a quadratic equation after normalization
(i.e., b = 1):

ax2 + by2 + 2cx + d = 0 (2)

and it becomes in the matrix form:

[
x y 1

]a 0 c
0 b 0
c 0 d

x
y
1

 = 0 (3)
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Figure 9. Construction of variable truss-like strut.

The circles C1, C2 are denoted as:

C1 : (x + 1)2 + y2 = (r− k)2 (4)

C2 : (x− 1)2 + y2 = (r + k)2 (5)

The symbols are defined as, r = (r1 + r2)/2 and k = (r2 − r1)/2. As the circles are
tangent to the curve, we can calculate two parameters of the curve equation. Thus, we take
C1 as an example from (2) and (4). Depending on Equation (6) obtained by the union, its
discriminant will be zero. Therefore, we achieve:

ax2 + 2cx + d = (x + 1)2 − (r− k)2 (6)

d =
1

a− 1

[
(c− 1)2 − (a− 1)(r− k)2 + (a− 1)

]
(7)
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similar reasoning with circle C2 gives:

d =
1

a− 1

[
(c + 1)2 − (a− 1)(r + k)2 + (a− 1)

]
(8)

We can solve c from (7) and (8), and achieve the value of d into either (7) or (8):

c = (a− 1)kr (9)

d =

(
a

a− 1

)
+
[
(a− 1)r2 − 1

]
k2 − r2 (10)

The unknown constant a as a free input variable determines the unique strut type
as shown in Table 1 [35]. However, it is not very intuitive for unit cell geometric design.
Based on this, a new explicit geometric representation is proposed as shown in Figure 10.
Specifically, we introduce a third circle C3 with center coordinates (0, 0) and an initial radius
of r. Additionally, the offset parameter t is introduced as a substitute for a. The circle
C3 with radius r + t is tangent to the curve. A positive offset parameter makes the strut
elliptical, whereas a negative offset parameter makes the strut hyperbolic.

Table 1. Strut type defined by a.

Value of a Shape

r2/
(
r2 − 1

)
< a < k2/

(
k2 − 1

)
Hyperbola strut

a = k2/
(
k2 − 1

)
Cone strut

k2/
(
k2 − 1

)
< a < 0 Hyperbola strut

a = 0 Parabola strut
0 < a < (kr + k− r)/(kr + k− r− 1) Ellipse strut
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By introducing the offset parameter, the conic curve is precisely defined. Therefore,
we replace a with the offset parameter t:

a(t) =
k2 − t2 − 2rt

k2 − t2 − 2rt− 1
(11)

As shown in Figure 11, the strut shapes controlled by the offset parameter t are
discussed based on the given two circles. The maximum and minimum values of the offset
parameter can be calculated as follows. When the tangency points are on the x-axis, the
value of t will be the maximum. The maximum value of t can be calculated from (11).

tmax = −r +
√

k2 + (r− k)(r + 1) (12)
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The value of t will be the minimum when the conic curve becomes an inner com-
mon tangent about circles C1, C2. The existence condition of the circle C3 also should be
considered (i.e., r + tmin > 0). We achieve:

tmin = k− r (13)

As analyzed above, we propose an implicit representation for the variable shape. The
parameters r1, r2 and t are used to replace a, c, d in the equation. Moreover, it is more
intuitive and flexible to control the shape of the strut.

4.2. Generation of Lattice Unit Cell

The implicit function precisely represents the shape profile of the strut. A unit cell can
be viewed as consisting of several struts. Thus, the microscopic CAD shape-material model
is represented by the following steps. Firstly, the profile curve is rotated around the x-axis
(Figure 9) to generate a 3D solid in the local modeling coordinate system (LCS) from (14).

[
x y z 1

]
a 0 0 c
0 1 0 0
0 0 1 0
c 0 0 d




x
y
z
1

 = 0 (14)

which can be simplified as:
XPXT=0 (15)

Next, the model is scaled, rotated and translated in sequence from (16). These opera-
tions realize the transformation from the local coordinate system to the global coordinate
system (GCS), as shown in Figure 12.

X ∗ TRS ∗ P ∗ STRTTT ∗ XT=0 (16)

where T is the translation matrix, i.e., T =


1 0 0 0
0 1 0 0
0 0 1 0
Tx Ty Tz 1

. R is Euler rotation matrix,

i.e., R =


cβ · cθ −cβ · sθ sβ 0

sα · sβ · cθ + cα · sθ −sα · sβ · sθ + cα · cθ −sα · cβ 0
−cα · sβ · cθ + sα · sθ cα · sβ · sθ + sα · cθ cα · cβ 0

0 0 0 1

, and the symbols are

defined as, sα = sin(α), cα =
√

1− s2
α, sβ = sin(β), cβ =

√
1− s2

β, sθ = sin(θ), and

cθ =
√

1− s2
θ . The angles α, β, θ correspond to the rotation angles of the x, y and z axis,

respectively from the GCS to the LCS. S is a scaling matrix, i.e., S =


s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 1

.
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Figure 12. The illustration of strut expressed in LCS and GCS.

Finally, several struts form a unit cell. Figure 13 shows some unit cell models with
different topologies. The topological relationships at the microscopic scale are also based
on the conventions in Figure 4. Designers can introduce auxiliary nodes to define more
topologically complex unit cells. Moreover, it is more convenient for material evaluation
at the microscopic scale due to the implicit representation of geometry and topological
conventions.
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Figure 13. The unit cells of different shapes. (a) Body-centered cubic (BCC); (b) Simple cubic (SC);
(c) Octahedron (OCT); (d) The BCC with vertical struts (BCCz); (e) Face-centered cubic (FCC); (f) The
FCC with vertical struts and no struts in the horizontal plane (S-FCCz); (g) The union of BCC and SC
(BCCzxy); (h) The union of S-FCC and BCC (S-FBCC); (i) Reinforced body-centered cubic (RBCC);
(j) Octet-truss (OT).

5. Dual-Scale Shape-Material Model Representation
5.1. Data Structure of the DDSM

Following the framework of the dual-scale representation of model in Section 2, a new
CAD data structure is proposed. For a lattice solid object, S is represented by four parts:

S = f (P, M, C, U) (17)

• Vertices array P: The array records the node information of the mesh model at the
macroscopic scale. It consists of node index and node coordinates.

P =


N1 x1 y1 z1
N2 x2 y2 z2
...

...
...

...
Nn xn yn zn

 (18)
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• Material library M: The material library M contains homogenized equivalent materials
MD and unit cell fabrication materials (i.e., microscopic materials) Md. It consists of
material index and material properties. Depending on the functional requirement, the
material properties on each scale can be elastic modulus E, Poisson’s ratio ν, shear
modulus G and thermal expansion coefficient α, etc. Additional parameters can be
attached to the columns of the array.

MD =



M1 E1 ν1 G1 α1
...

Mi Ei νi Gi αi
...

Mm Em νm Gm αm

 (19)

Md =



M′1 E1 ν1 G1
...

M′ j Ej νj Gj
...

M′t Et νt Gt

 (20)

• The macroscopic model C: Each mesh has three attributes, the mesh identification
number, eight primary nodes, and equivalent material properties. Mi corresponds to
equivalent material index from (19). The eight primary node storage order follows the
convention in Figure 4.

C =



C1 M1 N1 N2 · · · N7 N8
...

Ci Mi N1 N2 · · · N7 N8
...

Cp Mm N1 N2 · · · N7 N8

 (21)

• The microscopic model U: Each unit cell is composed of Nk struts and its fabrication
materials. M′j corresponds to fabrication material index from (20). The strut has two
attributes, two nodes ID connecting the strut and strut geometric parameters. The
geometry of the strut is determined by the three parameters r1, r2, t. All the implicit
functions of struts are expressed in LCS.

Uj =


N1 N2 r1 r2 t
N2 N2 r1 r2 t
...

Nk N2 r1 r2 t

 (22)

U =

[
M′1 · · · M′ j · · · M′t
U1 · · · Uj · · · Um

]T

(23)

5.2. Prototype Implementation

In this section, the three benefits of the DDSM model will be discussed over the STL
format. Firstly, the DDSM contains dual-material information in addition to geometric
information. The STL file format represent only the geometric information of the model.
Therefore, it is difficult to complete material evaluation through geometric information.
In the dual-scale framework, as shown in Figure 14, the lattice structure can be viewed as
volume meshes at the macroscopic scale. The CAHF data structure constructs the CAD
model with complete topological relationships, which helps the equivalent material query.
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Moreover, the equivalent material property of unit cell takes the CAD model down from
the macroscopic scale to the microscopic scale. The microscopic CAD model includes
information on the geometry and manufacturing materials of the unit cell. The implicit
representation can answer the question of whether the manufacturing material exists at the
geometric points.
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S . When the unit cell type needs to be modified in certain areas, the designers can simply 

Figure 14. A 30 × 30 × 30 mm3 cubic domain consisting of octahedral unit cells.

Secondly, in terms of memory overhead, the DDSM offers complete model information
with a small storage overhead. The lattice structures are usually stored in STL format.
However, the STL requires to record a large amount of facet geometric information due
to Delaunay triangulation. The DDSM records model geometric and material information
through two scales. As shown in Figure 14, the result show that the DDSM proposed
requires less than 910 KB storage space, whereas coarse STL needs 1.38 GB storage space.

Thirdly, the DDSM reflects the user’s design intent, which makes the CAD model
revisable easily. Figure 15 shows the ideal design process for the lattice structure represented
by the DDSM. Specially, the middle part of the connecting rod has been designed as a
lattice structure for the lightweight design. The designer can make equivalent material
design to determine macroscopic CAD model, which is represented by the CAHF. The unit
cell configurations are obtained from equivalent material properties in U. Therefore, the
geometric model of the product is thus quickly customized by the DDSM as shown in S1.
When the unit cell type needs to be modified in certain areas, the designers can simply
modify the material distribution of target areas to obtain a new CAD model S2. Compared
to the DDSM format, the STL file with only facet information is powerless in modifying
model. Meanwhile, it is hard and time-consuming to model the geometric again from S1 to
S2 by the current CAD tools.
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6. Conclusions

This paper presents a new CAD model (DDSM) for lattice representation. The key
ingredients of the CAD model are complete shape-material representation on each scale
and mapping linking the two scales. Compared to the conventional CAD file format, the
DDSM demonstrates advantages in terms of material information representation, memory
overhead and the capture of design intent. For different functional requirements, the
DDSM embodies trans-scale parallel design. Unit cell configurations at the microscopic
scale determine the properties of the equivalent material. Equivalent materials reflect the
geometric design intent at the macroscopic scale.

Non-manifold geometry and implicit functions are used to construct the DDSM. The
proposed CAHF verifies that it is complete and unambiguous to construct macroscopic
CAD models. At the microscopic scale, the LMC is regarded as a collection of unit cells.
A new implicit representation model determines the geometry and material distribution.
According to the findings of this paper, the LMC represented by the DDSM meets the
modern product design needs better than the conventional CAD format. Future work
should include CAD model representation of unit cell incompatible connections and slicing
information extraction of the DDSM for additive manufacturing.
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analysis, C.F.; investigation, C.F.; data curation, X.M.; writing—original draft preparation, C.F.;
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Funding: This research is financially supported by the National Natural Science Foundation of China
(Grant No.51975087).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declared no potential conflict of interest.

References
1. Bai, L.; Yi, C.; Chen, X.; Sun, Y.; Zhang, J. Effective design of the graded strut of bcc lattice structure for improving mechanical

properties. Materials 2019, 12, 2192. [CrossRef] [PubMed]
2. Zhao, M.; Liu, F.; Fu, G.; Zhang, D.Z.; Zhang, T.; Zhou, H. Improved mechanical properties and energy absorption of bcc lattice

structures with triply periodic minimal surfaces fabricated by slm. Materials 2018, 11, 2411. [CrossRef] [PubMed]
3. Liu, Y.; Zhuo, S.; Xiao, Y.; Zheng, G.; Dong, G.; Zhao, Y.F. Rapid modeling and design optimization of multi-topology lattice

structure based on unit-cell library. J. Mech. Des. 2020, 142, 091705. [CrossRef]
4. Liu, Y.; Zheng, G.; Letov, N.; Zhao, Y. A survey of modeling and optimization methods for multi-scale heterogeneous lattice

structures. J. Mech. Des. 2020, 143, 040803. [CrossRef]
5. Azman, A.H.; Vignat, F.; Villeneuve, F. Cad tools and file format performance evaluation in designing lattice structures for

additive manufacturing. J. Teknol. 2018, 80, 87–95. [CrossRef]
6. Kladovasilakis, N.; Tsongas, K.; Karalekas, D.; Tzetzis, D. Architected materials for additive manufacturing: A comprehensive

review. Materials 2022, 15, 5919. [CrossRef]
7. Plocher, J.; Panesar, A. Review on design and structural optimisation in additive manufacturing: Towards next-generation

lightweight structures. Mater. Des. 2019, 183, 108164. [CrossRef]
8. Savio, G.; Meneghello, R.; Concheri, G. Geometric modeling of lattice structures for additive manufacturing. Rapid Prototyp. J.

2018, 24, 351–360. [CrossRef]
9. Aremu, A.O.; Brennan-Craddock, J.P.J.; Panesar, A.; Ashcroft, I.A.; Hague, R.J.M.; Wildman, R.D.; Tuck, C. A voxel-based method

of constructing and skinning conformal and functionally graded lattice structures suitable for additive manufacturingt. Addit.
Manuf. 2017, 13, 1–13.

10. Mustafa, S.S.; Lazoglu, I. A new model and direct slicer for lattice structures. Struct. Multidiscip. Optim. 2021, 63, 2211–2230.
[CrossRef]

11. Liu, H. Algorithms for Design and Interrogation of Functionally Graded Material Solids. PhD Thesis, Massachusetts Institute of
Technology, Cambridge, MA, USA, 2000.

12. Cirillo, E.; Elber, G. Handling heterogeneous structures and materials using blending schemes in v-reps. Comput. Aided Geom.
Des. 2020, 83, 101942. [CrossRef]

http://doi.org/10.3390/ma12132192
http://www.ncbi.nlm.nih.gov/pubmed/31288405
http://doi.org/10.3390/ma11122411
http://www.ncbi.nlm.nih.gov/pubmed/30501050
http://doi.org/10.1115/1.4046812
http://doi.org/10.1115/1.4047917
http://doi.org/10.11113/jt.v80.12058
http://doi.org/10.3390/ma15175919
http://doi.org/10.1016/j.matdes.2019.108164
http://doi.org/10.1108/RPJ-07-2016-0122
http://doi.org/10.1007/s00158-020-02796-w
http://doi.org/10.1016/j.cagd.2020.101942


Materials 2022, 15, 7428 17 of 17

13. Hong, Q.Y.; Elber, G. Conformal microstructure synthesis in trimmed trivariate based v-reps. Comput. Aided Des. 2021, 140, 11.
[CrossRef]

14. Mandad, M.; Chen, R.; Bommes, D.; Campen, M. Intrinsic mixed-integer polycubes for hexahedral meshing. Comput. Aided Geom.
Des. 2022, 94, 102078. [CrossRef]

15. Zhang, Z.Y.; Chen, D.F.; Hu, J.Q.; Wang, X.P.; Chen, P. Representation and fabrication method for multiple gradients fgm part
based on additive manufacturing. Appl. Mech. Mater. 2013, 433-435, 2076–2080. [CrossRef]

16. Tereshin, A.; Pasko, A.; Fryazinov, O.; Adzhiev, V. Hybrid function representation for heterogeneous objects. Graph. Models 2021,
114, 101098. [CrossRef]

17. Zang, T.; Zhu, D.; Mu, G. Inverse construction methods of heterogeneous nurbs object based on additive manufacturing. Comput.
Modeling Eng. Sci. 2020, 125, 597–610. [CrossRef]

18. Li, B.; Fu, J. Solid modeling and slicing process of heterogeneous materials based on trivariate t-splines. J. Zhejiang Univ. (Eng.
Sci.) 2021, 55, 10.

19. Kambampati, S.; Jauregui, C.; Museth, K.; Kim, H.A. Geometry design using function representation on a sparse hierarchical data
structure. Comput.-Aided Des. 2021, 133, 102989. [CrossRef]

20. Kou, X.Y.; Tan, S.T.; Sze, W.S. Modeling complex heterogeneous objects with non-manifold heterogeneous cells. Comput. Aided
Des. 2006, 38, 457–474. [CrossRef]

21. Qian, X.; Dutta, D. Heterogeneous object modeling through direct face neighborhood alteration. Comput. Graph. 2003, 27, 943–961.
[CrossRef]

22. Mueller-Karger, C.M.; Rank, E.; Cerrolaza, M. P-version of the finite-element method for highly heterogeneous simulation of
human bone. Finite Elem. Anal. Des. 2004, 40, 757–770. [CrossRef]

23. Opgenoord, M.M.J.; Willcox, K.E. Design for additive manufacturing: Cellular structures in early-stage aerospace design. Struct.
Multidiscip. Optim. 2019, 60, 411–428. [CrossRef]

24. Schumacher, C.; Bickel, B.; Rys, J.; Marschner, S.; Daraio, C.; Gross, M. Microstructures to control elasticity in 3d printing. ACM
Trans. Graph. 2015, 34, 136. [CrossRef]

25. Deng, H.; Zhao, J.; Wang, C. Bionic design method of a non-uniform lattice structure for a landing footpad. Aerospace 2022, 9, 220.
[CrossRef]

26. Li, F.; Zhang, Q.; Shi, H.; Liu, Z. A modified three-dimensional negative-poisson-ratio metal metamaterial lattice structure.
Materials 2022, 15, 3752. [CrossRef]

27. Liu, P.; Liu, A.; Peng, H.; Tian, L.; Liu, J.; Lu, L. Mechanical property profiles of microstructures via asymptotic homogenization.
Comput. Graph. 2021, 100, 106–115. [CrossRef]

28. Liu, X.; Shapiro, V. Multiscale shape–material modeling by composition. Comput.-Aided Des. 2018, 102, 194–203. [CrossRef]
29. Xia, H.; Meng, J.; Liu, J.; Ao, X.; Lin, S.; Yang, Y. Evaluation of the equivalent mechanical properties of lattice structures based on

the finite element method. Materials 2022, 15, 2993. [CrossRef]
30. Ellul, C. Functionality and Performance: Two Important Considerations when Implementing Topology in 3D; University of London:

London, UK, 2008.
31. Boguslawski, P. Modelling and Analysing 3D Building Interiors with the Dual Half-Edge Data Structure; University of South Wales:

New Port, UK, 2011.
32. Canino, D.; De Floriani, L.; Weiss, K. Ia*: An adjacency-based representation for non-manifold simplicial shapes in arbitrary

dimensions. Comput. Graph. 2011, 35, 747–753. [CrossRef]
33. Alumbaugh, T.J.; Jiao, X. Compact Array-Based Mesh Data Structures. In Proceedings of the 14th International Meshing Roundtable;

Hanks, B.W., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 485–503.
34. Dyedov, V.; Ray, N.; Einstein, D.; Jiao, X.; Tautges, T.J. Ahf: Array-based half-facet data structure for mixed-dimensional and

non-manifold meshes. Eng. Comput. 2015, 31, 389–404. [CrossRef]
35. Gupta, A.; Allen, G.; Rossignac, J. Quador: Quadric-of-revolution beams for lattices. Comput.-Aided Des. 2018, 102, 160–170.

[CrossRef]

http://doi.org/10.1016/j.cad.2021.103085
http://doi.org/10.1016/j.cagd.2022.102078
http://doi.org/10.4028/www.scientific.net/AMM.433-435.2076
http://doi.org/10.1016/j.gmod.2021.101098
http://doi.org/10.32604/cmes.2020.09965
http://doi.org/10.1016/j.cad.2020.102989
http://doi.org/10.1016/j.cad.2005.11.009
http://doi.org/10.1016/j.cag.2003.08.001
http://doi.org/10.1016/S0168-874X(03)00113-6
http://doi.org/10.1007/s00158-019-02305-8
http://doi.org/10.1145/2766926
http://doi.org/10.3390/aerospace9040220
http://doi.org/10.3390/ma15113752
http://doi.org/10.1016/j.cag.2021.07.021
http://doi.org/10.1016/j.cad.2018.04.024
http://doi.org/10.3390/ma15092993
http://doi.org/10.1016/j.cag.2011.03.009
http://doi.org/10.1007/s00366-014-0378-6
http://doi.org/10.1016/j.cad.2018.04.015

	Introduction 
	Mathematical Frameworks for the DDSM 
	Macroscopic Scale: A Compact Face-Based Topological Data Structure 
	Finite Non-Manifold Characteristic 
	A compact Half-Face Data Structure Design 
	Macroscopic CAD Model Topology Reconstruction 
	Topology Information Query 

	Microscopic Scale: Lattice Unit Cell Based on Implicit Representation 
	Implicit Function of Truss-like Struts 
	Generation of Lattice Unit Cell 

	Dual-Scale Shape-Material Model Representation 
	Data Structure of the DDSM 
	Prototype Implementation 

	Conclusions 
	References

