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Abstract: The use of non-thermal plasma technology in producing green fuels is a much-appreciated
environmentally friendly approach. In this study, an Al2O3-supported CrxZnS semiconductor catalyst
was tested for hydrogen evolution from hydrogen sulfide (H2S) gas by using a single-layered dielectric
barrier discharge (DBD) system. The Al2O3-supported CrxZnS catalyst (x = 0.20, 0.25, and 0.30) was
produced by using a co-impregnation method and characterized for its structural and photocatalytic
characteristics. The discharge column of the DBD system was filled with this catalyst and fed with
hydrogen sulfide and argon gas. The DBD plasma was sustained with a fixed AC source of 10 kV where
plasma produced species and UV radiations activated the catalyst to break H2S molecules under ambient
conditions. The catalyst (hexagonal-cubic-sphalerite structure) showed an inverse relationship between
the band gap and the dopant concentration. The hydrogen evolution decreased with an increase in
dopant concentration in the nanocomposite. The Cr0.20ZnS catalyst showed excellent photocatalytic
activity under the DBD exposure by delivering 100% conversion efficiency of H2S into hydrogen. The
conversion decreased to 96% and 90% in case of Cr0.25ZnS and Cr0.30ZnS, respectively.

Keywords: Cr-doped ZnS; photocatalysis; hydrogen sulfide; hydrogen; dielectric barrier discharge

1. Introduction

Hydrogen sulfide (H2S) is a poisonous gas and its production is harmful to both
human health and equipment [1]. Hydrogen can be produced from various raw materials
like coal, water, natural gas, hydrogen sulphide, biomass and boron hydrides using various
methods (electrolytic, thermal and photolytic) [2,3]. Currently, the yearly global production
of hydrogen is 50 million tons and more than 95% of it is obtained from fossil fuels. The
CO2 released by fossil fuels contributes to environmental pollution [3]. Hydrogen can also
be produced by cracking hydrogen sulfide (H2S) over a suitable catalyst. Hydrogen gas is
produced through different methods [4,5]. A large amount of H2 gas is used in industrial
applications, such as the production of chemicals, oils, fats, fuels, and metal reforming [6].
Currently, the Claus method is considered to be an important hydrogen-sulfide-removal
technology. This technique is generally not preferred owing to its high working cost and
related environmental issues. In the Claus method, hydrogen accumulating in hydrogen
sulfide cannot be regained [7]. Various approaches have been proposed for the decom-
position of H2S to produce hydrogen (H2). These methods include the thermo-chemical
method, catalytic decomposition, thermal-diffusion photochemical, electrochemical, and
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plasma [7,8]. In comparative economic analysis, the thermal decomposition and non-
thermal plasma (NTP) methods give better results than other methods due to their lower
energy cost. At very high temperatures, the decomposition of H2S is very low due to the
limitation of the thermodynamic equilibrium. The conventional catalysts do not play a
better role in converting H2S in thermal catalytic decomposition because H2S shows high
catalytic reactivity with metal species at elevated temperatures [9]. The NTP technique has
been suggested as a potential alternative for the direct decomposition of H2S into S and H2,
particularly due to the accomplishment of high-electron energies within a short time. In
NTP, various methods have been used to breakdown H2S. Such methods include corona,
dielectric barrier discharge plasma, microwave, rotating glow, radio frequency discharge,
and gliding arc discharge.

A review of the literature shows that many catalyst-hybrid systems have been inves-
tigated for the decomposition of H2S in DBD plasma with Al2O3. In addition to Al2O3-
supported Zn0.4Cd0.6S, ZnS and CdS have also been used for hydrogen production. The
ZnS and CdS showed H2S conversion corresponding to 90.9% and 97.9%. On the other
hand, Zn0.4Cd0.6S showed 100% catalytic activity for hydrogen production. However, it is a
time-consuming catalyst and took 100 h to complete the process. Some other catalysts were
also used with Al2O3 support to produce H2, such as ZnxCd1-xS, MoS2/Al2O3, LaxMnO3,
and Mn2O3. The catalytic performance of these catalysts was checked within 50 to 100
h with 100%, 99%, 52%, and 100% H2S conversion, respectively [10,11]. A similar activ-
ity of H2 production was also observed when Zhao et al. [10] used the Al2O3-supported
CrxZnS semiconductor. They used different molar ratios of Cr/Zn (x = 0.10, 0.15, 0.20 and
0.25) in their investigations. These molar ratios resulted in 81.8%, 87.4%, 100% and 89.7%
conversion of H2S, respectively [12–14].

The Cr-doped ZnS exhibits high-catalytic activity compared to transition metal-doped
ZnS. Barnhart et al. [13] reported that Cr is the 21st most common element in the Earth’s
crust, with a concentration of 100 ppm. Poornaprakash et al. [14] explained that chromium
is an important metal that has an abundant shell structure. Moreover, due to the closed
ionic radius of Cr3+ (0.63 Å) and Zn2+ (0.74 Å), it is easy for Cr3+ to substitute Zn2+ and
penetrate into the host lattice of ZnS. On the other hand, ZnS also acts as a host material
with its bulky band gap (3.67 eV). Due to its low toxicity and low cost, it produces different
nanostructures in various research applications. In this research, H2 gas was produced from
Cr-doped ZnS by non-thermal plasma treatment at atmospheric pressure. This method
consumed a very small amount of energy at low temperatures when a catalyst was placed in
the quartz discharge tube. The catalyst (CrxZnS) was prepared by the co-impregnation/wet
impregnation method with different molar ratios of Cr/Zn (x = 0.20, 0.25, and 0.30). The
advantage of this method is that a layer of active matter can easily be prepared on the
catalyst surface. Different characterization techniques such as X-ray diffraction (XRD),
Ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR)
and Scanning transmission electron microscopy (STEM) was used to analyze the catalysts.
These analyses gave information about the structure, crystal planes, band gap, and light
absorbance. The previously reported methods were time-consuming and energy-intensive
compared to our work. This study produced reasonably good results in relatively shorter
periods. The Cr0.20ZnS showed 100% production of H2 within 15 h of the process.

2. Experimental Part
2.1. Chemicals

All the chemicals, including zinc sulfide (ZnS), gamma-aluminum oxide (γ-Al2O3),
zinc nitrate Zn(NO3)3, and chromium nitrate Cr(NO3)3 were supplied by Merck & Co., Inc.
(Rahway, NJ, USA).

2.2. Preparation of Photocatalyst

The procedure of synthesis of photocatalyst is illustrated in Figure 1. Using the
illustrated procedure, a series of Cr-doped ZnS with Al2O3 support was prepared with
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different ratios of chromium (Cr). A wet-impregnation method was adopted to prepare
the catalyst samples. In this method, the ZnS amount was taken as 15 g, which is 10 wt%
of γ-Al2O3. An aqueous solution was prepared by adding 5 g of a Zn-nitrate solution to
15 mL of distilled water. The Cr-nitrate and Zn-nitrate were mixed with different molar
ratios (0.20, 0.25, and 0.30) by comparing the previous research. The prepared solution and
γ-Al2O3 were mixed with a gentle shake. The mixture was filtered by a filtration process
and then dried at 120 ◦C for 12 h in the oven. The calcination of the material was performed
in the furnace for 5 h. A fine powder was formed after crushing the calcinated material.
The sulfide catalysts were formed when oxide precursors were sulfidated in the presence
of sulfiding gas. Eventually, CrxZnS catalysts (x= 0.20, 0.25, and 0.30) was prepared.
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Figure 1. Illustration of the catalyst preparation procedure.

2.3. DBD Plasma-Assisted Hydrogen Evolution

The schematic and photographic views of the DBD setup, used for the production of
hydrogen by cracking H2S molecules over the composite catalyst, are given in Figure 2.
This laboratory-built system consists of a 30 cm DBD vertical column with an active plasma
column length of 23 cm. A quartz tube with a 4 mm wall thickness and a 12 mm internal
diameter was used as a DBD column. A copper rod of 8 mm diameter was passed through
the tube to work as one of the two electrodes. The tube was wrapped with a copper wire
to work as an electrode for uniform radial and spatial distribution of the applied power
and plasma. The upper end of the tube was used as a gas inlet and the lower end was
connected with the gas analyzer. The discharge column of the DBD system was filled with
this catalyst and fed with hydrogen-sulfide and argon gas.

The DBD plasma was sustained with a fixed AC source of 10 kV where plasma-
produced species and UV radiations were used to activate the catalyst to break the H2S
molecules under ambient conditions. The Al2O3-supported CrxZnS semiconductor catalyst
was tested for hydrogen evolution from H2S gas using this single-layered DBD system [15].
The discharge volume of the dielectric-barrier-discharge reactor was 22 mL [16]. One end
of the battery was attached to the wire and the other to the rod. About 10 g of the CrxZnS
catalyst (x = 0.20, 0.25, and 0.30) was loaded in the discharge column. At the same time, the
gas (Ar + H2S) was passed through the loaded column. The gas product of the reaction in
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the discharge column was analyzed. The relationship between the H2S (XHydrogen sulfide)
and H2 yield (XHydrogen) is shown as follows:

XHydrogen sulfide = XHydrogen +
A′
Ao
× 100% (1)

where A is the value of the H2 peak area of effluence. Ao has represented the hydrogen
peak area at 100% hydrogen sulfide conversion. The area of the represents the energy lost
during a single voltage cycle in the discharge. The total input energy used in the plasma
during the process was calculated by the specific input energy (SIE) as:

SIE =
P
V

(2)

where V is the flowrate of gas (L/s) and P is the discharge power (W). The energy utilization
for the H2 generation (E, eV) was calculated from the specific input energy as:

Energy consumption (E, eV) =
Pdischarge

H2S converted (mol/s)
× 1

96
(3)
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3. Results and Discussion
3.1. FTIR Analysis of Catalyst

With the Fourier transform infrared (FTIR) analysis, the absorbance of the species
in the crystal surface and the nanoparticle formation of ZnS were checked. It is reported
that this analysis also gives information about the chemical bonding of the chemical [17].
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The FTIR absorbance spectra of CrxZnS with different molar ratios are shown in Figure 3.
As shown in Table 1, FTIR analysis showed the same peaks for CrxZnS samples with
different ratios (x = 0.20, 0.25, and 0.30) within the range of 500–4000 cm−1. The FTIR
peaks were located around 3700 cm−1, 1588 cm−1, 1531 cm−1, and 1020 cm−1. All the
peaks exist in the group frequency region (GFR) except 1020 cm−1 because its range was
lower than the other three peaks, so it was observed in the fingerprint region (FPR) [18].
The peak at 3700 cm−1 was due to O—H stretching vibration. This peak shows an alcohol
group of compounds with intermolecular forces based on their structure [19]. The peaks
at 1588 cm−1 and 1020 cm−1 exhibited the same amines groups with no intermolecular
force at medium peaks. Both peaks have different vibrations, i.e., 1588 cm−1 represents the
N—H bending due to GFR and 1020 cm−1 represents the C—N stretching vibration in FPR.
There is a strong peak appearance at 1531 cm−1 caused by N—O stretching. It exists in a
nitro-compound group with no bonding forces.
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Figure 3. FTIR spectra of (a) Cr0.20ZnS, (b) Cr0.25ZnS, and (c) Cr0.30ZnS catalyst samples.

Table 1. FTIR peaks and corresponding groups of the CrxZnS catalyst.

FTIR
peaks Spectrumregion Appearance Bonding

force Group Compoundclass

3700 GFR medium,
sharp intermolecular O—H

stretching alcohol

1588 GFR medium - N—H
bending amines

1531 GFR strong - N—O
stretching

nitro-
compound

1020 FPR medium - C—N
stretching amines

3.2. UV-Visible Analysis

The absorption spectra of catalysts CrxZnS (x = 0.20, 0.25, and 0.30) were examined by
UV-Vis analysis within the wavelength range of 200 nm to 800 nm and obtained results are
shown in Figure 4. The absorption edges at 367 nm, 376 nm, and 379 nm correspond to
Cr0.20ZnS, Cr0.25ZnS, and Cr0.30ZnS respectively observed along the x-axis [20]. In Figure 5,
the Cr0.30 ZnS catalyst showed a superior shift in absorption edge (red-shift) towards the
visible light region in contrast to other samples, showing a maximum absorption upto
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379 nm [21,22]. Cr0.20ZnS, Cr0.25ZnS and Cr0.30ZnS catalysts represented the absorbance
values of 0.162 nm, 0.324 nm and 0.563 nm, respectively. Bodke et al. [14] reported that the
concentration of doped Cr3+ had a pronounced effect on the optical properties of the ZnS
catalyst and witnessed a significant red-shift in the absorption of Cr-doped ZnS.

Materials 2022, 15, x FOR PEER REVIEW 6 of 14 
 

 

The absorption spectra of catalysts CrxZnS (x = 0.20, 0.25, and 0.30) were examined 
by UV-Vis analysis within the wavelength range of 200 nm to 800 nm and obtained results 
are shown in Figure 4. The absorption edges at 367 nm, 376 nm, and 379 nm correspond 
to Cr0.20ZnS, Cr0.25ZnS, and Cr0.30ZnS respectively observed along the x-axis [20]. In Figure 
5, the Cr0.30 ZnS catalyst showed a superior shift in absorption edge (red-shift) towards the 
visible light region in contrast to other samples, showing a maximum absorption upto 379 
nm [21,22]. Cr0.20ZnS, Cr0.25ZnS and Cr0.30ZnS catalysts represented the absorbance values 
of 0.162 nm, 0.324 nm and 0.563 nm, respectively. Bodke et al. [14] reported that the con-
centration of doped Cr3+ had a pronounced effect on the optical properties of the ZnS cat-
alyst and witnessed a significant red-shift in the absorption of Cr-doped ZnS. 

 
Figure 4. UV-Vis absorbance spectra of CrxZnS (x = 0.20, 0.25, and 0.30) catalyst. 

The band gap values of the catalysts with different Cr compositions are reported in 
Figure 5. The band gap of CrxZnS with x = 0.20, 0.25, and 0.30 was found to be 2.68, 2.48, 
and 1.69 eV, respectively. These band gap values are lower than the standard value of 
bulk ZnS (3.6 eV) [23]. 

  

Figure 4. UV-Vis absorbance spectra of CrxZnS (x = 0.20, 0.25, and 0.30) catalyst.

Materials 2022, 15, x FOR PEER REVIEW 6 of 14 
 

 

The absorption spectra of catalysts CrxZnS (x = 0.20, 0.25, and 0.30) were examined 
by UV-Vis analysis within the wavelength range of 200 nm to 800 nm and obtained results 
are shown in Figure 4. The absorption edges at 367 nm, 376 nm, and 379 nm correspond 
to Cr0.20ZnS, Cr0.25ZnS, and Cr0.30ZnS respectively observed along the x-axis [20]. In Figure 
5, the Cr0.30 ZnS catalyst showed a superior shift in absorption edge (red-shift) towards the 
visible light region in contrast to other samples, showing a maximum absorption upto 379 
nm [21,22]. Cr0.20ZnS, Cr0.25ZnS and Cr0.30ZnS catalysts represented the absorbance values 
of 0.162 nm, 0.324 nm and 0.563 nm, respectively. Bodke et al. [14] reported that the con-
centration of doped Cr3+ had a pronounced effect on the optical properties of the ZnS cat-
alyst and witnessed a significant red-shift in the absorption of Cr-doped ZnS. 

 
Figure 4. UV-Vis absorbance spectra of CrxZnS (x = 0.20, 0.25, and 0.30) catalyst. 

The band gap values of the catalysts with different Cr compositions are reported in 
Figure 5. The band gap of CrxZnS with x = 0.20, 0.25, and 0.30 was found to be 2.68, 2.48, 
and 1.69 eV, respectively. These band gap values are lower than the standard value of 
bulk ZnS (3.6 eV) [23]. 

  

Materials 2022, 15, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 5. Band gap estimation of Cr0.20ZnS, Cr0.25ZnS, and Cr0.30ZnS catalyst samples. 

3.3. X-ray Diffraction Analysis 
The XRD analysis of as-synthesized catalysts CrxZnS (x = 0.20, 0.25, and 0.30) are 

shown in Figure 6. All prepared samples showed similar diffraction peaks, identifying no 
variation in the host crystal structure after introducing Cr3+ ions into its lattice. The differ-
ent diffraction peaks were found at 2θ values of 31°, 36°, 47°, and 56°, which correspond 
to (002), (001), (110), and (112) planes of ZnS, respectively. There was no other obvious 
indication of any other diffraction peak found except for the alumina peak. Among all 
samples, only the Cr0.20ZnS catalyst showed the origination of diffraction peak related to 
Cr impurity [24]. The information about the existence of the characteristic peak of (110) 
plane was confirmed from JCPDS#65-0309. The crystal structure of the CrxZnS catalyst is 
cubic sphalerite. 

 
Figure 6. XRD spectra of the CrxZnS (x = 0.20, 0.25, and 0.30) catalyst. 

The surface area decreased with an increase in a molar ratio of Cr/Zn. Ramasamy [25] 
reported that the lattice constants were reduced with Cr doping because of the ionic radius 

Figure 5. Band gap estimation of Cr0.20ZnS, Cr0.25ZnS, and Cr0.30ZnS catalyst samples.



Materials 2022, 15, 7426 7 of 14

The band gap values of the catalysts with different Cr compositions are reported in
Figure 5. The band gap of CrxZnS with x = 0.20, 0.25, and 0.30 was found to be 2.68, 2.48,
and 1.69 eV, respectively. These band gap values are lower than the standard value of bulk
ZnS (3.6 eV) [23].

3.3. X-ray Diffraction Analysis

The XRD analysis of as-synthesized catalysts CrxZnS (x = 0.20, 0.25, and 0.30) are
shown in Figure 6. All prepared samples showed similar diffraction peaks, identifying no
variation in the host crystal structure after introducing Cr3+ ions into its lattice. The different
diffraction peaks were found at 2θ values of 31◦, 36◦, 47◦, and 56◦, which correspond to
(002), (001), (110), and (112) planes of ZnS, respectively. There was no other obvious
indication of any other diffraction peak found except for the alumina peak. Among all
samples, only the Cr0.20ZnS catalyst showed the origination of diffraction peak related to
Cr impurity [24]. The information about the existence of the characteristic peak of (110)
plane was confirmed from JCPDS#65-0309. The crystal structure of the CrxZnS catalyst is
cubic sphalerite.
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The surface area decreased with an increase in a molar ratio of Cr/Zn. Ramasamy [25]
reported that the lattice constants were reduced with Cr doping because of the ionic radius
(0.63 Å and 0.74 Å) of Cr3+ and Zn2+ ions. In our study, as the Cr3+ content increased,
the lattice parameters were decreased in the case of all as-prepared CrxZnS catalysts. The
Scherrer equation was used to calculate the average crystallite size of the catalyst. The
grain sizes of CrxZnS were estimated to be 18.30, 17.89, and 17.49 nm, corresponding to the
Cr0.20ZnS, Cr0.25ZnS, and Cr0.30ZnS, respectively. Since the band gap and the grain size are
inversely related to each other; therefore, our measured band gap and crystallite size are in
good agreement, as illustrated in Table 2 [26].



Materials 2022, 15, 7426 8 of 14

Table 2. The band gap and grain size of CrxZnS catalyst samples.

Catalyst FWHM Grain size (nm) Band gap (eV)

Cr0.20ZnS 0.477 18.30 2.68

Cr0.25ZnS 0.488 17.89 2.48

Cr0.30ZnS 0.499 17.49 1.69

3.4. STEM Morphology Analysis

The morphology of the as-prepared samples was analyzed using the STEM technique
and the results are displayed in Figure 7. The STEM analysis confirmed the successful
formation of nanoparticles. The fine doping of the catalyst at a ratio of x = 0.30 appeared as
a dark area in the images. A rough spherical morphology of the particles was observed in
STEM images [27].
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The statistical distribution of CrxZnS (x = 0.20, 0.25, and 0.30) is expressed within the
range of 1–10 nm [28]. Figure 8 shows the distribution of particle sizes measured from
the STEM images. The average particle size of Cr0.20ZnS, Cr0.25ZnS, and Cr0.30ZnS was
measured at about 82 nm, 79 nm, and 76 nm, respectively.
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Figure 8. Particle size distribution of (a) Cr0.20ZnS, (b) Cr0.25ZnS, and (c) Cr0.30ZnS catalyst samples.

3.5. Photoluminescence Analysis

The catalysts were further characterized with PL technique to determine the extent of
the photoinduced electron-hole recombination rate. Principally, high-PL-emission intensity
represents the rapid recombination of charge carriers and vice versa [29]. Figure 9 shows
the PL emission spectra of CrxZnS catalyst samples measured at room temperature and
an exciton wavelength of 325 nm. The Cr doping has successfully altered the surface of
the ZnS and promoted the migration of surface carriers, causing an increment in light-
harvesting, which is consistent with the UV-Vis results [30]. The CrxZnS (x = 0.20) catalyst
demonstrated the lowest emission intensity compared to the other two catalysts, identifying
its effective suppression of charge carriers. It is worth mentioning that the PL intensity was
reduced with Cr doping in the UV and visible zone because of the effective role of Cr3+

ions in trapping the electrons to prolong their recombination with holes [31]. Additionally,
Cr3+ dopants provide electrons reaching the surface of the ZnS to effectively initiate the
reaction to accelerate the photocatalytic process [32]. Hence, it is concluded that the PL
intensity is reduced owing to a strongly inhibited recombination of photoinduced charge
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carriers because Cr3+ captured the electrons. The CrxZnS (x = 0.20) catalyst demonstrated
the least intensity; therefore, it is more appropriate for hydrogen production.
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3.6. Hydrogen Evolution Activity

The catalytic performance of the CrxZnS catalyst samples was evaluated for hydrogen
production under non-thermal plasma treatment. The catalytic performance of un-doped
ZnS and Al2O3 as a support material was also presented. The decomposition of H2S over
the tested catalyst compositions in a single-layered DBD plasma environment is reported
in Figure 10. In the case of Al2O3 support, both discharge diffusion and plasma-produced
reactive species may be influenced. The residence time of these species may be extended
by the adsorption capacity of the Al2O3 support [33]; however, in the literature, the electric
field was enhanced by using porous materials. Both the discharge and prolonged residence
time are useful for H2S decomposition [34]. More micro-discharges occurred in the Al2O3-
filled gap, which led to the beginning of chemical processes involving H2S molecules,
radicals, and electrons. All prepared CrxZnS catalysts showed better performance of H2S
conversion than that of pure ZnS and Al2O3 support. The CrxZnS catalyst with a molar
ratio of x = 0.20 showed the highest decomposition of H2S.

The results after comparison revealed that H2S conversion varied for different Cr/Zn
molar ratios. The catalytic activity greatly depends upon the dopant concentration. The H2S
conversion levels significantly impact the energy needed to break down its molecules [35].
The Cr0.20ZnS catalyst outperformed the other tested catalysts in terms of catalytic perfor-
mance and fully converted H2S at significantly lower energies. The H2S decomposition
was 100%, 96%, and 90% when the gap was filled with Cr0.20ZnS, Cr0.25ZnS, and Cr0.30ZnS,
respectively. The characterization of the catalyst showed that physical and chemical prop-
erties changed with Cr/Zn molar ratio. The cubic sphalerite structure of the catalyst was
shown by XRD analysis [36,37]. Cr3+ ions of chromium revealed uniformly scattering over
the ZnS without introducing separated impurity phases.
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The H2S conversion with specific input energy varies for different H2S concentrations
over the Cr0.20ZnS catalyst. The conversion rate was higher at the lower H2S concentra-
tions. H2S decomposition increased with increasing the specific input energy. Chivers
and Lau [36] showed similar results for the H2S conversion under non-thermal plasma
conditions. When a large number of electrons collide with Ar balance gas at lower H2S
concentrations, air balance gas is also crucial to the breakdown. Cr0.20ZnS was selected to
evaluate the stability of the catalytic after 100% decomposition of H2S [38]. The long-term
H2S conversion reaction of the Cr0.20ZnS catalyst is shown in Figure 11. The H2 evaluation
shows a maximum value up to 15 h and thereafter starts to decrease over time. Three
different readings were noted at different time periods. The H2 evolution decreased from
100% to 94% over the Cr0.20ZnS after 22 h of reaction time. A decrease in H2 production
over time might be due to the deactivation of the catalyst.

Table 3 summarizes the findings of hydrogen production efficiency over the CrxZnS
catalyst samples. The H2 production during the conversion of H2S was 100%, 96%, and
90% for x = 0.20, 0.25, and 0.30, respectively. Different energy conversion was observed
with the same SIE (specific input energy) values for all catalysts.

Table 3. Conversion efficiency, specific input energy, and energy consumption for catalytic hydro-
gen production.

Catalyst H2S conversion (%) SIE (J/L) Energy consumption (eV)

Cr0.20ZnS 100 14.66 0.120

Cr0.25ZnS 96 14.66 0.124

Cr0.30ZnS 90 14.66 0.138
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4. Conclusions

This laboratory-built non-thermal plasma system with a vertical DBD column was
used to decompose H2S over the CrxZnS catalyst for the production of hydrogen gas. The
catalyst was prepared using the co-impregnation method. A FTIR spectrum showed the
materials’ absorbance in different regions (fingerprint and group frequency region) and
functional groups. X-ray diffraction displayed the surface morphology of the catalyst. The
values of intensity, millar indices, grain size, and d-spacing were decreased with increasing
the Cr concentration. Hydrogen evolution was maximized (100%) after 15 h of reaction
over the Cr0.20ZnS. Hydrogen evolution then decreased to 94% after 22 h of reaction time,
showing a decrease in catalytic activity over time. The Cr0.20ZnS, Cr0.25ZnS, and Cr0.30ZnS
catalysts showed 100%, 96%, and 90% conversion, respectively, after 15 h of processing
time. The earlier reported works are time-consuming and energy-intensive compared to
our work. This study produced reasonably good results in relatively shorter periods. The
Cr0.20ZnS showed 100% conversion of H2S within 15 h of the process.
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