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Abstract: This study provides a new idea for the design of an advanced foaming agent with soybean
residue protein (SRP) as a potential protein source. In order to achieve the most effective foaming
performance, we employed the novel approach of response surface methodology (RSM) to improve
important process parameters in a hot-alkali experiment. The experimental results showed that the
optimum reaction parameters of pH and temperature were pH 10.2 and 50.5 ◦C, respectively, which,
when continued for 3 h, led to the highest foaming property of the SRP foaming agent (486 mL).
Based on the scheme, we also designed an experiment whereby we incorporated 1.0g/L FS-50 into
the SRP foaming agent (SRP-50) to achieve higher foaming capacity compared with the commercial
foaming agent. This foaming agent was cheaper than commercial vegetable protein foaming agents
(12 USD/L) at 0.258 USD/L. Meanwhile, the properties of foam concrete prepared using SRP-50
were studied in comparison with a commercial vegetable protein foaming agent (PS). The results
demonstrated that the foam prepared using SRP-50 had better stability, and the displacement of
the foam decreased by 10% after 10 min. During the curing period, the foam concrete possesseda
compressive strength of 5.72 MPa after 28 days, which was an increase from 2.95 MPa before. The
aperture of the foam ranged from 100 to 500 µm with the percentage increasing up to 71.5%, which
indicated narrower pore-size distribution and finer pore size. In addition, the shrinkage of the foam
concrete was also improved. These findings not only achieve the utilization of waste but also provide
a new source for protein foaming agents.

Keywords: soybean residue protein; response surface methodology; FS-50; foam concrete

1. Introduction

Foam concrete is composed of foam solution and different cement mixtures, arranged
mechanically in even, poured, and molded shapes. A block of good foam concrete has
the characteristics of higher strength, smaller mass, better heat protection, and stronger
insulation capability [1–4]. There is a strong correlation between the type of foaming
agent used and the quality of the foam concrete [5], which means using a suitable foaming
agent is one of the most important factors in the preparation of high-quality foam concrete.
Currently, synthetic foaming agents and protein foaming agents have dominated the
market [4] as they can make a stable foam by reducing the surface tension of the foaming
liquid. Stable foam requires a high concentration of synthetic agents and of the amounts
of foaming agents used [6]. Although the foaming ability of the protein foaming agent is
lower than that of the synthetic foaming agent, it is much more stable in the performance
that researchers are looking for [7]. In addition, protein foaming agents are also used for
foam extinguishing agents due to their safety and environmentally friendly nature. As
such, there has been a great deal of attention given to the development and improvement
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of concrete foaming agents, consisting of surfactants and proteins as the main components
of the foaming agent [4,7–9].

The preparation of foaming agents has so far been studied using a variety of animal
and plant proteins [10–13]. These agents, however, are not sustainable in the long term.
Therefore, alternative sources of protein are needed that are environmentally friendly, such
as raw materials extracted from sludge [14], bacterial cells [15], and distiller’s grains [16].
Recycling proteins from waste and raw sources will produce some social benefits. However,
the experimental process of extracting protein from them is very cumbersome. For example,
when extracting some animal proteins, the procedures require acid or alkali hydrolysis,
water purification, pressure filtration, vacuum concentration, air drying, grinding, etc. [17].
The processes of purification and extraction are very difficult to carry out, so more and
more scholars have devoted themselves to looking for new protein sources and simple
preparation processes, which can be widely commercialized.

At present, China is the largest soybean importer and consumer in the world. In 2020,
China’s soybean import volume exceeded 100 million tons. During the processing of bean
products, a large amount of residue, bean dregs, is produced. During the processing and
production of 1.2 tons of tofu, 1 ton of wet bean dregs is left [18,19]. Because soybean
protein contains about 10% insoluble protein, it is difficult to separate in the processing
process and will remain in the soybean residue [20]. Studies have shown that the residual
protein content in soybean residue is 15.2–33.4% [21]. Fresh soybean dregs contain protein,
carbohydrates, and other nutrients, which can provide sufficient nutrition and humidity
for microorganisms. Therefore, it can be easily decomposed by microbes, hard to preserve,
and used as feed. Treating soybean residue as waste residue will not only pollute the
environment, but also waste some soybean protein resources [22].

This study proposes a new method to obtain protein only viathermal alkali treatment
of soybean residue, without laborious and cumbersome extraction or purification pro-
cesses [23–25]. At the same time, it has the advantages of reusability and environmental
sustainability. In order to optimize reaction conditions such as temperature, pH, and the
time needed for thermal alkali treatment, we adopted the response surface methodology
(RSM) for the desired purpose. An additive suitable for soybean residue protein (SRP) was
found, in this experiment, to enhance the foaming performance of the soybean residue pro-
tein (SRP) foaming agent. However, previous research only stayed at the level of preparing
protein foaming agents. Thus, this study investigates not only foam but also foam concrete
to further optimize the products of SRP foaming agents.

2. Materials and Methods
2.1. Materials

Fresh bean dregs, sodium hydroxide (analytical grade), and Sinopharm were pur-
chased from the Chemical Reagent Company (Zibo, China). FS-50 and FS-3100, two of the
most widely used fluorocarbon short-chain surfactants produced by DuPont, were selected
for the purpose of producing high foam. They are amphoteric fluorocarbons and their
perfluorinated groups contain only 6 carbon atoms and will not decompose to produce
perfluorooctane sulfonate (PFOS), which meets the requirements of the US Environmental
Protection Agency (EPA) on the voluntary environmental protection plan for PFOS.

The cement used was Portland cement P.II 52.5, which has a density of 3.65g/cm3, a
specific surface area of 355 m2/kg, and a specific strength of 62 MPa. The compositions of
P.II 52.5 are enumerated in Table 1. The plant protein-based surfactants (PS) were obtained
from Zhicheng New Building Materials Inc (Nanjing, China). at the price of 12 USD/L.
This foaming agent was 4% in concentration.

Table 1. Compositions of cement, wt.%.

Oxide CaO SiO2 Al2O3 Fe2O3 TiO2 MgO SO3 K2O Na2O LOI

Content 64.65 21.32 5.04 3.12 0.97 0.49 2.96 0.39 0.23 3.21
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2.2. Experimental Methods
2.2.1. Preparation of SRP Foaming Agent

The fresh wet bean dregs were steam-sterilized for 30 min, dried at 50 ◦C for 24 h,
cooled to 25 ◦C, and placed in a cool place on standby.

We weighed 20.00 g of bean dregs using an electronic balance and added 200 mL of water.
For the hot alkali experiments, sodium hydroxide (1 mol/L) was added for pH regula-

tion. An electronic constant-temperature water bath was used to heat the beakers to the
target reaction temperatures. After a certain time, the residue was separated viastanding,
cooling, and suction filtration, and the obtained supernatant was the foaming base liquid.
After the solution was prepared, it could be tested for its properties.

2.2.2. Single-factor Test

For the foaming ability, a single-factor test was carried out to check the effect of pH
value (9, 10, 11), temperature value (40, 50, 60 ◦C), and time of hydrolysis (2, 3, 4 h). During
the single-factor test, we checked in the order: pH value, temperature value and hydrolysis
time. That is to say, when the temperature value and hydrolysis time were concerned, the
pH value was fixed.

The effect of pH on foaming ability: To check the effect of an alkaline pH value (9, 10,
11), a hydrolysis temperature of 50 ◦C and hydrolysis time of 3 h were used to measure the
foaming ability.

The effect of hydrolysis temperature on foaming ability: To check the effect of temper-
ature for foaming ability, the conditions were set to a pH value of 10.0, hydrolysis time of
3 h, and hydrolysis temperature values of 40, 50, and 60 ◦C.

In order to determine whether the effect of hydrolysis time on foaming ability is
significant, we set the conditions for the single-factor test at a pH value of 10.0, hydrolysis
temperature of 50 ◦C, and hydrolysis times of 2, 3 and 4 h.

2.2.3. Response Surface Test

Based on the response surface method (RSM), three experimental variables (pH,
reaction temperature, and reaction time) were optimized to maximize the foaming ability
of the soybean residue protein foaming agent [26].

The range and selection level of the independent variables affecting this experiment
are listed in Table 2. The Box–Behnken design (BBD) (V12.0, Stat Ease, MN, USA) was used
to design 20 experiments with different values of three variables. A STAT ease program
(V11.1.0.1, Stat Ease, MN, USA) was used for the analysis of all experimental data.

Table 2. Response surface factors and levels.

Variables Symbol
Range and Level

−1 0 1

pH X1 9 10 11
Hydrolysis temperature (◦C) X2 40 50 60

Hydrolysis time (h) X3 2 3 4

2.2.4. Analysis Methods

First, we put 100 mL of the bean dreg protein foaming agent solution into a 1000 mL
beaker and heated it to 40 ◦C. After stirring for five minutes at 1200 rpm, the solution
was transferred to a measuring cylinder for analysis [27]. We stipulated that after 5 min
of foaming, the volume of soybean residue protein (SRP) foaming agent and the volume
of foam were labeled with their foaming properties (mL) [28]. The pH tester (PHS-3E)
(Shanghai Shengke Instrument & Equipment Co., Ltd., Shanghai, China) was used in this
test. In order to ensure that the deviation of the data did not exceed 5%, three tests were
carried out in each experiment.
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2.3. Preparation of Foam and Foam Concrete

The self-made (SRP) and commercial vegetable protein foaming agents (PS) were
mixed with water in their respective containers. An air pressure of 0.4–0.6 MPa was applied
to the foaming agent after standing in the foaming machine [29]. In order to determine the
density of the fresh foam, a 1 L standard container was immediately filled with the fresh
foam and weighed.

In order to achieve optimal performance of foam concrete, we calculated the mix
proportion in accordance with its targeted density, since it can be adjusted depending on
the designed density and the performance of the foam. At this point, we used the following
method to determine the proportions of foam concrete (of 1 m3) [4]:

ρd = Samc (1)

V2 = K(V −V1) = K[V − (
mc

ρc
+

mw

ρw
)] (2)

ρd (kg/m3) is the target density of the foam concrete. Sa is the empirical coefficient, which
is 1.2 for standard 52.5 Portland cement. mc (kg) and mw (kg) are the masses of cement and
water separately. V (m3) is the volume of foam concrete, equal to 1 m3. V1 (m3) and V2 (m3)
are the volumes of cement paste and foam, respectively. ρc (kg/m3) and ρw (kg/m3) are the
densities of cement and water. In this paper, mw = 0.5 mc. K is a coefficient, decided by the
foam quality.

As shown in Table 3, the mix design of foam concrete can be summarized as follows.
FC-PS and FC-SRP-50 correspond to the foam concretes. A stirring speed of 100 revolutions
per minute was applied initially to the cement slurry, and this lasted for 30 s. After that, the
prepared foam was added to the cement slurry along with the remaining ingredients. After-
wards, the foam was introduced into the cement matrix and stirred at 60–120 revolutions
per minute for 180 s. In order for the foam concrete to perform properly, it must not be
mixed for an excessive amount of time in order to prevent defoaming of the foam, altered
pore structure, and macro-performance problems [1]. At the end, a mold type measuring
100 mm × 100 mm × 100 mm was filled. A standard curing box was used to cure the
samples for 28 days after they were removed from the mold (after 24 h). The samples were
dried for 24 h at 60 ◦C after 28 days of standard curing, and their density was determined
following this drying process. The procedure followed in the experimental study was the
Chinese standard “Foam Concrete” (JG/T 266–2011).

Table 3. Mix design of foam concrete.

Mix Target Density
(kg/m3) Foaming Agent Cement (kg) Water (kg) Foam (m3)

Actual Average Dry
Density (kg/m3)

FC-PS 600 PS 600 300 0.9 607 ± 4

FC-SRP-50 600 SRP 600 300 0.9 613 ± 5

2.4. Characteristics of Foam
2.4.1. Viscosity Test

This foam was measured using a rotary viscometer (NDJ-1, Shanghai Changji Geologi-
cal Instrument Co., Ltd., Shanghai, China) of which the No. 1 rotor was used for measuring
the foam’s viscosity; this was carried out in a 500 mL beaker.

2.4.2. Surface Tension Test

It was determined that the surface tension was 25 ◦C using KRUSS k100 surface
tension meter (CRUS Scientific Instruments (Shanghai) Co., Ltd., Shanghai, China) and the
Du Nouy ring method was used to make the measurement.
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2.4.3. Foam Stability

It was determined that the foam was stable by measuring the weight loss of the foam
5, 10, 30, 60, 120, 180, 240, 360, 720, and 1440 min after the foam had been filled into a 1 L
container at 25 ◦C [30].

2.4.4. Optical Microscopy

The thickness of the foam wall (OM) was determined using an optical microscope
(DM 750, Suzhou Ouster Optical Instrument Co., Ltd., Suzhou, China) in order to determine
the thickness of the wall.

2.5. Properties of Foam Concrete
2.5.1. Compressive Strength

Initially, the samples of foam concrete were baked at 60 ◦C until the quality of the foam
concrete did not change. In accordance with GB/T 11969-2008, a constant loading speed
of 1 kN/s was used to determine the compressive strength of the samples. The testing
machine model was WDW-300.

2.5.2. Drying Shrinkage

In accordance with GB/T 11969-2008, shrinkage tests were conducted on the foam
concrete samples in order to determine their shrinkage results. During this experiment,
40 mm × 40 mm × 160 mm samples were used. After being placed in the standard curing
box at their initial lengths, the samples were cured for 3, 7, 14, 21, 28, 60, and 90 days, after
which the change in length was measured over time.

2.5.3. Microstructure and Pore Structure

The surface morphological properties of foam concrete were examined using a Quanta
250 scanning electron microscope (FEI, Costa Mesa, CA, USA). There was a 35◦ angle
of output from the analyzer. The range of elements analyzed was Be4–Pu94. A 20 kV
accelerating voltage was also available with EDS. In addition, the pore structure of the
foam concrete was examined using X-ray computed tomography.

3. Results and Discussion
3.1. Analysis of Single-Factor Test Results
3.1.1. Effect of PH Value on Foaming Ability

When soybean residue is subjected to increased pH levels, its foaming capacity in-
creases first, and then, decreases after reaching pH 10. As a result, hydrolyzed soybean
residue protein is best used at pH level 10 in order to achieve optimal results (Figure 1).
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3.1.2. Effect of Temperature on Foaming Hydrolysis Ability

Hydrolysis of the foam became more efficient with the increase in hydrolysis tempera-
ture, resulting in a greater degree of foaming hydrolysis. (Figure 2) When the hydrolysis
temperature is 50 ◦C, the degree of hydrolysis of the soybean residue reaches the maximum.
When the hydrolysis temperature exceeds 50 ◦C, the degree of hydrolysis of the soybean
residue protein decreases with the increase in hydrolys is temperature, reaching 90.75%. It
can be seen that at emperature that is too high or too low will affect the hydrolysis degree
of the soybean residue protein. Studies have shown that with a higher hydrolysis tem-
perature, the Maillard reaction has an adverse effect on protein extraction [31]. Therefore,
when the hydrolysis temperature is 50 ◦C, the soybean residue protein reaches a better
degree of hydrolysis.
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3.1.3. Effect of Hydrolysis Time on Foaming Ability

There is a continuous increase in the foaming capacity of soybean residue protein
when a hydrolysis time of less than three hours is used (Figure 3). However, when the
hydrolysis time is more than 3 h, the foaming capacity increases slowly. Considering the
actual production efficiency, the hydrolysis time of the soybean residue protein is 3 h.
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3.2. Optimization of Experimental Conditions
3.2.1. Property Fitting and Data Analysis

Evaluation of the foaming agents should be considered in two ways: foaming and
foam stability [32]. Previous studies have shown that the stability of foaming agents using
protein foaming agents is very high. However, their foaming property is inadequate. A
foam’s stability is determined by two factors: the stiffness of the foam film and the time
taken for the liquid to evaporate. A foam film prepared by a protein foaming agent has
high rigidity and is hard to break, because an active material with high molecular weight
has a strong interaction force [12]. Therefore, after analysis, we agreed to take foaming as
the measurement standard in this study.

For the comprehensive single-factor test results, the experimental data for the response
surface analysis were designed using the BBD design, as shown in Table 4. Different experi-
mental conditions correspond to the foam’s foaming range of 420–489.5 mL. The 20 groups
of experimental data that were designed were analyzed using Design Expert software. The
empirical relationship between foam stability and the three experimental variables was
analyzed using response surface methodology. The fitting model for predicting the foaming
property is shown in Formula (3). The independent variables X1, X2, and X3 represent
pH, reaction temperature, and reaction time, respectively, and the dependent variable Y
represents the bubble foaming property.

Y = 485.22 − 0.2439X1 + 0.4916X2 + 0.1473X3 − 0.8988X1X2 − 3.59X1X3 − 0.61X2X3 − 17.31X1
2

−16.42X2
2 − 18.62X3

2 (3)

Table 4. BBD experimental data.

Run pH Hydrolysis
Temperature (◦C)

Hydrolysis
Time (h) Foamability (mL)

1 10 50 3 489.5
2 11 60 4 420
3 10 50 2 430
4 9 40 2 425
5 9 50 3 435
6 10 50 3 480.5
7 10 50 3 485
8 11 40 2 430.5
9 11 40 4 428

10 10 50 3 485.5
11 10 60 3 440
12 9 60 2 435.5
13 10 50 3 483.5
14 10 50 4 438.5
15 11 50 3 440
16 10 40 3 441.5
17 10 50 3 485
18 9 60 4 433.5
19 11 60 2 439
20 9 40 4 435.5

In order to analyze the variance of the data, the RSM was used, and the results
can be seen in Table 5. The coefficient of determination (R2) indicates the proportion of
variance in the data that the model can explain or account for. With an R2 value of 0.9847,
it is indicated that only 1.53% of the total variation cannot be explained by the model,
suggesting reasonable agreement between the observed values and the predicted values.
F-values that are greater than 0.05 indicate that the model does not fit, and the value of
the variation coefficient (CV) is 0.93%. This is enough to confirm the high reliability of
the model. Therefore, if we change the experimental variables, we can use the model to
reasonably predict the foaming properties of the bubbles.
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Table 5. Analysis of variance results.

Source Sum of
Squares df Mean

Square F-Value p-Value Significant

Model 11,245.23 9 1249.47 71.55 <0.0001 **
X1 (pH) 0.81 1 0.81 0.05 0.8336

X2 (Hydrolysis temperature) 3.30 1 3.30 0.19 0.6730
X3 (Hydrolysis time) 0.29 1 0.29 0.02 0.8990

X1X2 6.46 1 6.46 0.37 0.5566
X1X3 103.32 1 103.32 5.92 0.0353
X2X3 104.18 1 104.18 5.97 0.0347
X1

2 4318.46 1 4318.46 247.28 <0.0001 **
X2

2 3887.88 1 3887.88 222.62 <0.0001 **
X3

2 4998.65 1 4998.65 286.23 <0.0001 **
Residual 174.64 10 17.46

Lack of Fit 136.08 5 27.22 3.53 0.0963
Pure Error 38.56 5 7.71
Cor Total 11,419.87 19

R2 0.9847
Radj

2 0.9709

Note: ** indicates extremely significant (p < 0.01).

Each independent variable’s p-value indicates its significance, with smaller p-values
indicating greater significance [33]. The F-value indicates that hydrolysis temperature (X2) and
pH (X1) have the highest influence on protein foaming ability, followed by hydrolysis time (X3).

3.2.2. Response Surface Experimental Analysis

The relationship between independent variables and dependent variables is clearly
described by fitting the experimental data (Figure 4).

The effects of the independent variables X1 and X2 on the foaming property areshown
in Figure 4a. As shown in the Figure 4, when the value of X1 of the independent variable is
between 9 and 10, with an increase in ionic concentration, the conditions for foam stability
are created. At the same time, the foaming property increased with an increase in the
independent variables X1 and X2. Because protein molecules are hydrophobic, foam liquid
membranes can adsorb them, and the foam liquid film can be negatively or positively
charged at the same time. Due to the increase in the independent variable X1, the liquid
film surface can carry the same charge. It is possible to prevent the physical drainage of the
foam liquid film via the electrostatic repulsion generated by the impact of the charge on
the surface of the liquid film, thereby prolonging the time for foam stabilization [34]. By
observing the contour map, it can be concluded that when the independent variable X2 is in
the range of 45–55 ◦C and X1 is about 10, the performance of the dependent variable is the
highest (>480 mL). When the independent variable exceeds this optimal range, the solution
environment becomes bad, resulting in a decrease in protein content. Because of the
possible Maillard reaction, the foaming capacity of the foam decreases [35]. Additionally,
since the p-value of 0.5566 shows that the independent variables X1 and X2 have slight
interdependence, the fact that the independent variables X1 and X2 may interact in a minor
manner may not be significant in influencing the dependent variable (Table 5) [24].

Figure 4b depicts the influence of the independent variables X1 and X3 on the de-
pendent variables. According to the contour map, the dependent variable is the highest
(>480 mL) when the independent variable X1 is 10 and the independent variable X3 is
between 2.5 h and 3.5 h. When the independent variable X1 is high, the protein will be
denatured and will not dissolve in the solution. With an increase in the independent
variable X3, the value of the dependent variable is always low [36]. Although strong alkali
will saponify the membrane lipid, the effect on the dependent variable is not obvious.
The dependent variable is improved only when the independent variable X3 is about 3 h.
However, when the independent variable X1 is low, it is conducive to the breaking of cell
wall with an increase in reaction time; however, when the reaction time is too long, it may
lead to the denaturation of protein molecules, so it is not conducive to the improvement of
the dependent variable.
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The interaction between the independent variables X2 and X3 is obvious (Figure 4).
When the reaction temperature is in a relatively soft environment, the independent variable
X3changes between 2.5 h and 3.5 h, and the value of the dependent variable is the highest.
When the reaction solution is hot and alkaline, it will not only reduce the high-temperature
resistance of the cell wall, but will also accelerate the hydrolysis of organic matter, resulting
in the rapid rupture of the cell wall [14]. The higher the degree of cell wall rupture, the
more protein molecules release, so a large number of protein molecules will produce more
bubbles. It should be noted that the higher independent variables, X1 and X3, will lead to
protein molecule failure. With the bond breaking within and between protein molecules, a
large number of hydrophobic amino acids will appear in the solution. This reaction will
improve the softness and hydrophobicity of the protein molecules [37]. However, when the
independent variable X2 is greater than 55 ◦C, no matter what the reaction temperature is,
the dependent variable will decrease significantly. When the reaction environment becomes
bad, it will not only reduce the value of the dependent variable, but will also produce an
unpleasant smell of ammonia because the protein is over-hydrolyzed.

As mentioned above, the changes in X1, X2, and X3 can significantly promote cell
fragmentation and protein degradation, so as to improve the foaming property of the
product. It should be noted that if the variables involved in the reaction exceed a certain
value, some adverse reactions may occur and the dependent variable will be reduced.

3.2.3. Model Verification and Adjustment

According to the results of the response surface analysis, when the independent variable
X1 of the model is 10.197, X2 is 50.538 ◦C, and X3 is 3.105 h, the highest dependent variable
(491.5 mL) can be obtained. Considering the operability of the experiment, the optimal
conditions of the independent variables are corrected as X1 = 10.2, X2 = 50.5 ◦C, X3 = 3 h.

This foaming experiment was repeated three times in accordance with what had been
predicted by the model, and the average value of the dependent variable was 486 mL,
which was very close to what had been predicted by the model.

3.3. Performance Evaluation of Additives

Although the maximum foaming performance obtained using the foaming agent
prepared under the optimized conditions was 486 mL, the foaming performance of the
commercial plant protein foaming agent can reach 700 mL. Therefore, the foaming agent of
soybean dreg protein needs to be further optimized. Adding foam stabilizer to foaming
agent is a simple and efficient approach to converting the performance of foam [38,39].
FS-50 and FS-3100 are two short-chain fluorocarbon surfactants that have received increas-
ing attention in recent years. Therefore, their performance was omitted in this experiment.

According to the experimental data, adding FS-50 and FS-3100 to foam can improve
its viscosity as well as prevent gas penetration [40]. In general, increasing the viscosity
of the foam can increase its stability considerably while minimizing its foaming ability
because the freshly created foam does not break down as soon as it is formed, as is the case
with increasing viscosity. The viscous resistance can, however, be difficult to overcome
if one uses a thick solution, which can lead to a decrease in foaming ability [34]. Due to
the fact that the foaming agent already had a high foam stability, it was not necessary or
obvious to evaluate the effect of the foaming agent on foam stability in this study. In this
regard, the surfactant is more appropriate as an additive for protein foaming agents than
other substances.

The experimental results can be summarized as follows: the addition of FS-50 and
FS-3100 had a good effect on the foaming property of the soybean residue protein foaming
agent (Figure 5). Specifically, when the amount of FS-50 was 1.0 g/L, the foaming rate was
increased by 172.84%. However, for FS-3100, the highest foaming (810.21 mL) occurred
when the addition amount was 1.4 g/L. If the addition amount exceeds these two values,
the foaming property of the foam will decrease.
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Figure 5. Effects of FS-50 and FS-3100 on foaming ability.

Generally speaking, adding foam stabilizer within as uitable range can reduce the
surface tension of the protein solution, so as to improve the foaming property. However,
when the foam stabilizer is added in excess, it will have adverse effects. The reason may
be that the micelle form of excessive foam stabilizer no longer reduces the surface tension.
At the same time, the foam stabilizer can expand the macromolecular chain in protein,
and its dispersion effect is remarkable. Foam stabilizer makes protein molecules more
evenly dispersed on the surface of foam, which not only improves the rigidity of the foam,
but is also favorable for the foaming and stability of the foam [41]. However, when the
stabilizer is overdosed, the molecules will remain at the hydrophobic location of the protein,
which is unfavorable for the interaction between the reaction groups, thereby reducing the
performance of the foam.

To make the right choice between the FS-50 and the FS-3100, it was necessary to carry
out a comprehensive analysis (Table 6). FS-50 had a price of 0.258 USD/L, which is cheaper
than FS-3100’s price of 0.362 USD/L, and this offered a major advantage in terms of cost
when the additives were compared with each other.

Table 6. Evaluation of FS-50 and FS-3100 as additives for SRP foaming agent.

Additive Price
(USD/kg)

Dosage
(kg/L)

Cost
(USD/L) Economy Safety Foaming

Ability

FS-50 258 1.0 × 10−3 0.258 *** ** ***
FS-3100 258 1.4 × 10−3 0.362 * ** **

Note: * stands for inferior; ** stands for medium, and *** stands for superior.

Through the evaluation of the cost factors, safety performance, and foam-stabilizing
effects of FS-50 and FS-3100, we found that FS-50 is more suitable as a foam stabilizer of the
soybean residue protein (SRP) foaming agent. At the same time, the cost of SRP-50 is lower
than that of the commercially available plant protein foaming agent (12 USD/L).

3.4. Properties of Foams
3.4.1. Density, Viscosity, and Stability of Foams

The foam density, viscosity, and surface tension corresponding to SRP and PS arelisted
in Table 7. The foam density of SRP was 7.59% higher than that of PS foam, and the viscosity
of the foam increased by 25.66%. Meanwhile, the surface tension of the foam decreased by
9.40%. The above data show that the strength and stability of SRP foam are higher than
that of PS [42].

Table 7. Properties of the foams.

Type Density (kg/m3) Viscosity (Pa·S) Surface Tension (mN/m)

PS 17 0.113 35.1

SRP 22 0.142 31.8
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It was shown that approximately 20% of the PS had been drained within the first ten
minutes, while roughly 10% of the SRP foam had been drained (Figure 6). In line with
previous research [43], it can be deduced that SRP has a higher level of foam stability than PS.
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3.4.2. Morphology of Foams

A foam surface could be observed immediately after the OM foam was produced.
There are 32.48 µm of foam wall thickness in the diagram and 62.29 µm of foam wall
thickness in the actual construction (Figure 7).
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3.5. Influence of SRP on Foam Concrete
3.5.1. Compressive strength and shrinkage

Figure 8 illustrates the effect of compressive strength on the experimental group
(FC-SRP-50) and the control group (FC-PS). During the experiment, both the experimental
and control groups showed an increase in compressive strength. Approximately 28 days
after the experiment, the compressive strength of the experimental group exceeded that of
the control group, which was 2.95 MPa. In conclusion, foam concrete prepared with SRP
has a higher compressive strength than foam concrete prepared with PS.

There was a reduction of 3.42 × 103 in dry shrinkage for the control group, as opposed
to are duction of 1.75 × 103 for the experimental group on day 90. Therefore, SRP foam
concrete is more resistant to shrinkage than PS foam concrete (Figure 9).



Materials 2022, 15, 7384 13 of 17

Materials 2022, 15, x FOR PEER REVIEW 14 of 19 
 

 

 

Figure 8. Compressive strength of foam concretes. 

There was a reduction of 3.42 × 103 in dry shrinkage for the control group, as opposed 
to are duction of 1.75 × 103 for the experimental group on day 90. Therefore, SRP foam 
concrete is more resistant to shrinkage than PS foam concrete (Figure 9). 

 

Figure 9. Drying shrinkage of foam concretes. 

3.5.2. Microstructure of the Foam Concrete 
Micro-morphologies of the samples were determined using SEM for both the control 

group and experimental group (Figure 10). There are pores and cracks in the surface of 
the foam concrete surface in the control group, whereas the surface of the foam concrete 
in the experimental group is smooth and complete. SRP foam concrete hydrates more ef-
fectively than PS foam concrete, as indicated by the experimental results. 

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
ry

in
g 

sh
rin

ka
ge

 (m
m

/m
)

Age (d)

 FC-PS
 FC-SRP-50

Figure 8. Compressive strength of foam concretes.

Materials 2022, 15, x FOR PEER REVIEW 14 of 19 
 

 

 

Figure 8. Compressive strength of foam concretes. 

There was a reduction of 3.42 × 103 in dry shrinkage for the control group, as opposed 
to are duction of 1.75 × 103 for the experimental group on day 90. Therefore, SRP foam 
concrete is more resistant to shrinkage than PS foam concrete (Figure 9). 

 

Figure 9. Drying shrinkage of foam concretes. 

3.5.2. Microstructure of the Foam Concrete 
Micro-morphologies of the samples were determined using SEM for both the control 

group and experimental group (Figure 10). There are pores and cracks in the surface of 
the foam concrete surface in the control group, whereas the surface of the foam concrete 
in the experimental group is smooth and complete. SRP foam concrete hydrates more ef-
fectively than PS foam concrete, as indicated by the experimental results. 

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
ry

in
g 

sh
rin

ka
ge

 (m
m

/m
)

Age (d)

 FC-PS
 FC-SRP-50

Figure 9. Drying shrinkage of foam concretes.

3.5.2. Microstructure of the Foam Concrete

Micro-morphologies of the samples were determined using SEM for both the control
group and experimental group (Figure 10). There are pores and cracks in the surface of the
foam concrete surface in the control group, whereas the surface of the foam concrete in the
experimental group is smooth and complete. SRP foam concrete hydrates more effectively
than PS foam concrete, as indicated by the experimental results.
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3.5.3. Pore Characteristics

Scanners (Beijing Flukes Technology Co., Ltd., Beijing, China) were used to explore the
cross sections of the control and experimental groups after 28-day curing. (Figure 11) They
were processed using Image Pro Plus software to determine the frequency distribution of
pore size and fit the curve based on the sample. Earlier studies [44] have shown that the
pore-size distribution of foam concrete is mainly logarithmic in nature, which can explain
the results of these studies well [44]. A probability function, f (χ, µ, σ) was used to fit the
distribution of pore sizes to the data.

f (χ, µ, σ) =
1

χσ
√

2π
e
(lnx−µ)2

2σ2 (4)

σ represents the standard deviation and µ denotes the average. χ is the air-void diameter
of the sample.
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Figure 11. Aperture distributions of foam concrete group.

The standard deviations of the control and experimental groups’ fitting curves were
0.39 and 0.25, respectively, while their logarithmic means were 7.84 and 6.12, respectively.
It is well established that the pore sizes and distribution of the pore sizes increase with
the Landreman’s value [45]. According to the results, the average pore diameter of each
sample of the control group was 8.36% of the total diameter of the samples. However, in the
experimental group, this proportion increased to 71.5%. The increased viscosity of the SRP
solution makes the bubble film stronger. It has two effects: it increases the surface strength
of the liquid film, and delays the foam drainage. The improved strength of the film will
hinder the diffusion of the internal gas towards the outside and increase the ability of the
bubble to resist external disturbances. Additionally, the increased viscosity will increase the
resistance forces when the liquid flows in the plateau borders; this can restrict the growth,
drainage, and coalescence of the bubbles, and thus, optimize the size distribution of the
foam concrete [30]. It is therefore assumed that SRP is able to narrow down the distribution
of the pore size of samples, leading to more uniform pore sizes.

3.6. Overall Evaluation

In this experiment, soybean dregs were used as raw materials to prepare foaming
agents. As far as the literature reports in recent years are concerned, there have been
no similar efforts made by scholars. Compared with commercial plant protein foaming
agents, SRP-50 produced better foam concrete [7,46]. The reason may be that the effective
component of the plant protein foaming agent is triterpenoid saponin, which is a non-
ionic surfactant with good air-entraining performance. When it is dissolved in water, the
macromolecules are adsorbed on the gas–liquid interface to form a directional arrangement
of two groups, which reduces the tension of the gas–liquid interface and makes it easy to
produce a new interface. However, previous studies have confirmed that soybean contains
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a large number of triterpenoid saponins [47]. Meanwhile, soybean residue is a widely
distributed biomass material, which has the advantages of being easy to access, having a
low cost, and being pollution-free and sustainable. Therefore, in this paper, soybean dregs
were successfully used to obtain a high value.

4. Conclusions

According to the results of this study, a source of protein foaming agent that can be
derived from soybean residue protein was confirmed as a possibility. Bean dregs can be
directly made into a soybean residue protein (SRP) foaming agent after heat and alkali
treatment. As a result of the preparation of foam concrete and foam using SRP, the following
results were obtained:

1. It was determined that the foaming agents are foam able only when the reaction
temperature is between 40 ◦C and 60 ◦C, the reaction time is between 2 h and 4 h, and the
pH value is between 9 and 11, using RSM and BBD. As a result, 50.5 ◦C was found to be
the optimum temperature for the optimum time, and the optimum pH value was 10.2; the
highest foam ability (486 mL) was obtained under these conditions.

2. The amount of foaming liquid added to the SRP foaming agent was increased to
343.63 mL by adding 1.0 g/L FS-50, which is a higher amount than that produced by a
commercial plant protein foaming agent. Meanwhile, the cost of FS-50 is lower than that of
FS-3100 by 1.104 USD/L. Therefore, FS-50 is more attractive.

3. Compared with PS, the compressive strength and shrinkage of foam concrete
produced by SRP-50 is improved and the cost is lower.

4. SRP-50 foam concrete was prepared with a narrow pore-size distribution, which
may be one of the reasons why it performed better than other foam concretes manufactured
using other methods.

In conclusion, the soybean residue protein (SRP) foaming agent produced via the
pyrolysis of soybean residue has the advantages of being widely available, low in cost, and
high in safety; therefore, it has the potential to be popularized.
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