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Abstract: The hot deformation behavior of high-grade pipeline steels was studied in the strain rate
range of 0.001~0.1 s−1 and the temperature range of 1050~1200 ◦C by using hot compression tests
on a Gleeble 3500 thermomechanical simulator. The flow stress increases with the increase in strain
rate and the decrease in deformation temperature, and the deformation activation energy is about
358 kJ/mol. The flows stress–strain behavior of the work-hardening and dynamic recovery (DRV) was
calculated using the Estrin–Mecking equation, and the kinetics model of the dynamic recrystallization
(DRX) was established based on the Avrami equation through characteristic strains. Furthermore,
the flow stress–strain behavior of high-grade pipeline steels was predicted by the established model
based on the coupling effects of DRV and DRX. The corresponding predicted results are in good
agreement with the experimental results according to standard statistical parameters analysis. Finally,
the economic strain (ε3) is proposed by the third derivative of the given kinetic model. Based on these
calculation results, when the economic strain (ε3) is reached, uniform and refined DRX grains can be
obtained, the energy consumption reduced, and the production costs controlled, which is of great
significance to actual factory production.

Keywords: the flow stress; dynamic recovery; dynamic recrystallization; kinetics; high-grade
pipeline steel

1. Introduction

Due to the combination of high strength and toughness, high-grade pipeline steels,
such as, X70, X80, and X100, has been extensively studied [1–5]. Thermo-mechanical
control process (TMCP) is an indispensable and important technology in the manufacture
of high-grade pipeline steels, which mainly involves the thermal deformation process of
steel plates. During the thermal deformation process, the flow stress reflects the difficulty
of deformation of the material, and also puts forward corresponding requirements for
the equipment capability. Thus, the accurate description of the flow behavior under
different deformation conditions is of great significance for the design of the pipeline steel
manufacturing process (excellent product performance) and the selection of manufacturing
equipment (less energy consumption). Usually, a constitutive equation is used to describe
the flow behavior of materials, such as the Arrhenius equation being applied to nickel-
based alloys [6–8], steels [9–11], Ti alloys [12,13], and Al alloys [14,15]. The Johnson–Cook
equation is used for a wide range of strain rates (e.g., 10−4 up to 104 s−1 [16–18]). The
above method is called the phenomenological constitutive equation based on mathematical
function fitting methods, and lacks obvious physical meaning [12,18]. On the other hand,
under the evaluation of microstructure and deformation mechanisms of the materials, the
flow stress was predicted by the Kocks–Estrin equation through considering the evolution
of dislocation density [19,20]. However, the Kocks–Estrin equation can only describe the
work-hardening and dynamic recovery (DRV). Under high temperature, the flow stress of
many metals tends to have obvious stress peaks, meaning that the deformation mechanism

Materials 2022, 15, 7356. https://doi.org/10.3390/ma15207356 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15207356
https://doi.org/10.3390/ma15207356
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-6227-9516
https://doi.org/10.3390/ma15207356
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15207356?type=check_update&version=2


Materials 2022, 15, 7356 2 of 15

is dominated by dynamic recrystallization, rather than a DRV. Generally, DRX consists
of the process of nucleation and the grain boundary mobility, which can be described
using the Avrami equation [21]. For example, the DRX kinetic behavior of a low-carbon
steel during the hot deformation was studied using the Avrami model [22], where the
volume fraction of DRX was predicted accurately. Based on the Avrami equation, the
effect of the hot deformation parameters on the DRX behavior of X70 pipeline steel was
studied and the evolution of volume fraction of DRX was described as a function of the
different temperatures and strain rates [5]. A DRX kinetic model of the low-alloyed and
micro-alloyed steels was proposed by Hernandez [23,24], and the flow stress–strain curve
can also be predicted through the improved Avrami equation. This shows that the DRX
behavior of pipeline steel can be accurately described using the Avrami equation. However,
the establishment of a DRX kinetic model is only to predict the volume fraction of DRX.
The evolution of the transform velocity of DRX is not analyzed in depth, and more useful
information for the preparation process of pipeline steel cannot be obtained.

In this paper, X70 pipeline steel is the subject of research and the constitutive relation-
ship between the flow stress and deformation parameters is established. The characteristic
strains/stresses are obtained by the work-hardening rate curve. The volume fraction of
DRX is obtained by the difference between the constructed flow stress curves of DRV
and the experimental stress–strain curve. Then, the kinetic model is established based on
the Avrami equation. The flow stress of X70 pipeline steel under different deformation
conditions can be predicted by considering the coupling between the work-hardening
behavior and the dynamic softening behavior of DRV and DRX. Finally, the economic strain
(ε3) is proposed by the third derivative of the given kinetic model of DRX for guaranteeing
uniform and fine grains, saving energy consumption, and reducing production cost.

2. Materials and Methods

The chemical composition (wt%) of the X70 pipeline steel used in this work was as
follows: C 0.05, Si 0.16, Mn 1.75, P 0.008, S 0.0024, Ni 0.1, Nb 0.053, V 0.0051, Cu 0.03, Ti 0.015.
Before isothermal constant strain rate compression tests carried out on a Gleeble 3500
thermomechanical simulator were performed, all the specimens were heated to 1200 ◦C,
held for 1 h, and then quenched to room temperature. The compression specimens were
machined to a diameter of 10 mm and a length of 15 mm. To minimize the friction during
hot deformation, tantalum foils were applied between the compression specimens and the
platens. The compression specimens were heated to 1200 ◦C at a rate of 30 ◦C/s, holding for
300 s, then cooled to different deformation temperatures (1050~1150 ◦C) at a rate of 10 ◦C/s.
All specimens were compressed to a true strain 0.7, then immediately water-cooled down
to room temperature. The thermomechanical processing schedule is schematically shown
in Figure 1.
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3. Results
3.1. Flow Stress Curves

The flow stress–strain curves of the X70 pipeline steel at different deformation temper-
atures and strain rates in the isothermal compression tests are shown in Figure 2. During
the hot deformation process, the shape of the flow stress curves is the result of competition
between work-hardening and dynamic softening (DRV and DRX). As shown in Figure 2,
at the initial stage of deformation, the flow stress increases rapidly due to the strong
work-hardening behavior, based on the dislocation density, increases rapidly with small
strain. When the critical strain is reached, the flow stress increases very slowly due to the
occurrence of DRX softening, in which the nucleation process of DRX can consume a large
number of dislocations. As the strain continue to increase, the flow stress peak occurs when
the work-hardening is equal to the DRX softening. Thereafter, dynamic softening is greater
than the work-hardening, and the flow stress gradually decreases until steady-state stress
is reached. It can be found that the flow stress curve drops with the increase in temper-
ature and with the decrease in the strain rate [25]. It is mainly because hot deformation
is a thermally activated process. High temperature and low strain rate can promote the
thermally activated process, reduce the critical stress for crystal grain slip, and enhance the
recrystallized grain boundary migration, resulting in decreased work-hardening, as well as
increased dynamic softening (DRV, DRX) [8–11].
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Figure 2. Experimental flow stress–strain curves of the X70 pipeline steel under different strain rates
of (a) 1200 ◦C, (b) 1150 ◦C, (c) 1100 ◦C, (d) 1050 ◦C.

3.2. The Characteristic Stress/Strain

Usually, the characteristic stress of DRX softening curve can be obtained based on the
working hardening rate (θ = dσ/dε) curve, including the critical stress (σc), the peak stress
(σp), the maximum softening stress (σm), and the steady state stress (σss) [22]. A typical
total θ-σ curve of X70 pipeline steel is shown in Figure 3a, where, σp, σm, and σss can be
easily obtained. In order to determine the critical stress (σc) for the onset of DRX, Poliak and
Jonas [26] proposed the double-differentiation method. Firstly, the local flow stress–strain
curves from the yield stress (σ0) to the peak stress (σp) were fitted using the seventh order
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polynomial. The working hardening rate curves under different deformation conditions
are shown in Figure 3b. Then, when the derivative of the work-hardening rate curve is
equal to 0, the critical stress (σc) is obtained under different deformation conditions, as
shown in Figure 3c. All characteristic strains of DRX can be obtained from corresponding
characteristic stresses in the flow stress curve.
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Figure 3. The relationship between work-hardening rate and true stress of X70 pipeline steel in
different deformation conditions: (a) whole curve; (b) local curve from yield to peak stress stage;
(c) the second derivative of the work-hardening rate curve.

Since the peak stress/strain can be directly and accurately obtained from the exper-
imental flow stress curve, the empirical relationship between the peak stress/strain and
other characteristic stress/strain is often established. It can be seen from Figure 4a that
the yield strain/stress, the critical stress/strain, the maximum softening stress/strain,
and the steady state stress/strain show a good linear relationship with the peak strain,
in which their empirical relationship can simply expressed as: εc = 0.51εp, εmax = 2.52εp,
and εss = 3.93εp. Similarly, characteristic stresses are in a certain proportion to the peak
stress (Figure 4b), which can be expressed as: σc = 0.89σp, σ0 = 0.61σp, σss = 0.78σp, and
σsat = 1.17σp, respectively.
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To establish the relationship between characteristic stresses/strains and processing
parameters (deformation temperatures and strain rates), the constitutive equation can be
used and expressed as follows:

.
ε = A1σm∗

p exp
(
−Qd
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.
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(
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(
−Qd

RT

)
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.
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[
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(
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(
−Qd
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Usually, the relationship between the deformation temperature and strain rate can be
established through Zener–Hollomon parameter (Z) as follows [27]:

Z =
.
ε exp

(
Qd
RT

)
= A

[
sinh

(
ασp
)]m (4)

In Equations (1)–(4), Qd is the deformation activation energy, R is the gas constant
(8.314 Jmol−1K−1), and A, A1, A2, β, α, m, m* are the material constants. Firstly, the value
of α in Equation (3) should be calculated as 0.0124 by using the relationship between β
and m* (β/m*), where the average value of β and m* can be calculated as 0.07 and 5.39 by
linear fitting, respectively. Then, the deformation activation energy (Qd) can be obtained by
partial differentiation of Equation (3):

Qd = R

[
∂

.
ln ε

∂ ln
(
sinh

(
ασp
))]

T

[
∂ ln
(
sinh

(
ασp
))

∂(1/T)

]
.
ε

= RmS (5)

The values of m can be obtained as 4.73 by calculating the average value of slopes
under different deformation temperatures in Figure 5a, and the value of Qd can be derived
as 358 KJ/mol by calculating the average value of slops under different strain rates in
Figure 5b. Finally, the constitutive equation of the X70 pipeline steel can be expressed as
following:

.
ε = 1.8123× 1016[sinh0.0124]4.73 exp

(
−358, 656

RT

)
(6)

Furthermore, the peak stress can be calculated by using Equation (7).

σp = 123.153× ln


[

Z
1.8123× 1016

]1/4.73
+

[(
Z

1.8123× 1016

)2/4.73
+ 1

]1/2
 (7)
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Furthermore, based on the exponential relationship in Equation (7), a relatively simple
exponential relationship between characteristic stresses/strains and Z parameter can be
directly obtained, which is expressed as follows:

σp = aZb σx = Aσp = A ∗ aZb (8)

εp = cZd εx = Cεp = C ∗ cZd (9)

where a, b, c and d are the material constants. The function relation between the peak
stress/strain (σp/εp) and Z parameter can be obtained through linear regression. Further-
more, the relationship between other characteristic stresses and Z can also be determined
one by one by using the above proportional relation (Equations (8) and (9)). The calculated
results of the function relation are in Table 1.

Table 1. The relationship between characteristic stresses/strains and Z.

σx=aZb εx=cZd

σp = 0.993 × Z0.218 εp = 0.0085 × Z0.118

σc = 0.884 × Z0.218 εc = 0.00434 × Z0.118

σss = 0.775 × Z0.218 εss = 0.6091 × Z0.118

σsat = 1.162 × Z0.218 εm = 0.0214 × Z0.118

σ0 = 0.606 × Z0.218 ε0.5 = 0.181 × Z0.118
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3.3. The Flow Behavior in DRV

The flow stress curve of DRV regime during hot deformation can be described by the
competition between storage and annihilation process of dislocation. It can be expressed as
follows [22,28]:

dρ
dε

= h− rp (10)

where the first term on the right-hand side of Equation (10) represents the contribution
of the work-hardening and the second term due to DRV. The work-hardening term can
be regarded as constant (h) with respect to the strain; meanwhile, a parameter (r) of DRV
follows the first order kinetics. When the initial dislocation density is denoted by ρ0, the
evolution of dislocation density in the wok-hardening and DRV regime can be described
by integrating Equation (10):

ρ = ρ0 exp(−r(ε− εo)) +
h
r
(1− exp(−r(ε− ε0))) (11)

The relationship between the flow stress and the dislocation density is usually ex-
pressed as:

σ = αµb
√
ρ (12)

where α is a material constant, µ is the shear modulus, and b is the magnitude of Burger’s
vector. The value of the flow stress of DRV can be calculated by combining Equations (11)
and (12), and is expressed as follows:

σrec =

(
σ2

0 exp(−r(ε− ε0)) + (αµb)2
(

h
r

)
(1− exp(−r(ε− ε0)))

) 1
2

(13)

where σrec represents the flow stress of DRV, σ0 the yield stress, and ε0 the strain corre-
sponding to σ0. The relationship between the stress and the strain under DRV duration can
be described as Equation (13). With the increase in the strain (ε), the stress (σrec) tends to-
ward a saturation value (σsat) corresponding to an equilibrium between dislocation storage
and dislocation annihilation, i.e., dρ/dε = 0, σrec = αµb

√
h/r. After the saturated stress

(σsat) is brought into Equation (13), it can be expressed as the following formula:

σrec =
(
σ2

sat −
(
σ2

sat − σ2
0

)
exp(−r(ε− ε0))

) 1
2 (14)

All the stress/strain parameters in Equation (14) were obtained in Section 3.2, so, as
long as the r parameter is determined, the flow stress–strain curve of DRV can be obtained.
The parameter r can be determined based on the differentiation of Equation (14) with
respect to ε, and multiplication by σrec leads to the following relation [29]:

dσrec

dε
σrec = θσrec =

1
2

rσ2
sat −

1
2

rσ2
rec (15)

where θ is the work-hardening rate prior to the critical strain (εc). In order to obtain the
value of parameter r, the calculation formula is proposed by deriving Equation (16) with
respect to σ2

rec:

K =
d(θσrec)

dσ2
rec

= −1
2

r (16)

According to Equation (16), the value of parameter r under different deformation
conditions can be calculated as −2K and is shown in Figure 6, in which solid line is
calculated from the experimental flow stress curve prior to σc. Meanwhile, the saturation
stress (σsat) can also be obtained by the intersection of the dashed line and the abscissa
indicated by arrows in Figure 6a–c.
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A functional relationship between the parameter r and different deformation condi-
tions (Z) is established and is shown in Figure 6d. The parameter r decreases with the
increase in the Z parameter, indicating that the dynamic recovery process is more difficult
with the decrease in deformation temperature or the increase in strain rate. This is consis-
tent with the research results of Jonas et al. [22], indicating that the occurrence difficulty of
dynamic recovery process increases with the increase in stress value.

Based on the above analysis, the flow stress–strain curve of DRV for X70 pipeline
steels can be summarized as:

ε0 = 0.00171Z0.118

σ0 = 0.606Z0.218

σsat = 1.162Z0.218

r = 186.233Z−0.124

σrec =
(
σ2

sat −
(
σ2

sat − σ2
0
)

exp(−r(ε− ε0))
) 1

2

(17)

Figure 2a–c are the prediction results, and it can be seen that the calculated flow
stress curve of DRV at all deformation conditions coincide well with the experimental flow
stress–strain curves before the critical stress/strain. After the critical stress/strain, the flow
stress of DRV keeps increasing until it reaches the saturation stress (σsat). On the whole, the
flow stress–strain curve of DRV increases with the decrease in temperature or the increase
in strain rate.
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3.4. Kinetic Model of DRX

Figure 7 is a schematic diagram of the dynamic softening of flow stress at elevated
temperature. After the critical stress, the flow stress presents two different characteristics
represented by the “blue” and “read” lines in Figure 7, which are attributed to DRV and
DRX, respectively. For the “blue” curve, when the work-hardening rate is equal to the DRV
softening rate, the stress reaches saturation value and remains constant (σsat). For the “red”
curve, after the flow stress reaches the peak stress, the DRX softening rate is stronger than
the work-hardening rate resulting in the flow decreasing continuously to the steady state
value (σss). Therefore, using the difference between the experimental stress curve and the
flow stress of DRV, the volume fraction of the DRX can be expressed as:

XDRX =
∆σ

σsat − σss
=
σrec − σdrx
σsat − σss

(18)
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Figure 7. Schematic diagram illustrates the work-hardening curve σrec (the red line) from yield stress
σ0 to saturation stress σsat in the entire strain domain, and a typical experimental DRX flow stress
curve (the blue line) from yield stress σ0 to steady state stress σss.

According to Equation (19), the volume fraction of DRX at the different deformation
conditions can be calculated easily, and this method is particularly useful for high-grade
pipeline steels, where metallographic microstructures are difficult to carry out. As shown
in Figure 8, with the increase in strain, the volume fraction of DRX firstly increases and
then decreases, which shows a typical S-shaped curve.

When the critical strain (εc) is reached, the dislocation density near grain boundary
is sufficient to promote the nucleation of DRX grains. With the increase in strain, DRX
nucleation start to grow through the migration of new grain boundary. When the DRX
transition is fully completed, the flow stress does not change with the increase in the strain,
that is, the steady state stress occurs at this time. In this study, the volume fraction of DRX
can be expressed generally as [29,30]:

XDRX = 1− exp
(
−0.693

(
ε− εc

ε0.5 − εc

)n)
(19)

Taking logarithm of Equation (19) gives:

ln(− ln(1− XDRX)) = ln 0.693 + nln
(
ε− εc

ε0.5 − εc

)
(20)

According to Equation (20), the average calculation result of n at all deformation
conditions is 1.88, as shown in Figure 9, which is in consistent with the range of 1.3~2.5
observed by other works [22,24,29,30].
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Based on the above analysis, the kinetics equation of DRX for the X70 pipeline steel
can be summarized as: 

εc = 0.000434Z0.118

ε0.5 = 0.181Z0.118

XDRX = 1− exp
(
−0.693

(
ε−εc

ε0.5−εc

)1.88
) (21)

The comparison of the calculated and experimental result is shown in Figure 9. The
calculated results are consistent with the experimental ones, indicating that the established
kinetic equation can well-describe the DRX behavior of X70 pipeline steel during hot
deformation process.

4. Application and Discussion
4.1. Prediction of Flow Stress Curves in DRV

The experimental flow stress curve can be predicted through incorporation between
the DRV curve and DRX softening. By substituting Equations (19) and (21) into Equation
(18), the flow stress–strain curve of high-grade pipeline steel can be obtained as follows:

σ =
(
σ2

sat −
(
σ2

sat − σ2
0

)
exp(−r(ε− ε0))

) 1
2 − (σsat − σss)

(
1− exp

(
−0.693

(
ε− εc

ε0.5 − εc

)1.88
))

(22)

Comparison between the calculation and experimental results are shown in Figure 10,
in which the scatter points and solid line represent the results of calculations and experiment
results, respectively. It can be found that the calculated flow stress curves from Equation (22)
are in good agreement with the experiment the flow curves. In order to quantitatively
describe the prediction accuracy of the model, the correlation coefficient (R) and average
absolute relative error (AARE) are used, and expressed as:

R =
∑N

i=1
(
Ei − E

)(
Ci − C

)√
∑N

i=1
(
Ei − E

)2
∑N

i=1
(
Ci − C

)2
(23)

AARE(%) =
1
N

N

∑
i=1

∣∣∣∣Ei − Ci
Ei

∣∣∣∣× 100% (24)

where Ei and Ci represents the experimental data and the calculated results, respectively. E
and C are the mean values of Ei and Ci, respectively. N is the total number of data. The
calculated result is shown as in Figure 10d, which shows a good correlation between the
experimental and the calculated data through using Equation (22). The value of R and
AARE for prediction equation are 0.999 and 1.95%, respectively. These results indicate that
Equation (22) can predict accurately the flow stress-strain curve of the X70 pipeline steel.



Materials 2022, 15, 7356 12 of 15

Materials 2022, 15, x FOR PEER REVIEW 12 of 16 
 

 

quantitatively describe the prediction accuracy of the model, the correlation coefficient (R) 

and average absolute relative error (AARE) are used, and expressed as: 

𝑅 =
∑ (𝐸𝑖 − 𝐸̄)(𝐶𝑖 − 𝐶̄)
𝑁
𝑖=1

√∑ (𝐸𝑖 − 𝐸̄)
2∑ (𝐶𝑖 − 𝐶̄)

2𝑁
𝑖=1

𝑁
𝑖=1

 
(23) 

𝐴𝐴𝑅𝐸(%) =
1

𝑁
∑|

𝐸𝑖 − 𝐶𝑖
𝐸𝑖

|

𝑁

𝑖=1

× 100% (24) 

where Ei and Ci represents the experimental data and the calculated results, respectively. 

E and C are the mean values of Ei and Ci, respectively. N is the total number of data. The 

calculated result is shown as in Figure 10d, which shows a good correlation between the 

experimental and the calculated data through using Equation (22). The value of R and 

AARE for prediction equation are 0.999 and 1.95%, respectively. These results indicate that 

Equation (22) can predict accurately the flow stress-strain curve of the X70 pipeline steel. 

  

  

 

Figure 10. Comparison between the predicted and experimental flow stress–strain curves from
constitutive equation at strain rate (a) 1200 ◦C, (b) 1150 ◦C, (c) 1100 ◦C, (d) 1050 ◦C, (e) correlation
between the experimental and predicted flow stress data.

4.2. Determination of Economic Strain (ε3)

Through Equation (20), the velocity equation of DRX can be expressed by Equation
(25) and, furthermore, the quadratic derivative of Equation (25) was constructed and when
it is 0:

dXDRX
dε

=
0.693n

(ε0.5 − εc)
(1− XDRX)(

ε− εc

ε0.5 − εc
)

n−1
(25)

d3XDRX

dε3 =
0.693n

(ε0.5 − εc)
3 (1− XDRX)(

ε− εc

ε0.5 − εc
)

n−3


n2
[
0.693( ε−εc

ε0.5−εc
)

n
]2

−3n(n− 1)
[
0.693( ε−εc

ε0.5−εc
)

n
]

−(n− 2)(n− 1)

 = 0 (26)

The solution of Equation (26) is

0.693(
ε− εc

ε0.5 − εc
)

n
=

3n(n− 1)± n
√
(5n− 1)(n− 1)

2n
(27)
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The final strain is expressed as the following equation:

ε =
n

√
3n(n− 1)± n

√
(5n− 1)(n− 1)

1.386n
(ε0.5 − εc) + εc (28)

The strain in Equation (28) corresponds to two inflection points of the transform
velocity of DRX, the range of which includes the strain corresponding to the maximum
velocity of DRX. Thus, there are three key strains, which are rewritten as:

ε1 =
n

√
3n(n−1)−n

√
(5n−1)(n−1)

1.386n (ε0.5 − εc) + εc

ε2 = ε max

ε3 =
n

√
3n(n−1)+n

√
(5n−1)(n−1)

1.386n (ε0.5 − εc) + εc

(29)

The typical transform velocity curve of DRX for X70 pipeline steel is shown in Figure 11,
in which it can be divided into three stages based on two inflection points (Equation (29)).
In stage I, the DRX process is at the beginning, and the volume fraction and transform
velocity of DRX are low, meaning that the developing process of DRX is just beginning.
In order for the material to fully undergo DRX behavior, the strain should continue to
increase and enter the second stage of recrystallization velocity curve. In stage II, the
transition velocity of DRX increases quickly until it reaches the maximum, and then it
decreases quickly, which indicates that the maximum transform rate of DRX is located at
the second stage. When the strain is around εm, the fraction volume of DRX is about 50%,
and the mean grain size is rapid and shows uniform refinement. Until the strain increases
to ε3, the volume fraction of DRX is greater than 90%, and the transformation process of
DRX is basically completed. When the strain is greater than ε3, the developing process of
DRX has slow velocity, which means that the complete transformation of the remaining
approximately 10% of the DRX grains in stage III requires a huge amount of energy and
time compared to stage II, resulting in a waste of resources and a decrease in efficiency. In
order to obtain optical grain size, enhance production efficiency, and reduce manufacturing
cost, ε3 is the very important economic strain that can guarantee finer and more uniform
DRX grains, lower the energy consumption, and provide high production efficiency.
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5. Conclusions

In this study, the flow stress–strain curves and DRX kinetic behavior of X70 pipeline
steel were investigated using the hot compression tests in a temperature range of
1050~1200 ◦C and a strain rate range of 0.001~0.1 s−1. The flow stress increases with
decreasing temperature and increasing strain rate, and the deformation activation energy
is calculated as 358 kJ/mol. Using the relationship between characteristic strain and Z
parameter, volume fraction of DRX was established according to the Avrami equation.
Furthermore, the flow stress curve predicted by considering the coupling effect of the
DRV and DRX processes is in good agreement with experimental results of X70 pipeline
steel under different deformation conditions. Finally, through a proposed kinetics model,
the most appropriate and economic strain (ε3) is obtained, which can guarantee fine and
uniform equiaxed grain, high production efficiency, and low energy consumption.
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