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Abstract: A geometric model is developed to statistically study the probability characteristics of
crack intersecting self-healing capsules with a structured random distribution in a cement paste
mix. To evaluate the probability of a crack intersecting encapsulated particles, the fill ratio of the
crack, and the depth of the first-hit capsule, Monte Carlo simulations are performed. The variables
are the crack geometry, i.e., width, length, depth, orientation, skewness, and so on; the size and
mass fraction of healing capsules; and the agglomeration of capsules. Models based on statistical
analyses for hit probability Ph, crack fill ratio R f−95 at 95% confidence level, and first hit depth h0−95

at 95% confidence level are expressed as functions of capsule size and mass fraction, as well as crack
geometry. The model assumptions and results are evaluated using data reported in the literature.
The data include results from experimental and theoretical studies.

Keywords: 3D geometric model; statistical model; self-healing cementitious material; spherical
capsules; fill ratio; hit probability

1. Introduction

Cracks are detrimental to the durability and load-bearing capacity of concrete struc-
tures. Cracks, which initiate from early age as a result of shrinkage, thermal expansion,
and/or accidental loading [1,2], allow the ingress of water and deleterious liquids into the
concrete core. The interactions between theses liquids and cement, aggregate, and/or steel
reinforcements, being chemical, physical, and/or electrochemical reactions, are the main
causes of concrete damage and the service life shortening of concrete structures [3,4].

The intrinsic properties of concrete enable autogenous healing of microcracks up to
150 µm [5,6]; however, the healing effectiveness is limited by the availability of unreacted
cement particles and water. As such, the need for a more robust and consistent self-healing
system has motivated the development of capsule-based autonomous healing that utilizes
healing agents encapsulated in micro-capsules dispersed throughout the concrete [7–9].
When concrete cracks, capsules intersected by cracks will rupture and release healing agents
into the crack, effectively binding the crack, preventing further crack growth and sealing the
crack opening to facilitate recovery of durability and mechanical properties in the damaged
region [10,11]. However, capsules dispersed throughout the concrete are equivalent to
capsule-shaped voids that have adverse effects on the physical and mechanical properties
of concrete, particularly the compressive strength [12–14]. As such, there is a need for a
design methodology that provides a balance between the adverse effects and benefits of
adding capsules with healing agents to concrete.

Widespread implementation of capsule-based self-healing concrete still faces many
challenges, such as the cost of capsules and lack of standardized design and testing [9,15].
The design of a self-healing concrete system depends on numerous factors, which include
but are not limited to the characteristics of the healing agent, e.g., healing agent material,
and healing conditions; the capsule, e.g., size, shape, shell thickness, material, and mass
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fraction; cementitious properties, e.g., cementing material, mix design, and mechanical
properties; and the features of the crack, e.g., length, width, tortuosity, mechanism of
formation, and propagation. As these factors are cofounding and somewhat interdependent,
they exhibit substantial complexity with regards to their effect on self-healing efficiency. As
such, it is challenging to investigate self-healing systematically via experimental study for
the purpose of developing tools for designing an efficient healing system.

A number of analytical models have been proposed to estimate concrete healing
efficiency by studying the optimal dosage of capsules required to heal randomly generated
cracks [16–20]. These studies are limited to simple planar crack shape or non-spherical
capsules, and do not account for more complex 2D or 3D cracks, capsule distributions,
and/or agglomeration of capsules during mixing and placement. Lin et al. [20] proposed
a model, based on geometric probability, to estimate the dosage of randomly distributed
tubular capsules. The model accounts for 2D surface level crack patterns, but does not
consider crack depth and distribution of capsules along the depth of the crack. Zemskov
et al. [19] put forward two analytical models that were derived from geometric probability
for predicting the probability of capsules intersecting a crack in 2D space, which accounts
for crack depth, capsule radius, and volume fraction of capsules. The results are limited to
the intersection between a single planar vertical crack and capsules randomly distributed
in the cross section of a cube, producing probability contour plots for hitting probability
in a three-layer cube. Zhang and Qian [21] also developed a geometric probability model
that captures the number of capsules on a planar crack concrete surface. The influence
of capsule size, capsule dosage, and crack irregularity was considered. The model was
experimentally validated using large size capsules with diameters of 4 mm and 15 mm.
Others have developed numerical simulations to account for the random nature of capsule
distribution and cracks’ geometry. Huang and Ye [22] employed Monte Carlo simulations
to determine the probability of a crack hitting capsules and used a beam model of 40 mm
× 40 mm × 160 mm to evaluate the healing efficiency. The probability of the crack hitting
capsules was defined as the probability of capsules centered across an “influence zone”
around the crack while assuming a 2D cross section, a single planar crack spanning the
entire cross section, and randomly dispersed capsules. The effects of capsule size and
dosage on hitting probability and healing efficiency were investigated. However, the effects
of crack length and width on healing efficiency were not considered.

Pan and Schlangen [23] performed a 3D numerical simulation to determine the proba-
bility characteristics of a crack hitting capsules for self-healing concrete. The capsules were
randomly and uniformly placed in a cubic representative volume element (RVE) with edge
length L. The crack was represented by a vertical V-shaped plane and propagates from
the edge of the cubic RVE. The fill ratio was determined using selected values of volume
fraction of capsule, crack depth, and diameter of spherical capsules. The simulation results
showed that the self-healing efficiency improves when using larger capsules, but with an
increase in the coefficient of variation. The study was limited to 1 mm and 5 mm diameter
capsules, which are significantly larger than the typical capsule sizes used in experiments
and practice [15]. Furthermore, the assumed crack geometry is inconsistent with observed
irregular crack patterns, particularly in early age concrete.

Motivated by the above noted findings, a study was undertaken to develop a statistical
model for determining the probability of an early age crack in a cement matrix intersecting
randomly distributed spherical capsules in 3D space. As such, the model focuses on
surface cracks with crack dimensions typical of early age cracking. Computer-generated 3D
cross sections of cementitious material with a structured random distribution of spherical
capsules and a single random surface crack are used to develop probability distribution
functions (PDFs) for three critical parameters: the probability of the crack intersecting a
capsule; the maximum healing ratio evaluated as the volume of released healing material
per unit volume of crack; and the depth at which a capsule is first intersected. PDFs are
then used to investigate the effects of capsule size and dosage on crack sealing for different
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sizes of cracks. For validation, the model results are compared to both experimental and
analytical data reported in the literature.

2. Numerical Model
2.1. Problem Statement

The 3D domain, illustrated in Figure 1, consists of cement paste or mortar, a surface
crack with a constant width, and mono-sized spherical capsules, with the latter following
a structured random distribution. The crack tortuosity is included and characterized
by the number of segments (nskew) and the angles (θskew), where θskew corresponds to
the deviation the propagating crack makes relative to its initial angle θc from the y-axis.
Moreover, the aggregates are not specifically considered. The presence of fine aggregates is
assumed to have a minor effect on the capsules’ randomized distribution and the initiation
and propagation of surface cracks. As for assessing the effectiveness of the self-healing
system, the following measurements are compiled: (1) capsule hit probability, which is the
likelihood of a single randomly oriented crack to intersect at least one capsule; (2) depth
of first capsule hit, which is a measure of the unhealed crack depth or, in other words, the
depth at which a crack will first intersect a capsule and initiate healing at that location; and
(3) the fill ratio, which is the ratio between the total volume of the encapsulated healing
agent in hit capsules to the total volume of the crack.
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2.2. Design of Experiment

Circumscribed central composite (CCC) design of experiment (DoE), which is a second-
order fractional factorial design, is selected to design the numerical experiments for the
purpose of constructing the probability distribution function of healing capability corre-
sponding to capsule hit probability. The DoE accounts for five factors: capsules’ mass
fraction mf, capsule diameter d, crack width Lw and depth LD, and length LL. Accordingly,
43 combinations of factors are considered, in addition to 16 replicates at the center point
to allow for a more uniform estimate of the prediction variance over the entire design
space. Table 1 provides the levels selected for each factor. The range of crack dimensions
reflects typical crack opening and depth of early age microcracks caused by drying [24] or
thermal shrinkage [25]. For each combination, 500 numerical simulations are performed
wherein the random variables δi (perturbation of capsule position), nskew, θskew, and θc
are varied within their corresponding range, given in Table 2 and based on a uniformly
distributed random distribution. Typical capsule properties, also given in Table 2 [10,12,26],
are adopted in this numerical experiment. The measured responses per simulation are as
follows: (1) the number of capsules hit by the crack; (2) the depth of the first capsule hit by
the crack; and (3) the total volume of capsules hit by the crack.
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Table 1. Variables and levels considered for full five-factor CCC factorial design.

Level

Variable −2.378 −1 0 1 2.378

Capsule Properties
Mass fraction, mf (%) 0.243% 3% 5% 7% 9.757%

Diameter, d (mm) 0.024 0.3 0.5 0.7 0.976

Crack Properties
Crack width, LW (mm) 0.062 0.2 0.3 0.4 0.538
Crack depth, LD (mm) 2.432 30 50 70 97.568
Crack length, LL (mm) 6.216 20 30 40 53.784

Table 2. Constants and variables considered in the DoE.

Variable Value

Material Properties
Cement density ρcement = 3150 kg/m3

Water-to-cement ratio 0.5
Capsule core material density (DCPD) ρcore = 980 kg/m3 [27]

Shell material density (urea-formaldehyde) ρshell = 1170 kg/m3 [28]
Shell thickness tshell = 1 µm

Domain Properties
Width of sample area Lx = 150 mm
Depth of sample area Ly = 100 mm
Length of sample area Lz = 150 mm

Perturbation of capsule position δi = [−di/2, di/2], i = x, y

Crack Properties
Angle from vertical (y-axis) θc range = [−π/4, +π/4]

Skewness (angle of zigzag segments) θskew range = [0, π/4]
Number of segments of zigzag nskew range = [0, 10]

2.3. Geometric Model

The 3D domain of a cracked section is modelled using two intersecting 2D cross
sections of cement paste containing a structured random distribution of capsules owing to
a single surface crack, as shown in Figure 2. These cross sections are randomly generated
based on factor levels and variable values given in Tables 1 and 2 using MATLAB [29].

2.3.1. Capsule Distribution

Capsule distribution is assumed to be statistically equivalent in all directions. The
x–y plane represents capsule distribution perpendicular to the crack face, and the y–z
plane represents capsule distribution on the slanted crack face projected onto the y–z
plane. Randomness of the capsule location is achieved by generating a uniform alternating
distribution of capsules and applying a random perturbation in the horizontal (dx or dz) and
vertical (dy) directions, as illustrated in Figure 2d. Perturbation of each capsule is assumed
to be independent of other capsules, with the position being determined as follows:

Pi,random = Pi,regular + δi with i = x, y, z (1)

in which Pi,regular and Pi,random are the capsule coordinates with regular and random dis-
tributions, respectively, and δi is the capsule perturbation in the in the x-, y-, and z-axis,
respectively. To avoid overlap of capsules, δi is selected as δi = δ0i rand[−1, 1], with δ0i
being the allowable maximum deviation in the ith axis direction and rand[−1, 1] a random
number generated in the range of [−1, 1].
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2.3.2. Crack Generation

A surface crack initiating from the top edge of the cement section is generated at
a random location. For a conservative purely geometric approach, crack formation is
assumed to be independent of other cracks and the inclusion of the presence of capsules.
The crack is generated at a random angle θc between 0◦ (parallel to y-axis) and 45◦ from
the vertical, with an angle θskew between zigzag crack segments and the overall crack
propagation direction, as illustrated in Figure 1. For ease of computation, crack width is
assumed to be constant, i.e., not tapered along the depth in the x–y plane direction and
along the length in the z-direction.

2.3.3. Agglomeration

Although agglomeration and sedimentation of capsules do not have a significant role
at low concentrations, capsules’ clustering and crowding are expected to take place at
high packing fractions [14]. An agglomeration curve as a function of capsule dosage is
introduced to account for the effects of capsule agglomeration. This function is assumed to
have the general form:

fagg = AeB(m f−C) (2)

in which fagg is the total number fraction of capsules to be agglomerated and mf is the
original mass fraction of capsules with respect to cement. Constants A, B, and C are assumed
to be A = 1, B = 20, and C = 0.1 to produce an agglomeration curve that reflects capsule
clustering trend observed in experimental studies [14]. Total agglomeration is limited to
a maximum of 80%, i.e., at least 20% mass fraction of capsules are not in agglomerated
clusters.

The size distribution of agglomerates is calculated based on the general function
derived for agglomeration of particles in turbulence [30]:

fi =
ni
n0

= βexp(− i
κ
) (3)
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in which β = 2 cosh(κ−1) − 2, i is the agglomerate size (number of capsules in one ag-
glomerate), ni is the number of agglomerates of size i, and n0 is the original number of
non-agglomerated capsules. κ is a constant determined by rearranging Equation (3) via

κ = ln

(
−1−

√
f1

f1 − 1

)−1

(4)

in which f1 = 1−∑ fagg.

2.4. Statistical Model

Monte-Carlo simulation was carried out to compute the hit probability Ph, the proba-
bility distribution of hit depth h0, and crack fill ratio R f for each combination of the five
selected variables. The probability density function (PDF) and the cumulative distribution
function (CDF) for the distributions of h0 and R f were then determined to estimate their
threshold values with 95% confidence h0−95 and R f−95, respectively. h0−95 is defined as
the hit depth at which there is 95% probability the first hit depth will be within this value.
R f−95 is defined as the fill ratio at which there is 95% probability the expected fill ratio will
not be less than this value.

2.4.1. Capsule Hit Probability Ph

Capsule hit probability Ph is defined as the probability of a single crack intersecting
at least one capsule on the x–y plane. The perpendicular cut is assumed to be statistically
representative of capsule distribution and hit probability along the depth of the crack.
Accordingly, the probability of successful capsule intersection on the x–y plane yields a con-
servative estimate of the overall hit probability. For each combination of m f , d, LW , LD, LL,

Ph

(
m f , d, LW , LD, LL

)
is determined as

Ph = Nhit/Ntotal (5)

in which Ntotal is the total number of simulations and Nhit is the number of simulations for
which at least one capsule is hit by the crack. Ntotal = 500 is adopted for this experiment
from a series of trial simulations.

2.4.2. First Hit Depth h0

The first hit depth h0, shown in Figure 3, is the distance from the top surface to the
position of the crack intersecting the first capsule. h0 is valid only in the case when the crack
successfully intersects with a capsule, thus only trials with successful capsule intersection
(i.e., where crack fill volume is greater than zero) were used in the analysis of hit depth. To
ensure consistent statistical power, additional trials were run where necessary to ensure
each combination has a minimum of 100 trials with successful intersection and h0 data.
Figure 4 shows typical frequency distributions of h0. An Anderson–Darling (AD) test [31]
for distribution type reveals that the distribution of h0 for each combination generally
follows a Weibull distribution (α = 0.05) with the PDF fX(x | λ) and CDF function F(x)
being

fX(x | λ) =

{
k
λ

( x
λ

)k−1e−(x/λ)k
for x ≥ 0

0 for x < 0
(6)

with E[X] = λ−1, λ > 0, and

P(X ≥ x∗) =
∫ ∞

x∗

k
λ

( x
λ

)k−1
e−(x/λ)k

dx = e−(x/λ)k
(7)
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The threshold value x∗ corresponding to P(X ≥ x∗) yields the value of h0−95 with
95% confidence with P(X > x∗) = 95%. Similar to hit probability, h0−95 is a function of
m f , d, LW , LD, LL.
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2.4.3. Crack Fill Ratio R f

The crack fill ratio R f is the ratio of the healing agent released into the crack relative
to the total crack volume. As illustrated in Figure 5a,b, the total volume of a crack can be
determined as

Vcrack = AcrackLw = Ax−y
crackLL = LLLDLw/cosθskew (8)

For uniform distribution of capsules, the number of capsules intersecting a crack is
proportional to Acrack and independent of crack orientation. Given the projection of Acrack

on the y–z plane Ay−z
crack and the number of capsules ny−z

proj in the range of Ay−z
crack on the y–z

plane, the crack fill ratio is approximated by

R f =
V0ny−z

proj

Acrack
=

V0ny−z
proj

Ax−y
crackLL

=
V0ny−z

proj

Ax−y
crack

LDcosθskew

Ay−z
crack

(9)

in which v0 is the total volume of healing agent released into the crack.
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of R f generally follows normal distribution (α = 0.05), with the PDF and CDF being

fX(x|µ, σ2) =
1

σ
√

2π
e−

1
2 (

x−µ
σ )

2

(10)

and

P(X ≥ x∗) = F(x∗) =
1

σ
√

2π

∫ ∞

x∗
e−

(x−µ)2

2σ2 dx (11)

Subsequent to determining the mean µ and the standard deviation σ, the threshold
value x∗ corresponding to P(X > x∗) yields the value of R f−95 = R f−95

(
m f , d, LW , LD, LL

)
with 95% confidence when P(X > x∗) = 95%.
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2.5. Regression Analysis

Regression analyses for the Monte-Carlo simulation results were carried out to deter-
mine mathematical expressions for Ph, h0−95, and R f−95 as functions of the five independent
variables. A stepwise regression analysis is performed as follows:

1. Perform a linear regression analysis

Y(k) = a(k)0 + ∑5
i=1 a(k)i x(k)i (12)
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in which x(k)i stands for the ith variable for Y(k); a(k)0 and a(k)i are regression coefficients;
and k = h, d, and f, respectively. The results are then used as a reference to select the best
regression model.

2. Perform a complete quadratic polynomial regression analysis

Y(k) = a(k)0 + ∑5
i=1 a(k)i x(k)i + ∑5

i = 1
j ≥ i

b(k)ij x(k)i x(k)j (13)

The second-order terms b(k)ij x(k)i x(k)j with j 6= i reflect the interaction between different

variables. Interaction implies that the relationship between Y(k) and x(k)i changes with a

third variable x(k)j . A t-statistic analysis is conducted to determine the p-value for each
coefficient, where a p-value greater than the critical value suggests that the corresponding
term is statistically insignificant for the regression.

3. Stepwise, eliminate the terms in Equation (13) with p > 0.05, starting off with terms
having higher values of p, e.g., when p > 0.1, to optimize the regression relationship.

4. Compare the values of Y(k) obtained from Monte-Carlo simulations with regression
for various regression relations and check the coefficient of multiple determination R2 value
as well as the relative error distribution.

5. Select the most representative regression expression by examining error distribution
and R2 of the estimators.

2.5.1. Hit Probability Ph

Regression models suggest that crack length (x5) has a negligible influence on hit
probability. Coefficient values show that hit probability generally increases as the mass
fraction, crack width, and crack depth increase. An increase in the capsule size with
other quantities, i.e., mass fraction and remaining constant, tends to result in a lower
hit probability. The t-statistic and p-values show that most variables have a negligible
interaction; however, mass fraction and crack depth show a weak interaction represented
by the term x1x4. After eliminating all terms with p > 0.1 and considering x1x4 as a potential
candidate, a final non-linear expression is selected based on simplicity and distribution of
errors:

Model−Ph : Y = (a1x1 + a2x2 + a3x3 + a4x4 + a0) + b11x2
1 + b44x2

4 (14)

The corresponding R2 values and the maximum p-value of coefficients are 0.94 and
10−5, respectively, for model-Ph. Table 3 summarizes the regression results of the model.

Table 3. Summary of regression coefficients for Ph.

Variables Coefficient Value Standard
Error t-Ratio p-Value

- a0 −0.3632 0.0626 −5.8006 0
100x1 a1 0.1966 0.0155 12.6209 0

x2 a2 −0.2362 0.0368 −6.4090 0
x3 a3 0.3714 0.0737 5.0382 10−5

x4 a4 0.0179 0.0015 11.4808 0
x2

1 b11 −0.0138 0.0015 −9.1103 0
x2

4 b44 −0.0001 0.0000 −7.3440 0

Figure 7 presents model-Ph in terms of fit with numerical simulation results, residual
error, and relative error distributions. By examining the results, the following conclusions
are deduced: the regression model predictions have a maximum residual error less than
±0.100 except for two data points that correspond to extreme variables value (i.e., level
±2.378), and the model R2 value is 0.95.



Materials 2022, 15, 7355 10 of 21Materials 2022, 15, x FOR PEER REVIEW 10 of 21 
 

 

 

Figure 7. Comparison of regression models for Ph. (a) Regression and Monte-Carlo simulation re-

sults; (b) residual error; (c) relative error; (d) relative error against residual error; and (e) relative 

error distribution for Ph. 

Given that the errors at extreme values corresponding to levels ±2.378 are greater 

than 10%, it is necessary to examine model-Ph results when values of xi (i = 1 to 4) are out 

of the typical range specified by levels [−1, +1] in Table 1. Figure 8 presents the model 

relative errors at extreme values. The results reveal a higher residual error for mass frac-

tion (𝑥1) and crack depth (𝑥4) when their values are outside [−1, +1] levels, while variations 

in capsule diameter (𝑥2) and crack width (𝑥3) result in a residual error typical of the model 

estimate. Accordingly, model-Ph should be limited to 0.02 < 𝑥1 < 0.08  and 20 mm <

𝑥4 < 100 mm for mass fraction and early age crack depths, respectively. 

Figure 7. Comparison of regression models for Ph. (a) Regression and Monte-Carlo simulation results;
(b) residual error; (c) relative error; (d) relative error against residual error; and (e) relative error
distribution for Ph.

Given that the errors at extreme values corresponding to levels±2.378 are greater than
10%, it is necessary to examine model-Ph results when values of xi (i = 1 to 4) are out of the
typical range specified by levels [−1, +1] in Table 1. Figure 8 presents the model relative
errors at extreme values. The results reveal a higher residual error for mass fraction (x1) and
crack depth (x4) when their values are outside [−1, +1] levels, while variations in capsule
diameter (x2) and crack width (x3) result in a residual error typical of the model estimate.
Accordingly, model-Ph should be limited to 0.02 < x1 < 0.08 and 20 mm < x4 < 100 mm
for mass fraction and early age crack depths, respectively.
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2.5.2. First Hit Depth h0−95

Following the same procedure for the determination of hit probability, regression analyses
are carried out to determine the best estimate for h0−95 as a function of

(
m f , d, LW , LD, LL

)
, or

Yf 95 = Yf (x1, x2, x3, x4, x5). The model results suggest that crack length (x5) has a negligible
influence on h0−95. The sign of coefficients indicates that h0−95 tends to decrease when
increasing the mass fraction of capsules for a wider crack. However, at a fixed mass fraction,
the use of larger diameter capsules yields larger h0−95, suggesting that a lower fraction of
capsules will increase the crack depth required until a capsule is encountered. The selected
model takes the following form:

Model−H0 : Y = a4x4 + b12x1x2 + b14x1x4 + b22x2
2 + b24x2x4 + b34x3x4 + b44x2

4 (15)

The corresponding R2 values and the maximum p-value of coefficients are 0.91 and
0.01, respectively, for model-H0. The majority of the residual errors are less than 0.01
for points within levels [−1, +1], as shown in Figure 9a,c. A larger residual error and
relative error are observed for extreme values of x2 and x4 at level ±2.378, notably for small
diameters (x2 = 0.124 mm) and short cracks (x4 = 2.432 mm), as illustrated in Figure 9b–d.
Table 4 summarizes the regression results of model-H0.

Table 4. Summary of the regression coefficients for h0−95.

Variables Coefficient Value Standard
Error t-Ratio p-Value

x4 a4 0.0274 0.0014 18.8052 0
x1x2 b12 0.0844 0.0208 4.0569 0.00017
x1x4 b14 −0.0018 0.0002 −7.2618 0
x2

2 b22 −0.4373 0.1475 −2.9636 0.00458
x2x4 b24 0.0070 0.0026 2.6739 0.01
x3x4 b34 −0.0106 0.0024 −4.4041 0.00005
x2

4 b44 −0.0001 0.0001 −3.3545 0.00149
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Similar to model-H0 for hit probability presented in Equation (14), model-H0 for hit
depth h0−95 has a higher residual error ∆h0−95 when estimating the results at extreme
input values (level ±2.378). The sensitivity of ∆h0−95 to variables x1 to x4 is illustrated
in Figure 10. It is evident that ∆h0−95 for higher mass fractions or small size capsules
significantly exceeds the typical ∆h0−95 range of level [−1, +1] points. Accordingly, it is not
recommended to use model-H0 represented by Equation (15) when mass fraction x1 > 8%
and capsule diameter x2 > 0.3 mm.
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2.5.3. Crack Fill Ratio Rf−95

Likewise, regression analysis was carried out to determine best estimate of R f−95 as
a function of Yf 95 = Yf (x1, x2, x3, x4, x5). The initial model results suggest that R f−95 can
be considered independent of crack depth x4 and crack length x5. In general, the value of
R f−95 tends to increase for high mass fraction and large size capsules, while decreasing for
a wide crack. The depth and length of the crack have a negligible effect on R f−95, because
the number of capsules intersecting a crack is generally proportional to the crack face area,
which is determined by the crack depth and length. By iteratively eliminating terms with
high p-values and examining the relative error of potential models, an optimized quadratic
expression with R2 = 0.93 is obtained and given by the following:

Model−Rf : Y = a0 + a3x3 + b12x1x2 + b13x1x3 + b22x2
2 + b23x2x3 + b33x2

3 (16)

The summary of regression results for model-Rf is presented in Table 5. Figure 11
presents the distribution of errors associated with the model-Rf regression model. It should
be noted that the distribution of errors in Figure 11 does not show two extreme points at
level ±2.378 for high mass fractions and small size capsules.

Table 5. Summary of regression coefficients for R f−95.

Variables Coefficient Value Standard
Error t-Ratio p-Value

- a0 0.01661 3.944 × 10−3 4.2124 0.00010
x2 a2 0.00829 8.098 × 10−4 10.2392 0.00000
x3 a3 −0.00774 1.633 × 10−3 −4.7371 0.00002

x1x3 b13 −0.00774 1.633 × 10−3 −4.7371 0.00002
x2x2 b22 0.01566 5.432 × 10−3 2.8822 0.00573
x2x3 b23 −0.10013 2.000 × 10−2 −5.0072 0.00001
x3x3 b33 0.26245 3.353 × 10−2 7.8267 0.00000
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Figure 11. (a) Regression and Monte-Carlo simulation results with all data points displayed; (b) re-
gression and Monte-Carlo simulation results with extreme mass fraction and diameter removed from
the plot; and (c) residual error distribution for model-Rf.

Figure 12 summarizes the R f−95 sensitivity analysis results for model-Rf. The residual
error ∆R f−95 is not as sensitive to larger variations in other variables; however, caution
should be used in situations of smaller crack depths. ∆R f−95 for very large or very narrow
crack widths significantly exceeds the typical ∆R f−95 range of level [−1, +1] points. As
such, it is not recommended to use model-Rf for very short and long cracks lying outside
the noted size range of (0.1 < x4 < 0.5). When adjusting a single variable while holding
other variables constant, the value of R f−95 tends to increase with the mass fraction and
diameter of capsules (Figure 13a,b). As one may expect, the healing effectiveness decreases
as the crack becomes wider (Figure 13c). The influence of crack depth on R f−95 can be
considered negligible, as shown in Figure 13d.
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Analyzing the coefficient values of the regression model, the following relationships
regarding the coupled effect of different variables can be drawn:

1. To achieve the desired R f−95 with a given capsule size x2, coefficient values for x1
and x3 show that the mass fraction of capsules must be increased to heal wider cracks.
This is in agreement with the experimental observations [32].

2. For a desired R f−95 and when targeting cracks with a specific width x1, coefficient
values for x1 and x2 show that the overall mass fraction can be reduced when using
larger capsules. This conclusion concurs with the findings of Lv et al. [16] and Huang
and Ye [22].

3. For a desired R f−95 and fixed capsule mass fraction mf, coefficient values for x2 and
x3 show that large size capsules must be used to heal wider cracks.

The above observations are consistent with findings in the literature [6–8,10,11,21,22,33].

3. Regression Models’ Evaluation

Evaluation of the model assumptions and results is carried out using data reported
in the literature. Zhang and Qian [21] carried out series of tests on microbial self-healing
concrete, with and without aggregates, using 100 mm× 100 mm× 100 mm cubic specimens.
They reported that the number of capsules k on a cross-sectional area, which is considered
as a planar crack, generally follows a Poisson distribution:

f (k) =
λk

k!
e−λ, k = 1, 2, 3 · · · (17)

where λ is the expected value representing the mean number of capsules intersecting the
crack surface and k is the variance of the Poisson distribution. The Poisson parameter λ
is determined by λ = nP, in which n represents the number of healing agent particles
added into the representative cube and P is the probability of a single healing agent particle
meeting the crack surface. Alternatively, for mono-sized spherical capsules, n can be
related to the mass (or volume) fraction of added capsules. With the level of accumulative
probability associated with the number of capsules on the crack surface, the value of k
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in Equation (17) can be determined. The fill ratio of a crack can then be evaluated when
the crack width is known. Adopting the capsule data in Zhang and Qian [21], Figure 14
compares the fill ratio obtained from the Monte-Carlo simulations in this study with that
determined from the theoretical method proposed by Zhang and Qian [21]. The numerical
simulation results for fill ratio in this study are consistent in trend with the measured data,
which confirms that the modelling method developed in this study is representative and
Equation (15) can be used to estimate the fill ratio. It should be noted that the fill ratio
obtained from this study is on average 10% higher than theoretical values based on the
study by Zhang and Qian [21], which is most likely owing to the tortuosity of the crack
considered in this study. Greater crack tortuosity increases the potential intersection region
in the vicinity of the crack, resulting in a greater number of capsules being intersected by
a single crack. This is in agreement with the observation of Zhang and Qian [21] that an
undulating crack shape tends to intersect more capsules than a planar crack.
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Figure 14. Comparison of the simulation results obtained from numerical modelling to those from
theoretical data (Zhang and Qian [21]).

Zemskov et al. [19] investigated the probability of hitting any capsule by a planar
crack in self-healing materials. Two mathematical models were developed for 2D layered
random placement and fully random placement of capsules, respectively. The models
were validated with Monte-Carlo tests for selected conditions, namely, 27 capsules with
diameter varying from 2 mm to 4 mm were placed in a cubic specimen with a side length of
approximately 10 mm. The corresponding capsules volume fraction υ f , which is defined as
the total capsule volume/mix volume, ranges between 0.065 and 0.382. Another study by
Lv and Chen [17] on the dosage of capsules embedded in self-healing materials examines
the influence of crack depth and volume fraction of capsules on hit probability for planar
cracks perpendicular to the concrete surface. For 2D cases, the probability of a crack
to intersect at least one spherical capsule is given by Ph = 1− exp

[
−v f

(
1 + 2LD

πR

)]
, in

which υ f and R are the volume fraction of capsules and radius of capsules, respectively.
Figure 15a,b, reproduced from Zemskov et al. [19] and Lv and Chen [17], respectively,
present the probability of hitting any capsule by a planar crack at a different volume
fraction υ f of capsules and normalized crack depth. For a given υ f , the value of Ph increases
quickly with crack depth for short cracks and gradually approaches a critical value when
the crack is sufficiently long. An increase in υ f tends to result in a higher hit probability, as
expected.
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Figure 15. Simulations results by (a) Zemskov et al. [19] and (b) Lv and Chen [17]; (c,d) Variation
of hit probability predicted by regression model with normalized crack depth, for different capsule
volume fractions υ f = 0.02− 0.15 and υ f = 0.15− 0.22, respectively.

Figure 15c,d presents the variation in Ph obtained in this study under typical crack
depth (LD = 30–70 mm), capsule diameter (d = 0.4− 1.0 mm), and mass fraction of capsules
(mf = 1–10%); meanwhile, the probability functions developed by Zemskov et al. [19] were
for capsules of size d = 2.0 mm and crack depths LD = 0.05–8.5 mm. The results from Lv
and Chen [17] correspond d = 2.0 mm and LD = 0.05–8.5 mm. Given the difference in the
range of variables and the assumptions about the cracks, it is not reasonable to compare
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the results directly. As such, a qualitative/semi-quantitative evaluation is carried out to
examine the general trends as well as the similarities and differences in the results.

For a given diameter and volume fraction of capsules, the variation in Ph with crack
depth is the same as that depicted in Figure 15a,b. The critical Ph values for long cracks
depend on the volume fraction, which is consistent with the results in Lv and Chen [17], as
presented in Figure 15b. When vf < 5% (or mf < 7%), such as in Figure 15c, Ph increases as
vf increases. However, for the case of vf > 15% in Figure 15d, Ph tends to decrease slightly
as vf increases, likely owing to the effects of capsule agglomeration, which become more
pronounced at a high mass fraction according to Equation (2).

Figure 16 shows the contour plots of hit probability Ph as a function of crack depth
and mass fraction. Only numerical simulation results within the typical range of values
Lw = 0.3 mm, d = 0.2 mm, and d = 0.6 mm are presented in Figure 16a,b to compare
qualitatively with Figure 16c, which is reproduced from Zemskov et al. [19]. When mf < 7%,

the Ph = F
(

LD, m f

)
contours in Figure 16a,b have the same trend of variation as that in

Figure 16c; in particular, the value of Ph increases with LD and mf. Figure 16a,b show that,
at any mass fraction in the range 5% < mf < 7%, a long crack will hit at least one capsule.
For lower mass fractions of capsules, the maximum value of Ph may only be reached at
certain capsule diameters.
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Figure 16. Contour plot of hitting probability Ph as a function of LD and mf for (a) d = 0.2 mm,
Lw = 0.3 mm and (b) d = 0.6 mm, Lw = 0.3 mm; (c) Hitting probability as a function of normalized
crack depth and volume fraction of capsules, for a cube of side length equivalent to 1cm containing
27 capsules, with Vcapsule/Vcube varying from 0.1–0.3 [19].

Figure 16a,b reveal the effects of capsule agglomeration when mf > 7%, which show a
deviation from the results of Zemskov et al. [19]. Agglomeration causes capsule clustering
and reduces the number density of capsules in the mix, which in turn reduces the probability
of a crack hitting a capsule. The agglomeration effect becomes more pronounced with a
continual increase in mf. This trend of Ph variation is clearly demonstrated in Figure 16a,b.

A numerical study by Pan and Schlangen [23] investigated the hit probability from
a geometric perspective for a cubic mortar RVE containing randomly placed spherical
capsules and a vertical V-shaped crack perpendicular to the edge of the RVE. Figure 17
shows the results as reproduced from Pan and Schlangen [23] along with the simulation
results obtained using equivalent capsule properties. For a higher number of capsules,
the standard deviation of the expected fill ratio increases, thus causing a challenge in
selecting a suitable dosage with high certainty. While healing efficiency increased on
average with a higher dosage, a noticeably higher uncertainty is also observed at a higher
dosage, especially for capsules with diameters of 4.5 mm or greater, as shown in Figure 17a.
This can be attributed to the decrease in overall number density of capsules to maintain the
same volume ratio, thus increasing variability in the capsule distribution.
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Figure 17. Effect of capsule agglomeration and crack geometry on the variation in fill ratio. (a) Com-
parison of variances between numerical study and simulation; (b) Uncertainty in data with different
crack geometry; (c) Effect of crack geometry on average fill ratio.

Figure 17b,c plot the average fill ratio simulated with the influence of random crack
skewness and capsule agglomeration, which share similar values and trends to the results
presented by Pan and Schlangen [23]. As expected, the introduction of crack skewness
and capsule agglomeration increases the standard deviation of the expected fill ratio.
Meanwhile, the average value at 95% confidence has similar values to trials with lower
variability owing to agglomeration and crack skewness. The use of the developed models
provides a more reliable and conservative design with 95% confidence interval predictions
while also considering the effect of capsule agglomeration and crack geometry.

4. Conclusions

The efficacy of a self-healing system depends on the probability of hitting a capsule,
the filling capacity of the intersected capsules, and the depth at which a capsule is first
intersected. These variables are found to be affected by crack geometry and tortuosity,
healing capsules’ size, and mass fraction, as well as capsules’ agglomeration. Specifically,
the following conclusions are derived from this study:

1. The proposed framework has captured the observations previously reported in the
literature, including the effect of capsule size and dosage and crack opening on hit
probability, filling ratio, and hit depth.

2. The 95% confidence level adopted in this study is recommended for the design of
a self-healing system as it reduces the uncertainties in the design and significantly
increases the efficacy of a healing system.

3. Agglomeration with an increasing dosage of capsules reduces hit probability while
increasing the crack fill volume. Further addition of capsules past the noted thresh-
old of 7% mass fraction yields adverse effects on hit probability. This shows that
agglomeration effects are an important factor that must be considered.

4. Crack tortuosity increases the potential intersection region and results in a higher
number of capsules intersected.

5. Irregular cracks have a larger crack volume compared with a straight crack of the
same depth, resulting in an overall increase in fill ratio.

6. Higher crack tortuosity slightly increases the uncertainty in the expected fill ratio.

The deduced findings are limited to the variables and results presented in this study.
Although this study provides a significant contribution for designing an efficient self-
healing cementitious system, it still needs to account for the interaction between the capsule
and the cement paste when a crack hits the capsule. In this study, it is assumed that the
capsules will rupture when they intersect a crack.
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