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Abstract: In this paper, to study the development of load-carrying capacity and long-term creep
performance of reinforced concrete beams under different corrosion patterns, the rate-dependent
model of concrete is used as the basis to consider the creep development process from the meso-
scale level. The porosity mechanics method is used to simulate the generation and penetration
process of corrosion products. Three corrosion conditions are set: bottom longitudinal reinforcement
corrosion, top longitudinal reinforcement corrosion and all reinforcement corrosion. The corrosion
rate is used as the variable in each corrosion condition. The results show that: (1) the greater the
corrosion rate in all conditions, the lower the bearing capacity. In addition, the corrosion of top
longitudinal reinforcement causes the damage form of the beam to change to brittle damage; (2) the
creep coefficient decreases with the increase in corrosion rate in all working conditions, but the main
factor for this phenomenon is the obvious increase in initial deformation. Consequently, it is not
suitable to follow the conventional creep concept (deformation development/initial deformation) for
the development of plastic deformation of damaged members. It is more reasonable to use the global
deflection to describe the long-term deformation of corrosion-damaged members.

Keywords: corrosion cracking mode; corrosion product penetration; creep behavior; plastic damage
deformation; rate-dependent constitutive model; reinforced concrete beam

1. Introduction

Reinforced concrete structures are widely used in houses, tunnels, ports, and other
infrastructure construction. These RC structures located in the coastal area are in a complex
environment coupled with corrosion influence and load effect. Rust of reinforcement bars in
concrete causes internal micro-cracks and cumulative damage. Corrosion not only reduces
the elastic modulus and ultimate bearing capacity of structure members but also makes
the structure deformation increase and then affects the long-term creep performance of
the structure.

There are few research results about the influence of rust cracking on the creep de-
velopment of reinforced concrete members. Cao [1] conducted several groups on axial
compression creep experiments of corroded concrete columns with different corrosion
rates and found that the greater the corrosion rate of reinforcement, the greater the creep
deformation of components, which was attributed to the weakening of the constraint effect
of corroded reinforcement on concrete. Yoon et al. [2] carried out the sustained load test
of a steel concrete beam soaked in salt solution after electrical-corrosion treatment. The
results show that the deflection of the energized specimens increases in a stepwise manner
compared with that of the non-energized specimens, and the corrosion and creep coupling
failure occur when the loading level is high. Shen et al. [3] studied the damage development
of reinforced concrete beams under the simultaneous action of electrical corrosion and
sustained load. The results show that corrosion will change the surface crack distribution
and reduce the residual bearing capacity of beam members. At present, the systematic
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research on the influence of rust on creep at the component level is not sufficient, and
the relevant research usually only focuses on the change in rust rate, and the influence of
different rust cracking modes on creep needs to be studied urgently.

Through the self-developed multi-scale model of material structure, the coupling
analysis of the hydration process, material transport, structural durability deterioration and
mechanical property deterioration of concrete materials is realized [4,5]. The calculation of
the corrosion phenomenon of reinforced concrete structures can simulate the formation and
penetration process of corrosion products and the development process of rust expansion
cracks in reinforcement concrete, which reflects the influence of rust expansion cracks on
the mechanical constitutive model of concrete and reflects the performance degradation
mechanism of corroded members. Thus, structural responses such as the rust expansion
phenomenon and mechanical property degradation of rusted reinforced concrete beams
under rusted conditions can be reasonably explained [5–7], which makes up for the defect
that the existing corrosion simulation studies do not consider the penetration of rust
products [8,9]. The creep calculation is based on the rate creep constitutive model of meso-
mechanics [10–12], which deals with the influence of pore moisture change on concrete
creep from the meso-level [13,14] and can reflect the creep development process of actual
concrete members.

As mentioned before, research on the creep development of rust-damaged members
is relatively limited, and the only studies available usually only consider the effect of
the corrosion rate on the mechanical properties of the beams. In this paper, based on the
concrete material rate-dependent model considering the time course effect of creep, coupled
with the analysis of corrosion product entity generation and infiltration process, the changes
of load-bearing capacity and creep long-term performance of reinforced concrete beams
under different rust expansion and cracking modes are investigated. The influence law of
rust rate and rust morphological characteristics on the creep properties of steel and concrete
structures is explored in depth.

2. Calculation of Creep and Corrosion Cracking
2.1. Creep Constitutive Model

Based on the author’s previous research, the rate-type elastic-plastic damage constitu-
tive model of concrete material is shown in Figure 1 [4]. The mechanical unit of concrete
material is regarded as a parallel model of multiple Maxwell elements, and the total stress is
the sum of stresses of all elements, and the total strain is equal to the strain of each element.
The nonlinear deformation characteristics of concrete are characterized by damage coeffi-
cient K and plastic strain εp. K is the ratio of the number of remaining intact elements after
damage to the number of initial elements, and εp is the plastic deformation of the plastic
parts of each Maxwell element. The damage coefficient K and plastic strain εp represent the
damage degree and plastic deformation of the material, respectively, which determine the
change in elastic modulus and plastic strain of concrete materials.
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The basic mathematical expression of the elastic-plastic damage mechanical model of
concrete is shown in Equation (1).

ε = εe + εp, σ = E0εeK (1)
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The influence of the damage coefficient and plastic strain is expressed by the rate-
type formula, see Equation (2), where the first term is the time history change in plastic
deformation (i.e., creep), and the second term is the cumulative deformation and damage of
cyclic action (i.e., fatigue). The creep constitutive of concrete is proposed based on the above
elastoplastic damage mechanical model of concrete. The calculation formula of creep can
be obtained by considering the linear creep of concrete into the creep constitutive model,
as shown in Equation (3). The first term is the time history law of plastic deformation of
concrete material, which reflects the nonlinear creep of concrete material. Φ represents the
tendency of plastic deformation to increase and decrease in the development of life history,
while the second term κ is linear creep.

dεp =

(
∂εp

∂t

)
dt +

(
∂εp

∂εe

)
dεe, dK =

(
∂K
∂t

)
dt +

(
∂K
∂εe

)
dεe (2)

∂εp

∂t
= φ

(
∂εp

∂t

)
b
+K (3)

K = − 1
Cv

(
εp − Climεe

)
,K < 0 (4)

where Cv is the intrinsic creep time, representing the speed of linear creep development;
Clim is the creep coefficient at infinite time.

2.2. Model of Corrosion Development

The corrosion products can be regarded as two different phases. Between them, the
solid phase rust products accumulate at the corrosion interface. However, the liquid phase
rust products have fluidity [15]. The corrosion model in this study regards the corrosion
products as the secondary products of steel bar corrosion, and the corroded steel bar is
expressed as the composition of the corrosion products and the original steel bar, and then
its mechanical properties and deformation characteristics are considered.

2.2.1. Solid Phase Corrosion Product

Figure 2 shows the expansion of the corrosion product, which is assumed to grow
uniformly around the steel bar [6]. Considering that the liquid phase rust products will
flow into the pores and rust cracks around the reinforcement and relieve the stress caused
by the expansion of the rust products, the volume of the solid phase rust products, namely,
the rust products that always adhere to the reinforced concrete interface and generate
expansion stress, is expressed as Vs, as shown in Equation (5).

Vs = Vloss −Vl (5)

When the steel corrosion product is free to expand without restraint, the diameter of
the steel bar and its composition can be expressed as

Dcl = D
√

1 + γ(α− 1) (6)

where D represents the diameter of the original reinforcement; γ represents the volume loss
rate of reinforcement, which is related to the corrosion rate. α represents the volume expan-
sion rate of the corroded product relative to the corroded part of the original reinforcement.

The free expansion strain of the reinforcement rust composition can be expressed as

εs, f ree =
Dcl − D

D
=
√

1 + γ(α− 1)− 1 (7)

where εs, f ree is the natural corrosion expansion strain of reinforcement bar.
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Figure 2. Mechanism of expansion and cracking of solid phase corrosion products [6].

The average modulus of the corrosion system is defined in Equation (8), and the
corresponding rust expansion stress can be obtained through free expansion strain and
average modulus, as shown in Equation (9):

Eeq =
1 + γ(α− 1)(
1−γ

Es

)
+
( γα

G
) (8)

σij = Dijkl
(
Eeq
)
×
(
εkl − δij · εs, f ree(γ)

)
(9)

where Es is the modulus of reinforcement; G is the modulus of solid phase corrosion
product; σij is the stress tensor in concrete caused by the volume expansion of solid phase
corrosion products. Dijkl

(
Eeq
)

is the stiffness matrix of corroded reinforcement. εij is the
actual strain of the corrosion product.

2.2.2. Liquid Phase Rust Product

The behavior of liquid phase corrosion products in concrete should be analyzed
based on multiphase pore medium mechanics, as shown in Figure 3. The solid phase
part (aggregate, cement paste) in the concrete is regarded as the skeleton, and the liquid
phase corrosion product is regarded as the flowing pore medium, then the density ρ of the
skeleton-pore system is

ρ = (1− n)ρc + nρ f (10)

where ρc is the density of the skeleton (kg/m3), ρ f is the density of pore medium (kg/m3),
and n is the porosity in the system.

When the concrete is not cracked, the pore pressure can be regarded as isotropic. After
the concrete cracks, the pore pressure is anisotropic because the plane where the cracks are
located cannot be transversely transmitted. Therefore, the stress tensor σij acting on the
system can be expressed as

σij =

{
σ∗ij + δij p, non− crack
σ∗ij + δijlp, crack

(11)

where σ∗ij is the stress tensor acting on the skeleton; p is the pore pressure (N/mm2) caused
by the pore medium. δij is a Kronecker symbol, set to 1 when i = j and 0 when I 6= j. l is the
unit normal vector of the crack plane.
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mechanics.

Due to the fluidity of liquid phase corrosion products, the dynamic equilibrium
equation should be used to describe the interaction between pore medium and skeleton:

σij,j + ρgi = ρui,mm + ρ f wi,mm (12)

p,i = ρl(ui,mm − gi) + ρlwi,mm/n + (1/ki)wi,m (13)

where ui,mm are the second partial derivatives of skeleton displacement with respect to
time (m/s2); gi is the component of gravitational acceleration along vector i (m/s2); wi,m and
wi,mm are the first partial derivatives (m/s) and second partial derivatives (m/s2) of the
displacement of the pore medium relative to the skeleton with respect to time, respectively.
ki is the permeability of corrosion products.

The liquid phase rust products will produce volume expansion, which will cause pore
media to squeeze the pore wall (skeleton) and cause pore pressure (rust expansion stress).
At the same time, the pore pressure p itself is constrained. According to its deformation
degree, the pore pressure p can be obtained as

p = K f (wi,i + εii − (1− β)vcr) (14)

where, K f is the volume modulus (MPa) of the skeleton-pore system. wi,i + εii is the
equivalent volumetric strain of pore medium. vcr represents the volume of solid phase
corrosion products retained on the reinforced concrete surface.

In an environment saturated with pore water and rich in chlorine, the crystallization
rate of rust products (i.e., the volume ratio of solid phase rust products) β is related to the
corrosion rate of reinforcement, which can be calculated as follows [16]:

β = 0.75− 0.1× log10(icorr) ≤ 0.75 (15)

where icorr is the corrosion rate of reinforcement (µA/cm2).
Due to the existence of liquid phase rust products, the rust products will be trans-

mitted from the reinforced concrete interface to the surrounding cracks and concrete
micropores [17]. From the point of view of pore mechanics, the pore pressure generated
during the transport of corrosion products is only controlled by the liquid flow rate. There-
fore, it is necessary to determine the transport rate k of the pore medium composed of
liquid phase corrosion products. Relevant studies show that when concrete cracks under
load, the k value will increase [16].
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ki = k∗ ×
[
1 +

(
ε jj + εkk

)8
]

(16)

where <i, j, k> is the coordinate axis direction in the orthogonal coordinate system, and
j and k are parallel to the crack plane; ki is the transmission rate (m/s) of the liquid phase
corrosion product in the i direction.

(
ε jj + εkk

)
represents the strain of concrete along the

vertical direction of the fracture plane, and k∗ can be chosen as 5 × 10−10 cm/s.

3. The Calculation Results and Analysis
3.1. Specimen Information

In this paper, the reinforced concrete beam is taken as the research object, and the
material parameters used in the calculation model established are the same as those of the
test specimen [18]. The specific material information is shown in Table 1, and the geometric
information and reinforcement of the beam are shown in Figure 4.

Table 1. Concrete and reinforcing steel information.

Proportions of
Concrete Mix

Water Cement
Ratio Water/kg·m−3 Cement/kg·m−3 Fine

Aggregate/kg·m−3
Coarse

Aggregate/kg·m−3

0.49 220 449 1125 606

Reinforcement
parameters

Steel grades Diameter/mm Yield
strength/MPa

Ultimate
strength/MPa Ductility/%

HRB400 14 319.8 452.0 36.1
HPB300 8/10 424.8 585.4 31.9
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Figure 4. Schematic diagram of RC beam size and reinforcement.

In this paper, the calculation process of the static load test after the corrosion of
the reinforced concrete beam is as follows: specimen curing → steel corrosion reaches
preset corrosion rate→ static load loading until failure. The loading form is controlled by
displacement, and the rate is 8.33 mm/h. The calculation process of the creep development
test for RC beams after corrosion is as follows: specimen curing→ steel corrosion reaching
preset corrosion rate→ static load holding, and the load holding level is 20% (22 kN) of
the ultimate bearing capacity of RC beams. The calculation process can be seen clearly in
Figure 5. In this case, beams can be considered linear creep development.

3.2. Flexural Capacity and Creep Bearing Capacity of Non-Corroded Beam

As shown in Figure 6, the failure calculation curve of beam bearing capacity is basically
consistent with the test curve by calculating the failure under static load when the steel
bar corrosion rate is 0%. Figure 7 shows the deflection deformation curve of the reinforced
concrete beam under load state calculated by using the above rate-type creep constitutive
model, which is in good agreement with the experimental results and can provide a reliable
basis for subsequent corrosion and creep analysis.
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3.3. Corrosion Cracking Pattern

The strain results of partial corrosion calculation are visualized as shown in Figure 8.
As can be seen from the figure, the strain development in the three working conditions
(bottom longitudinal bar rust, top longitudinal bar rust and all reinforcement rust) is that
the principal strain of the surface concrete near the corroded reinforcement is larger than
that in other areas, and obvious main cracks appear, which is consistent with previous
experimental studies by other scholars [19,20]. By comparing the corrosion condition of
longitudinal bars at the bottom and the corrosion condition of longitudinal bars at the top,
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it can be seen that the strain development at the stress position is slightly larger than that at
other positions, which indicates that there is a phenomenon of local damage concentration.
In addition, under the same corrosion rate, the surface strain development of the members
corroded by the longitudinal bars at the bottom is slightly greater than that of the members
corroded by the longitudinal bars at the top because the reinforcement diameter of the
longitudinal bars at the bottom is larger (C/D is smaller) and the corrosion products are
more. When all the reinforcement is corroded, the strain development of the adjacent
surface of the stirrup is obvious, which is consistent with the experimental experience that
the stirrup will corrode before the longitudinal reinforcement. It is proved that the stirrup
slows down the corrosion process of the longitudinal reinforcement to a certain extent from
the perspective of calculation.
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3.4. Flexural Capacity of Corroded Beams

Table 2 shows that the failure load of RC beams with different corrosion forms will
decrease with the increase in corrosion rate, which means that the reinforcement corrosion
in any position of the reinforced concrete beam will cause damage to the beam and reduce
its bearing capacity, but the degradation law of the bearing capacity with different forms of
corrosion is not the same. It can be seen from Figure 9 that the ultimate flexural capacity of
the three corrosion forms exhibits different attenuation laws with the increase in corrosion
rate. The ideal failure of a reinforcement concrete beam can be mainly summarized as the
tensile loss of the concrete at the bottom, and then the longitudinal reinforcement at the
bottom bears the tension, the compression of the concrete at the top increases, and finally,
the reinforcement yields and the concrete at the top is crushed. When the longitudinal bars
at the top are corroded, the compression zone of the concrete beam is damaged, and the
strength of the concrete at the top mainly determines the increase in the yield load to the
ultimate load of the beam (the increase in the strengthening section). With the increase in
the corrosion rate, the severe fracture in the compression zone will lead to the brittle failure
of the beam. The corrosion of the longitudinal reinforcement at the bottom leads to the
destruction of the concrete in the tensile zone, which makes the longitudinal reinforcement
work independently in advance. At the same time, the corrosion reduces the mechanical
properties of the longitudinal reinforcement under stress, so the strength of the beam
decreases with the increase in the corrosion rate of the longitudinal reinforcement at the
bottom. The total corrosion of reinforcement can be approximated as the accumulative
effect of the above two working conditions.



Materials 2022, 15, 7338 9 of 14

Table 2. Deterioration of ultimate bearing capacity for different rust patterns.

Bearing Capacity (kN)
Corrosion (%)

0 1 2 4 5 6 7 8 10 12 15 17 20

Top longitudinal reinforcement 110.4 108.9 100.1 - 98.9 - - - - - 95.4 - 93
Bottom longitudinal reinforcement 110.4 110.1 108.5 - 106.3 - - 103.4 101.6 97.8 93.5 85.6 82.2
All reinforcement 110.4 - 100.6 97.1 93.4 92.5 88.3 - - - - - -
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3.5. Creep Characteristics Analysis of Corroded Beams

The research on beam creep after rusting is relatively scarce, and the above contents
confirm that the rate-type creep constitutive and the model considering corrosion crack and
corrosion product penetration adopted by the authors have high accuracy in describing
creep development and corrosion expansion. Therefore, the author intends to further study
the creep properties of corroded beams and explore the influence of rust expansion and
cracking on creep.

It can be seen from the foregoing that the damage caused by the corrosion of steel
bars in different positions is different. The creep property degradation caused by rust
corrosion is mainly due to the internal damage of concrete caused by rust expansion, so it
is necessary to clarify the specific influence of crack damage in different parts on concrete
creep. This section mainly explores the influence of different rust cracking modes on the
creep characteristics of reinforced concrete beams.

It can be seen from Figure 10 that for the beam with only the bottom longitudinal bars
corroded (Figure 10a), the deflection development curves of the steel-concrete beam under
different corrosion rates are parallel, and the influence of the change in rust rate is mainly
reflected in the elastic deflection value at the end of loading. It shows that the corrosion
degree of the longitudinal bars at the bottom has little influence on the development of the
deflection time history of the reinforced concrete beam. For the reinforced concrete beam
with corroded longitudinal bars at the top (Figure 10b), the elastic deflection deformation
after loading has no obvious correlation with the corrosion rate of reinforcement, and the
deflection development curve is still parallel. When the rust rate is large, the deflection
curve presents an uneven phenomenon at the initial stage of the sustained load, which
may be because the initial rust expansion crack is further developed due to sustained
load, indicating that the initial damage of concrete in the compression zone of the steel
concrete beam easily develops secondary damage and undergoes abrupt deformation after
the load is applied. For the fully corroded reinforced concrete beam (Figure 10c), with
the continuous increase in the corrosion rate under the total corrosion condition, on the
one hand, the initial elastic deflection of the component increases when the loading is
completed, and on the other hand, the total deflection of the component also increases.
However, the deflection development curves of each corrosion rate, as shown in the figure,
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are also approximately parallel. This means that the increase in the total deflection is mainly
due to the increase in the initial elastic deflection value. In addition, when the corrosion
rate is 6% in the total corrosion condition, the deflection development curve of the corroded
reinforced concrete beam has many uneven abrupt changes, which may be caused by the
relative deformation of the rust expansion crack when the rust expansion crack is more
serious, which is similar to the uneven curve in the rust corrosion condition of the top
longitudinal bars.
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Figure 10. Deflection curves of RC beams with different corrosion patterns. (a) Corrosion of bottom
bar; (b) Corrosion of top bar; (c) Corrosion of all bar.

The long-term deflection of the beam is calculated by Equations (17) and (18). Accord-
ing to Table 3, for the beam with corroded longitudinal bars at the bottom, the larger the
corrosion rate of longitudinal bars, the smaller the creep coefficient α, but the change rate
decreases with the increase in the corrosion rate. For the beam with the top longitudinal
reinforcement corrosion, the creep coefficient shows a trend of decrease after the first
increase with the increase in corrosion rate of top longitudinal reinforcement because the
top zone of the beam is the compressive zone, and a smaller corrosion rate means that the
corrosion product is less. A small amount of corrosion product in the compression area
of the component may not cause corrosive damage, but it will fill the original porosity
and micro-cracks, and thus, the ductility of the compression zone is enhanced, and the
instantaneous deformation of concrete under load decreases. This is mutually corroborated
with the reduction in instantaneous deformation under load when the corrosion rate is 1%
in Figure 10b. For beams with all steel bars corroded, the creep coefficient will drop sharply
because of corrosion. This is because when all steel bars including stirrups are corroded, the
stiffness of the members will be weakened sharply, leading to an increase in the deflection
under load. The creep coefficient refers to the proportion of ductile deformation in the total
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deformation under continuous load. The creep coefficient under the rust condition shows
a decreasing phenomenon, indicating that, in the rust environment, compared with the
ductility development of beams, the stiffness of beams is weakened, and the instantaneous
deformation increases sharply under load, which needs to be paid more attention to.

∂Wp

∂t
= − 1

β

(
Wp − αWe

)
(17)

Wp = αWe

(
1− e−t/β

)
(18)

where Wp is creep deflection under load; We is instantaneous elastic deflection; α represents
the speed of linear creep development; β represents the creep coefficient at infinite time

Table 3. Variation of β and α with rust rate for beams under different rust conditions.

Corrosion Rate (%) 0 1 2 4 6 10

Top longitudinal reinforcement β 74.36 64.79 69.22 69.13 59.30 -
α 1.45 1.75 1.25 1.15 1.46 -

Bottom longitudinal reinforcement β 74.36 73.38 84.12 77.58 78.94 77.06
α 1.45 1.43 1.25 1.17 1.05 0.95

All reinforcement
β 74.36 73.11 79.17 87.12 90.24 -
α 1.45 0.64 0.38 0.31 0.45 -

Only from the data regularity of observation, β had no obvious regularity. The
regularity of the characterization of integration of α decreases with the increase in corrosion
rate, and the creep coefficient is explained through the ductility in this paper, as mentioned
before, but in fact, the creep coefficient is the ratio of elastic strain and plastic strain after
the sustained load, and this conventional definition is used to describe traditional material
creep characteristics. However, the creep coefficient used in material science is introduced
in the structure in many pieces of research. The elastic strain at the moment of material
loading corresponds to the instantaneous deformation at the moment of structure loading.
However, for pre-damaged members, the deformation at the moment of loading is not
elastic, so it is biased to use the concept of creep in this case. This is also the fundamental
reason that the creep coefficient of the damaged component decreases with the increase
in the initial damage. The author thinks that the quantitative index of the long-term
deformation of the damaged component needs to be further improved, and the previous
creep concept cannot describe the deformation characteristics of the damaged component.

At present, it is more suitable for damaged members to directly study the overall
deformation of the member caused by the coupling of its durability damage and sustained
load, and the total deflection deformation Wt = Wp + We can be known from the aforemen-
tioned Equation (18), as in Equation (19). In actual engineering structures, the members
are basically all of the rust, and the relationship between the rust rate and deflection curve
can be obtained by fitting a curve, where ζ is the corrosion rate. In order to facilitate the
calculation of β take uncorroded members β0, the fitting results are shown in Equations
(20) and (21). The fitted curves and the predicted effect of the deflection curve model are
shown in Figures 11 and 12.

Wt = Wp + We = (αWe)
(

1− e−t/β0
)
+ We, β0 = 74.36 (19)

We = −0.0189× ζ2 + 0.232× ζ + 0.3773 (20)

(αWe) = 0.0268× ζ2 − 0.1651× ζ + 0.528 (21)
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4. Conclusions

(1) In this paper, the time history effect of creep was considered based on the rate-type
constitutive model, and the generation of rust expansion cracks and the penetration
phenomenon of rust products were fully considered in the calculation of rust corrosion.
The three-dimensional rust expansion and cracking modes caused by different rust
corrosion conditions were simulated more realistically, and a logical connection was
established with subsequent mechanical properties.

(2) According to the calculation and observation of the ultimate bearing capacity of the
beams with different corrosion forms, the corrosion of the longitudinal bars at the top
reduces the strength of the concrete in the compression zone, which leads to a decrease
in the strengthening section of the fracture curve of the members and causes the brittle
failure mode of the reinforced concrete beams. The corrosion of the longitudinal bars
at the bottom causes the reinforcement to work in advance and reduces the mechanical
properties of the tensile bars. The ultimate bearing capacity of the beam decreases
gradually with the increase in the corrosion rate of the longitudinal bars at the bottom.

(3) By observing the load-bearing deformation of beams with different corrosion forms,
it is found that the creep coefficient of RC beams decreases with the increase in
corrosion rate. This phenomenon is mainly caused by the obvious increase in initial
instantaneous deflection caused by corrosion, which does not mean that corrosion
is conducive to the creep of beams. In addition, this phenomenon indicates that it
is not easy to use the traditional concept of creep (deformation development/initial
deformation) for the load-bearing deformation of corroded, damaged members, and it
is more reasonable to use the global deflection to describe the long-term deformation
of corroded, damaged members.

(4) For future research on damaged members, this paper argues that the global deflection
should be used reasonably to describe the performance degradation of members,
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where the damage study includes rust damage, fatigue damage, etc. The coefficient of
creep was originally used in materials research and migrated to structural research.
The creep coefficient is only suitable for the study of sustained load at undamaged
times. For the creep of damaged members, it is recommended to directly use the
absolute amount of plastic deformation at the sustained load for the description.
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Nomenclature

ε strain σij the stress tensor in concrete
εp plastic strain Dijkl

(
Eeq
)

the stiffness matrix of corroded reinforcement
εe elastic strain ρ Density of the skeleton-pore system
K damage coefficient ρc density of skeleton
E0 elastic stiffness ρ f density of pore medium
σ stress n the porosity in the skeleton-pore system
t time σ∗ij the stress tensor acting on the skeleton
Φ tendency of plastic deformation p the pore pressure
κ linear creep δij Kronecker symbol
Cv intrinsic creep time ui skeleton displacement (i-direction)
Clim creep coefficient at infinite time gi gravitational acceleration (i-direction)
Vs volume of solid phase corrosion production wi displacement of pore medium (i-direction)
Vl volume of liquid phase corrosion production ki permeability of corrosion products
Vloss volume of corrosion production K f volume modulus of the skeleton-pore system

Dcl diameter of un-corroded steel vcr
the volume of solid phase corrosion products
retained on the reinforced concrete surface

D diameter of the original reinforcement β crystallization rate of rust products
γ volume loss rate of reinforcement icorr the corrosion rate of reinforcement
α volume expansion rate k transport rate

εs, f ree
the natural corrosion expansion strain

Wp creep deflection
of reinforcement

Es modulus of reinforcement We instantaneous elastic deflection
G the modulus of solid phase corrosion product Wt total deflection deformation
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