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Abstract: Intrinsically low ion conductivity and unstable cathode electrolyte interface are two
important factors affecting the performances of LiCoPO4 cathode material. Herein, a series of
LiCo1-1.5xYxPO4@C (x = 0, 0.01, 0.02, 0.03) cathode material is synthesized by a one-step method.
The influence of Y substitution amount is optimized and discussed. The structure and morphol-
ogy of LiCo1-1.5xYxPO4@C cathode material does not lead to obvious changes with Y substitution.
However, the Li/Co antisite defect is minimized and the ionic and electronic conductivities of
LiCo1-1.5xYxPO4@C cathode material are enhanced by Y substitution. The LiCo0.97Y0.02PO4@C cath-
ode delivers a discharge capacity of 148 mAh g−1 at 0.1 C and 96 mAh g−1 at 1 C, with a capacity
retention of 75% after 80 cycles at 0.1 C. Its good electrochemical performances are attributed to
the following factors. (1) The uniform 5 nm carbon layer stabilizes the interface and suppresses the
side reactions with the electrolyte. (2) With Y substitution, the Li/Co antisite defect is decreased
and the electronic and ionic conductivity are also improved. In conclusion, our work reveals the
effects of aliovalent substitution and carbon coating in LiCo1-1.5xYxPO4@C electrodes to improve
their electrochemical performances, and provides a method for the further development of high
voltage cathode material for high-energy lithium-ion batteries.

Keywords: lithium-ion battery; high energy; cathode; LiCo1-1.5xYxPO4@C

1. Introduction

With the rapid development of portable devices and electric vehicles, the demand
for high energy batteries is increasing. The development of high-energy cathode [1–6]
and anode [7] materials is imperative. Olivine LiCoPO4 with a theoretical energy density
of about 800 Wh kg−1 is a good candidate cathode material for high-energy lithium-ion
batteries [8–10]. However, the continuous oxidative decomposition of electrolyte [11,12]
and the unstable cathode electrolyte interface [13,14] under 5 V high voltage caused by
Co2+/Co3+, resulting in rapid capacity degradation during cycling, severely hindering the
application of LiCoPO4 cathode material. In addition, the Li/Co antisite exchange during
the cycling process [15–17] and low intrinsically ionic and electronic conductivity [18–20]
must also be overcome.

Lots of work have been undertaken to solve these problems, including decreasing
the cathode particle size and controlling the morphology to shorten the Li-ion migration
distance [21–24]; coating the cathode particle with stable materials [25–28] or conductive
materials [29–33] to stabilize the interface and reduce the side reaction; partial substitution
at Co site [20,34–37] to improve the intrinsic ionic and electronic conductivity [34,35,38–40];
and adding electrolyte additives to suppress the electrolyte decomposition [14,41,42]. Ev-
ery method has some effect in improving LiCoPO4 cathode performance. Generally, for
LiCoPO4 cathode material, surface coating is the most effective way to enhance the stability
of the interface [25,31,43], while cation substitution can significantly improve the material
ionic conductivity [16,36,44,45].
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In this work, the LiCo1-1.5xYxPO4@C cathode material, the substitution of Y, and
carbon coating are synthesized in one step. The amount of Y substitution is optimized and
its influence discussed.

2. Materials and Methods
2.1. Synthesis of LiCo1-1.5xYxPO4@C Cathode Material

LiCo1-1.5xYxPO4@C (x = 0, 0.01, 0.02, 0.03) cathode material was synthesized by a one-
step method. First citric acid (CA, Sinopharm Chemical Reagent, ≥99.5%), Y(NO3)3·6H2O
(Sinopharm Chemical Reagent, ≥99.0%), Co(NO3)2·6H2O (Sinopharm Chemical Reagent,
≥98.5%), LiNO3 (Sinopharm Chemical Reagent, ≥99.9%) and NH4H2PO4 (Sinopharm
Chemical Reagent, ≥99.0%) were dissolved at stoichiometric amounts (nLi:nCo:nY:nP:nCA
= 1.05:1-1.5x:x:1:2) in deionized water. Then the gel was formed by heating the solution at
80 ◦C. Subsequently, the wet gel was dried at 120 ◦C 24 h to obtain dry gel. Finally, the dry
gel was calcined at 400 ◦C 3 h in rotary furnace at air atmosphere, and then changed to Ar
atmosphere and calcined at 700 ◦C 2 h [39].

2.2. Material Characterization

The crystal information of the materials was detected by XRD (Smart Lab) with Cu Kα
radiation, and TOPAS 5.0 software (Bruker AXS, America) was used to Rietveld refinements.
The morphology of the materials was observed with SEM, EDS (Hitachi, BCPCAS-4800),
and TEM (Tecnai, F20). FTIR spectra were obtained by IR spectrometer (PerkinElmer,
Spectrum One).

2.3. Electrochemical Performance

The electrochemical tests were carried out with using the 2025-type coin cell. Coin
cells were assembled with the dried LiCo1-1.5xYxPO4@C as cathode, Li metal as anode, Cel-
gard2400 polyethylene as separator, and 1M LiPF6 in a mixture of DMC/EC (v/v, 1/1) with
1 wt.% TMSB additive as electrolyte in an argon-filled glovebox. The LiCo1-1.5xYxPO4@C
electrodes were dried at 120 ◦C 12 h in a vacuum oven.

The cycling and rate performances of LiCo1-1.5xYxPO4@C electrode were measured by
the LAND CT2001A. The CV curve of the LiCo1-1.5xYxPO4@C electrode was collected by
CHI660D within the voltage range 3.0~5.3 V, with 0.05 mV s−1. EIS curve was conducted
on Solartron SI 1260 and SI 1287 with a frequency range from 0.1 MHz to 10 MHz.

3. Results and Discussion
3.1. Composition and Morphology of LiCo1-1.5xYxPO4@C Cathode Material

Figure 1 shows the XRD patterns of the four cathode materials. All four cathode
materials were well indexed to the olivine structure (JCPDS: 89-6192) with an orthorhombic
Pnma space group, indicating the carbon layer and Y substitution did not change the
main crystal structure of LiCoPO4. An obvious impurity peak YPO4 appeared when the Y
substitution amount was 0.03. This means that at the substitution amount of 0.03, it was
difficult for Y to be completely incorporated into the LiCoPO4 lattice, as the Y atomic radius
was larger than that of Co. Figure 2 presents the Rietveld refinement results of the four
cathode materials. The crystal structural parameter is listed in Table 1, showing the details
of the structural differences. Significantly, with the increase in the Y doping amount, the a
and b parameters increased obviously, leading to an increase in unit cell volume (283.84,
284.09, 284.30 and 284.42 for x = 0, 0.01, 0.02 and 0.03). This change indicates that Y (III)
replaced Co (II) and was incorporated into the LiCoPO4 lattice. Since the ionic radius of Y
(III) (90 pm) was larger than that of Co (II) (74.5 pm), it led to an increase in the unit cell
volume. The increase in the unit cell volume could facilitate the migration of Li-ion, thus
improving the electrochemical performance of LiCo1-1.5xYxPO4@C cathodes. According to
the XRD and Rietveld refinement results, Y was successfully incorporated into the LiCoPO4
lattice without altering the olivine structure, although it caused an increase in the unit cell
volume as Y doping amount increased.
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Table 1. Crystal structural parameters of the four cathode materials.

Samples a (Å) b (Å) c (Å) V (Å3) Rwp Rp GOF

LiCoPO4 (89-6192) 10.2021 5.9227 4.7003 284.01
LiCoPO4@C 10.2007 5.9220 4.6987 283.84 3.85 2.71 1.73

LiCo0.985Y0.01PO4@C 10.2027 5.9245 4.6999 284.09 3.96 2.74 1.78
LiCo0.97Y0.02PO4@C 10.2058 5.9275 4.6995 284.30 4.02 2.82 1.84
LiCo0.955Y0.03PO4@C 10.2077 5.9288 4.6996 284.42 4.07 2.92 1.89

SEM images of the four cathode materials are displayed in Figure 3a–d. All the
four cathode materials had similar morphology, which was composed of agglomerated
nanoparticles of about 200 nm. This suggests that the basic morphology of the four cathode
materials was unaffected by Y substitution. EDS of LiCo0.97Y0.02PO4/C cathode material
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was performed to determine the Y distribution, and the result is shown in Figure 3e. It
is evident that there was no region poorer or richer in Y, and the Y element was homo-
geneously dispersed in the LiCo0.97Y0.02PO4/C cathode material. The same results were
observed for the O, Co, and P elements. TEM images of the four cathode materials are pre-
sented in Figure 4. All the four samples had only one diffraction fringe and had a uniform
5 nm carbon layer on the LiCoPO4 particle surface. From our previous studies [14,25,39],
we found that a uniform carbon coating layer firstly refined particle size and improved
material conductivity; secondly prevented direct contact between electrolyte and LiCoPO4
particle, and inhibited the continuous oxidative decomposition of electrolyte under 5 V
high voltage caused by Co2+/Co3+, and thirdly, stabilized the interface between the cathode
and electrolyte and suppressed the continuous generation of CEI on the LiCoPO4 particle
surface, thus improving the electrochemical performance of the LiCoPO4 material. SEM
and TEM images suggest that the basic morphology of the four cathode materials was
unaffected by Y substitution; that is, it consisted of clustered nanoparticles with a 5 nm
uniform carbon film on the Li LiCo1-1.5xYxPO4@C particle surface.

Materials 2022, 15, x FOR PEER REVIEW 4 of 11 
 

 

SEM images of the four cathode materials are displayed in Figure 3a–d. All the four 
cathode materials had similar morphology, which was composed of agglomerated nano-
particles of about 200 nm. This suggests that the basic morphology of the four cathode 
materials was unaffected by Y substitution. EDS of LiCo0.97Y0.02PO4/C cathode material was 
performed to determine the Y distribution, and the result is shown in Figure 3e. It is evi-
dent that there was no region poorer or richer in Y, and the Y element was homogeneously 
dispersed in the LiCo0.97Y0.02PO4/C cathode material. The same results were observed for 
the O, Co, and P elements. TEM images of the four cathode materials are presented in 
Figure 4. All the four samples had only one diffraction fringe and had a uniform 5 nm 
carbon layer on the LiCoPO4 particle surface. From our previous studies [14,25,39], we 
found that a uniform carbon coating layer firstly refined particle size and improved ma-
terial conductivity; secondly prevented direct contact between electrolyte and LiCoPO4 
particle, and inhibited the continuous oxidative decomposition of electrolyte under 5V 
high voltage caused by Co2+/Co3+, and thirdly, stabilized the interface between the cathode 
and electrolyte and suppressed the continuous generation of CEI on the LiCoPO4 particle 
surface, thus improving the electrochemical performance of the LiCoPO4 material. SEM 
and TEM images suggest that the basic morphology of the four cathode materials was 
unaffected by Y substitution; that is, it consisted of clustered nanoparticles with a 5 nm 
uniform carbon film on the Li LiCo1-1.5xYxPO4@C particle surface. 

 
Figure 3. (a–d) SEM images of the four cathode materials and (e) EDS images of LiCo0.97Y0.02PO4/C 
cathode materials. 

Figure 5 exhibits the FTIR spectra of the four cathode materials. It is obvious that 
with an increase in the Y substitution, the symmetric stretching at 987 cm−1 position shifted 
to 979 cm−1 position when x = 0.02, which indicated the decrease in the Li/Co antisite defect 
[8,15,16]. However, when the Y substitution amount increased to 0.03, the symmetric 
stretching position shifted to 984 cm−1 position, meaning the Li/Co antisite defect increase 
decreased the electrochemical performance of the LiCo0.955Y0.03PO4 material. 

The XPS spectrum of LiCoPO4/C and LiCo0.97Y0.02PO4/C cathode material is shown 
Figure 6. The spectra of the two cathode materials were similar, except for the 
LiCo0.97Y0.02PO4/C sample with the Y characteristic peak. Figure 6b shows the Co2p spectra 
of the LiCoPO4/C and LiCo0.97Y0.02PO4/C cathode material, which were consistent with the 
reported binding energy of the Co [39,46]. The Y3d spectra for LiCo0.97Y0.02PO4/C cathode 
material is displayed in Figure 6c. The Y3d spectra suggests that Y is present in the 
LiCo0.97Y0.02PO4/C cathode material and that the oxidation state of Y is +3. 

Figure 3. (a–d) SEM images of the four cathode materials and (e) EDS images of LiCo0.97Y0.02PO4/C
cathode materials.

Materials 2022, 15, x FOR PEER REVIEW 5 of 11 
 

 

 
Figure 4. TEM images of the four cathode materials. 

 
Figure 5. FTIR spectra of the four cathode materials. 

 
Figure 6. XPS spectrum of LiCoPO4/C and LiCo0.97Y0.02PO4/C cathode material. 

Figure 4. TEM images of the four cathode materials.



Materials 2022, 15, 7325 5 of 11

Figure 5 exhibits the FTIR spectra of the four cathode materials. It is obvious that with
an increase in the Y substitution, the symmetric stretching at 987 cm−1 position shifted
to 979 cm−1 position when x = 0.02, which indicated the decrease in the Li/Co antisite
defect [8,15,16]. However, when the Y substitution amount increased to 0.03, the symmetric
stretching position shifted to 984 cm−1 position, meaning the Li/Co antisite defect increase
decreased the electrochemical performance of the LiCo0.955Y0.03PO4 material.
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The XPS spectrum of LiCoPO4/C and LiCo0.97Y0.02PO4/C cathode material is shown
Figure 6. The spectra of the two cathode materials were similar, except for the LiCo0.97Y0.02PO4/C
sample with the Y characteristic peak. Figure 6b shows the Co2p spectra of the LiCoPO4/C and
LiCo0.97Y0.02PO4/C cathode material, which were consistent with the reported binding energy of
the Co [39,46]. The Y3d spectra for LiCo0.97Y0.02PO4/C cathode material is displayed in Figure 6c.
The Y3d spectra suggests that Y is present in the LiCo0.97Y0.02PO4/C cathode material and that
the oxidation state of Y is +3.
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3.2. Electrochemical Performances of LiCo1-1.5xYxPO4@C Electrodes

Electrochemical performances of the four electrodes were tested in half-cell. Figure 7
shows the first cycle CV curves of the four electrodes. The CV curves of the four electrodes
had two similarities: first, all had an oxidation peak around 4.3 V that can be ascribed
to the electrolyte oxidation reaction; then, all had two oxidation peaks in the range of
4.8 V~4.9 V and one reduction peak around 4.7 V (the reduction potential of LiCoPO4 was
closer and the two overlapped as a larger reduction peak at the CV test sweep rate of
0.05 mV s−1, which is consistent with the reports in the reference) that corresponded to the
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two steps of Li-ion extraction/intercalation [25,39]. The differences between the oxidation
reaction potential, the reduction reaction potential, and the polarization potential of the
CV curves are listed in Table 2. With increasing Y substitution amounts, the oxidation
reaction potential decreased to 4.796 V and 4.892 V and the reduction potential increased
to 4.71 V (x = 0.02); meanwhile, the polarization potential reduced to 0.182 V (x = 0.02).
The changes in potential suggest that it is easier for Li-ion to migrate with Y substitution.
These CV results reveal that the polarization of the four electrodes was reduced and that
the Li-ion conductivity was enhanced with Y substitution. The improvement in Li-ion
conductivity can be ascribed to the enlargement in unit cell volume of LiCo1-1.5xYxPO4@C
cathode material, the decrement of the Li/Co antisite defect, and the increment of the
Co-site vacancy with Y substitution, which offers additional channels for Li-ion migration.

Materials 2022, 15, x FOR PEER REVIEW 6 of 11 
 

 

3.2. Electrochemical Performances of LiCo1-1.5xYxPO4@C Electrodes 
Electrochemical performances of the four electrodes were tested in half-cell. Figure 7 

shows the first cycle CV curves of the four electrodes. The CV curves of the four electrodes 
had two similarities: first, all had an oxidation peak around 4.3 V that can be ascribed to 
the electrolyte oxidation reaction; then, all had two oxidation peaks in the range of 4.8 
V~4.9 V and one reduction peak around 4.7 V (the reduction potential of LiCoPO4 was 
closer and the two overlapped as a larger reduction peak at the CV test sweep rate of 0.05 
mV s−1, which is consistent with the reports in the reference) that corresponded to the two 
steps of Li-ion extraction/intercalation [25,39]. The differences between the oxidation re-
action potential, the reduction reaction potential, and the polarization potential of the CV 
curves are listed in Table 2. With increasing Y substitution amounts, the oxidation reaction 
potential decreased to 4.796 V and 4.892 V and the reduction potential increased to 4.71 V 
(x = 0.02); meanwhile, the polarization potential reduced to 0.182 V (x = 0.02). The changes 
in potential suggest that it is easier for Li-ion to migrate with Y substitution. These CV 
results reveal that the polarization of the four electrodes was reduced and that the Li-ion 
conductivity was enhanced with Y substitution. The improvement in Li-ion conductivity 
can be ascribed to the enlargement in unit cell volume of LiCo1-1.5xYxPO4@C cathode mate-
rial, the decrement of the Li/Co antisite defect, and the increment of the Co-site vacancy 
with Y substitution, which offers additional channels for Li-ion migration. 

 
Figure 7. CV curves of the four electrodes. 

Table 2. The differences of the CV curves of the four electrodes. 

Samples Oxidation  
Potential (V) 

Reduction  
Potential (V) 

Polarization  
Potential (V) 

LiCoPO4@C 4.829 4.924 4.695 0.229 
LiCo0.985Y0.01PO4/C 4.82 4.903 4.704 0.199 
LiCo0.97Y0.02PO4/C 4.796 4.892 4.71 0.182 
LiCo0.955Y0.03PO4/C 4.827 4.908 4.712 0.196 

Figure 8 presents the first, second, third, tenth, twentieth, fortieth and hundredth cy-
cle charge/discharge profiles of the four electrodes at 0.1C. The four electrodes displayed 
two oxidation plateaus at approximately 4.8 to 4.9 V, and two reduction plateaus at ap-
proximately 4.6 to 4.8 V, which agrees with the CV results. Noticeably, all four electrodes 
had one side reaction at about 4.3V and a high overcharge capacity, which is ascribed to 
the electrolyte oxidation reaction. The overcharge capacity during the first charge is a ma-
jor factor in the low initial coulombic efficiency [15,39]. However, at the second charge 
process, the overcharge capacity was reduced, which means the electrolyte oxidation re-
action was restrained. This phenomenon confirms carbon film plays an important role in 

Figure 7. CV curves of the four electrodes.

Table 2. The differences of the CV curves of the four electrodes.

Samples Oxidation
Potential (V)

Reduction
Potential (V)

Polarization
Potential (V)

LiCoPO4@C 4.829 4.924 4.695 0.229
LiCo0.985Y0.01PO4/C 4.82 4.903 4.704 0.199
LiCo0.97Y0.02PO4/C 4.796 4.892 4.71 0.182
LiCo0.955Y0.03PO4/C 4.827 4.908 4.712 0.196

Figure 8 presents the first, second, third, tenth, twentieth, fortieth and hundredth cycle
charge/discharge profiles of the four electrodes at 0.1C. The four electrodes displayed two
oxidation plateaus at approximately 4.8 to 4.9 V, and two reduction plateaus at approxi-
mately 4.6 to 4.8 V, which agrees with the CV results. Noticeably, all four electrodes had
one side reaction at about 4.3 V and a high overcharge capacity, which is ascribed to the
electrolyte oxidation reaction. The overcharge capacity during the first charge is a major
factor in the low initial coulombic efficiency [15,39]. However, at the second charge process,
the overcharge capacity was reduced, which means the electrolyte oxidation reaction was
restrained. This phenomenon confirms carbon film plays an important role in inhibiting
the continuous oxidative decomposition of electrolyte under 5 V high voltage, and in
stabilizing the interface between the cathode and electrolyte.

Figure 9 displays cycling stability and rate performances of the four electrodes.
Figure 9a presents the cycling stability performance of the four electrodes at 0.1 C. The
first discharge capacities of the four electrodes are 142.6, 144.5, 148, and 145.8 mAh g−1,
respectively. After 80 cycles, the discharge capacities are 76.8, 106.6, 111, and 97.6 mAh g−1,
with capacity retention of 53.8%, 73.7%, 75%, and 66.9%, respectively. The rapid capacity
fading can be ascribed to the continuous generation of CEI on the LiCoPO4 particle surface
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and the Li/Co antisite defects during the cycling process [43,47]. Figure 9b presents the
rate performances of the four electrodes. As expected, the LiCo0.97Y0.02PO4/C electrode
displayed the best performance, with the discharge capacities of 145 mAh g−1 (0.1 C),
130 mAh g−1 (0.2 C), 113 mAh g−1 (0.5 C), and 96 mAh g−1 (1 C); the discharge capac-
ity returned to 130 mAh g−1 when the discharge rate returned to 0.1 C, exhibiting good
electrochemical performance stability. In comparison, the corresponding discharge capac-
ity of the LiCoPO4/C electrode was about 125 mAh g−1 (0.1 C), 110 mAh g−1 (0.2 C),
82 mAh g−1 (0.5 C), and 66 mAh g−1 (1 C). The improvement of the cycling stability
and rate performances for LiCo0.97Y0.02PO4/C electrode was ascribed to the decrease
in the Li/Co antisite defect and the increase in ionic conductivity due to Y doping. Simi-
lar improvements in cycling stability and rate performance were reported for Cr-doped
LiCoPO4 [39,48] and V-doped LiCoPO4 [16,37], which the authors, due to the facilitation of
ion migration, caused by Cr or V substitution. Table 3 shows the cycling performance of
the LiCo0.97Y0.02PO4/C electrode in comparison with others reported.
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Table 3. Cycling performance of the LiCo0.97Y0.02PO4/C electrode in comparison with others reported.

Samples Rate Initial Discharge
Capacity (mAh g−1)

Capacity
Retention (%) Cycles Method

Our work 0.1C 148 75 80 Y-Substituted and
carbon coating

Ref. [33] 0.1C 135 52 30 Carbon coating
Ref. [49] 0.1C 147 69 40 Carbon coating
Ref. [31] 0.1C 120 75 20 Carbon coating
Ref. [32] 0.1C 124 56 100 Carbon coating
Ref. [16] 0.1C 97 85 20 V-Substituted
Ref. [37] 0.1C 145 52 20 V-Substituted
Ref. [44] 0.1C 153 21 30 Y-Substituted
Ref. [15] 0.1C 124 80 20 Fe-Substituted
Ref. [36] 0.1C 88 22 20 Mg-Substituted

Figure 10 shows the EIS spectra of the four electrodes and the corresponding equivalent
circuits. The simulation results are listed in Table 4. It is clear that all four cathodes had simi-
lar ohmic resistance Re (1.6 Ω, 1.33 Ω, 1.41 Ω, and 1.53 Ω, respectively) due to their similar
basic forms. However, the transfer resistance Rct (59.15 Ω, 25.41 Ω, 23.66 Ω and 21.03 Ω,
respectively) decreased significantly, which implies that the electronic conductivity of the
LiCo1-1.5xYxPO4@C cathode material was improved with the Y doping. The DLi

+ results are
presented in Table 4. By increasing the Y doping amounts, the D Li

+ was improved, and the
LiCo0.955Y0.03PO4@C electrode showed the best values of 6.16 × 10−14 cm2 s−1, whereas the
LiCoPO4@C electrode only attained 7.11 × 10−16 cm2 s−1. The EIS results reveal that the
intrinsic performance of ionic and electronic conductivities for LiCo1-1.5xYxPO4@C material
was improved by Y substitution. This improvement can be ascribed to the enlargement in
unit cell volume and the increment of the Co-site vacancy caused by aliovalent Y substitution
that provided a convenient pathway for Li ion migration.
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4. Conclusions

In this work, the LiCo1-1.5xYxPO4@C (x = 0, 0.01, 0.02 and 0.03) cathode material was
synthesized in one step. The uniform carbon layer stabilized the interface between the
cathode and electrolyte, inhibiting the continuous side reaction on the LiCoPO4 particle
surface; meanwhile, the Y substitution decreased the antisite defect, increasing the ionic
and electronic conductivities of LiCo1-1.5xYxPO4@C sample. Thus, the LiCo0.97Y0.02PO4@C
cathode exhibited the best electrochemical performance, for instance, delivering an initial
discharge capacity of 148 mAh g−1, with a capacity retention of 75% after 80 cycles at
0.1 C, and delivered a capacity of 96 mAh g−1 at 1 C. The low Li/Co antisite defect, the
enhancement of electronic and Li-ion conductivity caused by Y substitution, and the uniform
carbon layer, worked together to improve the performance of LiCo1-1.5xYxPO4@C cathode.
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