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Abstract: In order to clarify the role of R2O3 in the metal-oxide catalysts derived from complex oxide
precursors, a series of R1.5Ca0.5NiO4 (R = Nd, Sm, Eu) complex oxides was obtained. A significant
systematic increase in the orthorhombic distortion of the R1.5Ca0.5NiO4 structure (K2NiF4 type,
Cmce) from Nd to Eu correlates with a corresponding decrease in their ionic radii. A reduction
of R1.5Ca0.5NiO4 in the Ar/H2 gas mixture at 800 ◦C causes a formation of dense agglomerates of
CaO and R2O3 coated with spherical 25–30 nm particles of Ni metal. The size of metal particles
and oxide agglomerates is similar in all Ni/(R2O3,CaO) composites in the study. Their morphology
is rather similar to the products of redox exsolution obtained by the partial reduction of complex
oxides. All obtained composites demonstrated a significant catalytic activity in the dry reforming
(DRM) and partial oxidation (POM) of methane at 700–800 ◦C. A systematic decrease in the DRM
catalytic activity of composites from Nd to Eu could be attributed to the basicity reduction of R2O3

components of the composite catalysts. The maximum CH4 conversion in POM reaction was observed
for Ni/(Sm2O3,CaO), while the maximum selectivity was demonstrated by Nd2O3-based composite.
The possible reasons for the observed difference are discussed.

Keywords: metal-oxide nanocomposites; multicomponent catalysts; rare earth effect; complex oxide
precursors; K2NiF4 structure; exsolution; dry reforming of methane; partial oxidation of methane

1. Introduction

Most of the modern catalysts of methane conversion to synthesis gas consist of the
nickel nanoparticles allocated at the surface of the various oxide substrates by means of
the traditional incipient wetness technique [1–4]. The application of this technique to the
synthesis of the modern multicomponent metal-oxide catalysts is rather complicated. In
order to solve this problem, several alternative chemical synthesis methods are currently in
study. They are based on the reductive decomposition of various precursors containing all
the necessary cations of these composites in a single molecule or a chemical compound [5–8].
These techniques ensure the homogeneous spatial distribution and the tight contact of the
particles of individual components in the decomposition products.
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One of the most promising of these alternative methods is a reduction of complex
oxides by hydrogen at elevated temperatures. In the case of the partial reduction of com-
plex oxides, also called a redox exsolution technique, the reduction products consist of
the spherical nanoparticles of metal exsolved from the volume of oxide precursor and
tightly bound to the surface of micron-sized particles of the partially reduced complex
oxides [9–14]. The main advantages of this synthesis technique deal with the enhanced
adhesion of metal nanoparticles to the oxide substrate and the possibility of obtaining mul-
ticomponent substrates often used in modern catalytic systems. It was recently discovered
that similar nanocomposites could be obtained not only from the partial but also from the
complete reduction of complex oxides. In this case, reductive decomposition of the complex
oxide causes the formation of tightly bound crystallites of the individual oxides covered by
the spherical metal nanoparticles [15,16]. Both kinds of reduction products appear to be
suitable for application in redox catalysis at elevated temperatures.

The most widely used group of these precursors is complex oxides with a perovskite
structure due to their relatively simple synthesis at moderate temperatures and high
stability of these compounds at elevated temperatures for exsolution synthesis [17–19].
However, in spite of a wide variety of perovskites, the amount of Ni-containing complex
oxides with this structure is rather limited. This constraint deals with the limited stability of
the perovskite lattice, usually described as a Goldschmidt’s tolerance rule strictly limiting
the allowed oxidation states and ionic radii of A cations in the ANiO3 lattice. For these
reasons, most studies on the perovskite-derived Ni-based catalysts deal with LaNiO3 and
its solid solutions as precursors. The possibility of obtaining nanocomposites of Ni metal
with other oxides from these precursors does not seem reasonable.

These limitations produce serious complications to finding the optimum oxide compo-
nents of the metal-oxide catalyst. It is known that the oxide substrate or, more generally,
the oxide components of the composite Ni/MeOx catalysts have a significant effect on
their catalytic performance due to both their own acid–base and redox properties and
due to the metal–substrate interactions (MSI) [20,21]. In the case of methane conversion,
the application of oxides with an acidic surface in catalysis is not desirable, as it prevents
the sorption of CO2 in the course of the complex reaction of methane conversion at the
surface of catalyst; it also promotes the intense coke formation during its exploitation. For
these reasons it is recommended to use metal oxides with significant or strong basicity, like
rare earth and/or alkaline earth oxides, in these catalysts [1,22–26]. In order to promote
the redox processes at the surface of catalyst, the application of oxides with significant
oxygen mobility in their lattice is also helpful. However, the optimum selection of these
oxides and their combinations to improve the performance of conversion catalysts is still
under consideration.

The application of Ruddlesden–Popper complex oxides as precursors for the Ni/MeOx
catalysts opens new ways to study the effect of various rare earth and alkaline earth oxides
on the physico-chemical properties and catalytic performance of these composites [27–29].
These (R,A)2NiO4 compounds are known for the several light rare earth elements such as
Gd. Due to the stability criteria of K2NiF4-like phases, the partial substitution of R with Ca
in these nickelates promotes the stabilization of these compounds and allows one to obtain
them at lower temperatures [30–35]. The formation of continuous R2−xCaxNiO4 solid
solutions allows one to obtain Ni/(R2O3,CaO) composites with various R/Ca ratios from
single-phase precursors under the same processing conditions, ensuring correct comparison
of their physico-chemical and catalytic properties.

It is shown during these studies that the maximum catalytic activity in the POM
reaction among Ni/(Nd2O3,CaO) composites is demonstrated by the Ca-free Ni/Nd2O3
counterpart. However, its activity in the DRM reaction is found to be less than that of
the others. Meanwhile, the optimum selection of a rare earth element for application in
these catalysts with specific morphology remains unclear. For these reasons a synthesis of
several R2−xCaxNiO4 precursors (R = Nd, Sm, Eu) is performed in order to compare the
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morphology and the catalytic properties of their reduction products in partial oxidation
and dry reforming of methane.

2. Materials and Methods
2.1. Synthesis

In order to obtain R1.5Ca0.5NiO4 (R = Nd, Sm, Eu) by the freeze-drying synthesis
method Nd2O3, Sm2O3, Eu2O3, CaCO3, and Ni(NO3)2·6H2O were used as precursors.
Nd2O3, Sm2O3, and Eu2O3 were annealed at 800 ◦C for 2 h and CaCO3 at 400 ◦C for 1 h
before use in order to remove the adsorbed H2O. The amount of H2O in nickel nitrate was
refined by the gravimetric analysis. R2O3 and CaCO3 in the stoichiometric ratios were
dissolved in 20% acetic acid; corresponding amount of Ni(NO3)2·6H2O was added. An
aqueous solution (5 mass %) of polyvinyl alcohol was added to all solutions under intense
stirring. The freeze-drying of flash-frozen solutions was performed in a Labconco FreeZone
7948030 tray dryer (Labconco, Kansas City, MI, USA) at P = 0.7 mbar for 2 days. Thermal
decomposition of the freeze-dried products was performed in air at 1200 ◦C for 6 h. A
reduction of as-obtained R1.5Ca0.5NiO4 powders was performed in an H2:Ar = 1:20 gas
mixture at 850 ◦C for 1 h followed by slow cooling to room temperature.

2.2. Characterization

XRD analysis of the powders was performed using a Rigaku D/MAX-2500PC diffrac-
tometer (Rigaku, Tokyo, Japan) with Cu Kα1 radiation generated on a rotating Cu anode
(40 kV, 250 mA). More detailed investigation of the R1.5Ca0.5NiO4 crystal structure was
performed using powder diffraction of synchrotron radiation at a wavelength λ = 0.74 Å.
The measurements were performed using a 2D Rayonix SX165 detector (Rayonix LLC,
Evanston, IL, USA) at the XSA (X-ray Structural Analysis) beamline of the Kurchatov
synchrotron radiation source. The Rietveld crystal structure refinement of the XRD data
was carried out by the Jana 2006 program package.

The temperature-program med reduction (H2-TPR) of R1.5Ca0.5NiO4 oxides was per-
formed using a USGA device in an H2:Ar = 1:20 gas mixture at a flow rate of 30 cm3 min−1.
The temperature of the samples (~0.05 g) was increased to 950 ◦C at a heating rate of
5 ◦C min−1. The morphology of the powders was studied using a Carl Zeiss NVision
40 scanning electron microscope (Carl Zeiss SMT AG, Oberkochen, Germany).

2.3. Catalytic Experiments

The catalytic tests of the DRM and POM reactions were carried out in a quartz glass
flow fixed-bed reactor (18 mm internal diameter, 300 mm length). The temperature inside
the reactor was measured by a thermocouple placed in a special pocket running lengthwise
along the reactor axis, 8 mm in diameter. A 0.2 g sample of catalyst (100–250 mesh fraction)
was placed in the middle part of the reactor between two quartz glass rods. The free space in
the reactor was filled with closely packed quartz glass fillers in order to eliminate gas-phase
reactions outside the catalyst. The catalytic tests were carried out at atmospheric pressure
in the absence of dilution with inert gas. The catalyst was first heated in hydrogen flow at
10 ◦C min−1 to 900 ◦C. Then, the gas stream was switched to a mixture of CH4/CO2 = 1/1
or CH4/O2 = 2/1. According to the results of our previous studies (Figure 3 in [36]), the
GHSV values were set at 16 and 12 L g−1 h−1 for DRM and POM, respectively. No dilution
of the feed flow by the inert gas was applied. The catalytic experiments were performed
consecutively at 900, 800, 700, and 600 ◦C by maintaining the preselected temperatures for
1–5 h. After the analysis, the furnace was switched off, and the catalyst was cooled to room
temperature over 3–4 h in pure N2.

The methane conversion (X), product selectivity (S), and yield (Y) of the products are
defined as follows:

X(CH4, %) =
moles · o f · CH4 · converted
moles · o f · CH4 · in · f eed

× 100 (1)



Materials 2022, 15, 7265 4 of 11

S(CO · or · CO2, %, ·POM) =
moles · o f · CO · in · products
moles · o f · CH4 · converted

× 100 (2)

S(CO, %, ·DRM) =
moles·o f ·CO·in·products

moles·o f ·CH4+CO2·converted × 100
(3)

S(H2, %) =
moles · o f · H2 · produced

2×moles · o f · CH4 · converted
× 100 (4)

Y(products, %) =
X(CH4, %) · × · S(products, %)

100
(5)

C balance (%) =
moles · o f · C · in products

moles · o f · C · in · f eed
× 100 (6)

The number of moles of the feed gases and gaseous products of the reactions was
calculated based on the measured volumetric velocity of the feeder gases and the products
formed, as well as chromatography data, which makes it possible to fully take into account
the stoichiometry of the reaction and the corresponding volume of expansion of the gaseous
mixture of reagents.

3. Results and Discussion
3.1. Synthesis of R1.5Ca0.5NiO4

Single-phase Nd1.5Ca0.5NiO4, Sm1.5Ca0.5NiO4, and Eu1.5Ca0.5NiO4 nickelates were
obtained using a freeze-drying procedure similar to that in [15,16]. XRD study of the
obtained complex oxides revealed that their crystal structure belonged to the orthorhombi-
cally distorted K2NiF4 type. Detailed investigation of the obtained R1.5Ca0.5NiO4 crystal
structure was performed using Rietveld refinement of the synchrotron powder diffraction
data (Figure 1).
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According to the Rietveld refinement data, the R1.5Ca0.5NiO4 unit cell c parameter de-
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Figure 1. Rietveld refinement plots of the synchrotron data for Nd1.5Ca0.5NiO4, Sm1.5Ca0.5NiO4, and
Eu1.5Ca0.5NiO4: observed (red), calculated (black) and difference (blue) curves. Bragg reflections
positions are marked as short vertical lines below the observed and calculated data.

The orthorhombic Cmce model was assigned to each nickelate. This polymorph of
the K2NiF4 structure was previously observed for Nd2−xCaxNiO4 solid solutions with Ca
contents close to 0.5 [16]. In addition, the same structure type was found for Sm1.5Ca0.5NiO4
oxide in [37]. Information on the structure and properties of Eu1.5Ca0.5NiO4 was not found
in the literature.

According to the Rietveld refinement data, the R1.5Ca0.5NiO4 unit cell c parameter
decreased systematically from Nd to Eu (Figure 2a,b) in accordance with the decrease of the
R3+ ionic radii [31,38]. The degree of orthorhombic distortion which can be estimated by the
difference between the a and b parameters was found to increase in this series (Figure 2a).
However, despite such considerable changes in unit cell dimensions, the observed Ni-O
distances were almost the same within the R1.5Ca0.5NiO4 series (Figure 2c,d). This indicated
that the valence states of Ni were highly likely to be the same for all discussed R1.5Ca0.5NiO4
compounds and similar to that for Nd1.5Ca0.5NiO4 wherein the mixed Ni2+:Ni3 + =1:1
valence state of Ni was proposed [15]. Moreover, the fact that all of the R1.5Ca0.5NiO4
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nickelates were characterized by the Cmce type of K2NiF4 structure might be attributed
to the nearly stoichiometric oxygen content in these complex oxides also observed for
Nd1.5Ca0.5NiO4, and thus correspond to the Ni formal oxidation state of 2.5 [39].
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Figure 2. Representation of the Cmce lattice of the R1.5Ca0.5NiO4 crystal structure obtained by the
Rietveld refinement (left); dependences of lattice parameters on the nickelate composition (a,b);
representation of Ni octahedral coordination in the R1.5Ca0.5NiO4 structure obtained by the Rietveld
refinement (c); dependences of Ni-O distances on the nickelate composition (d).

Therefore, the structure distortion in Nd-Sm-Eu nickelates is likely related to the
corresponding rare earths’ ionic radii effect, similar to that in ABO3 perovskites described by
Goldschmidt’s tolerance factor. Smaller R3+ cations corresponded to less-stable perovskite-
like K2NiF4 oxides. This decrease in the K2NiF4-like lattice stability correlates with a
systematic increase in the temperature needed to obtain Nd1.5Ca0.5NiO4, Sm1.5Ca0.5NiO4,
and Eu1.5Ca0.5NiO4 nickelates (1000, 1100, and 1250 ◦C, respectively). Gd1.5Ca0.5NiO4 is
less stable, so we could not obtain it even at 1350 ◦C (Supplementary Figures S1 and S2).

3.2. Synthesis of Ni/(R2O3,CaO) Composites

According to the temperature-programmed reduction (H2-TPR) data, the reduction
of the Sm1.5Ca0.5NiO4 and Eu1.5Ca0.5NiO4 complex oxides occurred in a similar way to
that of Nd1.5Ca0.5NiO4; the latter was described in [15]. All three H2-TPR profiles consisted
of two maxima of H2 consumption, one at 450–600 ◦C and one at 700–800 ◦C (Figure 3a).
These maxima can be attributed to the partial and complete reduction of the complex oxide,
respectively. According to previous research data [15,16], the complete reduction of K2NiF4
nickelates led to the mixture of Ni metal and individual rare/alkaline earths’ oxides; this
was the case for Sm1.5Ca0.5NiO4 and Eu1.5Ca0.5NiO4, too. Analysis of the XRD data showed
that all of the nickelates under investigation were completely reduced at 900 ◦C in H2 flow.
All of the reduced samples were composed of Ni metal (ICCD#: 00-004-0850), CaO (ICCD#:
00-037-1497), and different polymorphs of R2O3 (Figure 3b). For the Nd-containing sample,
it was h-Nd2O3 (ICCD#: 00-041-1089); for the Sm-containing sample, it was c-Sm2O3
(ICCD#: 00-015-0813); and for Eu-containing sample, it was a mixture of cubic (ICCD#:
00-034-0392) and monoclinic (ICCD#: 00-034-0072) Eu2O3 modifications.
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The microstructure of the obtained Ni/(R2O3,CaO) composites was investigated using
the SEM technique. It has been established that the morphology transformations dur-
ing the R1.5Ca0.5NiO4 complete reduction were similar to those observed in the case of
Nd2−xCaxNiO4 and Nd2−yCayCo1−xNixO4 reduction [15,16,36].

According to the SEM micrographs, the initial R1.5Ca0.5NiO4 samples consisted of
2–3 µm crystallites with clear traces of the intense sintering which was induced by the
relatively high annealing temperatures that occurred during their synthesis (Figure 4,
×25k). The composites obtained by the reduction of R1.5Ca0.5NiO4 were also characterized
by a similar ceramic-like morphology. They were constructed by large, closely packed
2–3 µm grains of nearly polygonal shape separated by the distinct grain boundaries; the
surface of such grains was uniformly covered by spherical nanoparticles.

This type of morphology is usually observed for redox exsolution products, wherein
the grains of the partially reduced oxide precursors are decorated with uniformly dis-
tributed metal nanoparticles [11–14]. The same microstructural pattern has been observed
for complete reduction products of Nd2−xCaxNiO4, for which ~25 nm Ni particles were
anchored to the surface of dense agglomerates of Nd2O3 and CaO oxides [16]. These
composites inherited the morphology of the initial nickelate powder. In the present study,
Ni/(Nd2O3,CaO) composite also inherited the morphology of the sintered Nd1.5Ca0.5NiO4
sample. According to our previous studies [15,16], these large “grains” corresponded
to the dense aggregates of Nd2O3 and CaO, while spherical particles anchored to their
surface corresponded to the Ni metal phase. The same microstructure was observed
for the Ni/(Sm2O3,CaO) and Ni/(Eu2O3,CaO) composites obtained by the reduction of
Sm1.5Ca0.5NiO4 and Eu1.5Ca0.5NiO4, respectively, which has never been described before.

Statistical analysis of the Ni particles size in SEM micrographs of the Ni/(R2O3,CaO)
composites (Figure 4; ×100k, ×250k) demonstrated that all of the samples were charac-
terized by similar Ni size distributions, with maxima around 24 nm and little or no rare
earth effect. This shows the primary role of the similar R1.5Ca0.5NiO4 reduction conditions
detected by the TPR technique and the equal H2 annealing temperatures that led to the
similar morphology of the Ni/(R2O3,CaO) composites.
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3.3. DRM and POM Catalytic Testing

The catalytic performance of the obtained Ni/(R2O3,CaO) nanocomposites in DRM
and POM processes at 600–900 ◦C was evaluated using a flow reactor and undiluted
CH4/CO2 and CH4/O2 mixtures, respectively. It was found during DRM testing that all
of the presented samples demonstrated relatively high catalytic activity compared with
other Ni-based catalysts (Figure 5a,b) [1,2]. However, the values of the CO and H2 yields
decreased within the Nd-Sm-Eu series from ~90 % for the Nd-containing sample to ~70%
for the Eu-containing catalyst at 800 ◦C.

The opposite tendency was observed during POM testing of the Ni/(R2O3,CaO)
nanocomposite catalysts (Figure 5c,d). Ni/(Sm2O3,CaO) and Ni/(Eu2O3,CaO) samples
demonstrated slightly higher CH4 conversion than the Nd-containing catalyst. Notably,
that Ni/(Nd2O3,CaO) nanocomposite showed better CO selectivity at 700 and 800 ◦C in
the POM reaction.

The essential feature of such metal–oxide composites produced by the exsolution-
like synthesis is the reproducibility of their catalytic performance in the course of redox
processes taking place in the active phase. It was determined that this was the case for
R1.5Ca0.5NiO4 reduction products. It was reported previously [16] that Ni/(Nd2O3,CaO)
nanocomposites obtained via Nd2−xCaxNiO4 decomposition remained chemically stable
during DRM reaction at 600–900 ◦C, whereas the POM environment caused the oxidation
of Ni particles to NiO oxide. Thus, the same tendency is likely presented in the case of
Ni/(R2O3,CaO) catalysts. Cyclic DRM catalytic testing (Figure 6a) revealed that the high
performance of Ni/(Eu2O3,CaO) nanocomposite was completely restored when the reaction
temperature was raised back to 900 ◦C. Cyclic POM testing of Ni/(Sm2O3,CaO) catalyst
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(Figure 6b) also demonstrated a similar restoration of the CO and H2 yields to their high
initial values after being reheated, despite the oxidation processes that took place at lower
temperatures. It is notable that the decrease of R1.5Ca0.5NiO4 stability discussed before in
Section 3.1 should completely suppress the resynthesis process, which drastically decreased
the catalytic activity of the similar Co-containing composites in the POM reaction [15].
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Since the microstructures of all of the obtained materials were found to be similar,
the difference in the catalytic DRM and POM performance can likely be attributed to the
difference in their Ni/(R2O3,CaO) compositions. The possible effects of various rare earth
oxides on the catalytic activity in DRM and POM reactions were discussed in [23–25]. In
most cases, the role of R2O3 oxide in DRM reactions is usually associated with CO2 capture
and activation. Thus, a higher basicity of the rare earth oxide provides more efficient
CO2 chemisorption, leading to higher catalytic activity. As the basicity decreases in the
Nd2O3–Sm2O3–Eu2O3 series, it seems reasonable to suppose a parallel decrease in the CO2
activation efficiency. This is likely the case for exsolved Ni/(R2O3,CaO) nanocomposites-
containing samples—both CO and H2 yields decrease from Nd to Eu.
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In the case of POM reactions, the roles of the rare earth oxides are different at the
different stages of this complex multistage process. These oxides are often considered as a
source of active lattice oxygen, providing total oxidation of methane to CO2—the first step
to the partial oxidation products. For instance, the role of La2O3 in POM reactions over
Ni/La2O3 catalyst is discussed in detail in [28]; the involvement of Nd2O3 lattice oxygen
is also reported in [40]. Thus, the observed differences in the CH4 conversion between
Ni/(Nd2O3,CaO) and Sm- and Eu-containing catalysts can be attributed to the different
efficiencies of total oxidation. Most likely, Sm2O3 and Eu2O3 provide a higher yield of the
intermediate CH4 → CO2 transformation in comparison with Nd2O3 oxide. This effect led
to the slight but distinct increase in the methane conversion values at 700–800 ◦C. On the
other hand, the increase in CO2 yield in the first POM reaction step can cause an increase in
the overall CO2 yield, lowering the CO selectivity. This hypothesis was found to be in good
agreement with the experimental data; CO selectivity values for Ni/(Nd2O3,CaO) at 800 ◦C
are ~20 % higher than those for Ni/(Sm2O3,CaO) and Ni/(Eu2O3,CaO) nanocomposites.

4. Conclusions

Nd1.5Ca0.5NiO4, Sm1.5Ca0.5NiO4, and Eu1.5Ca0.5NiO4 nickelates with perovskite-like
K2NiF4 structure were synthesized by freeze-drying technique; Eu1.5Ca0.5NiO4 was ob-
tained and described for the first time. Rietveld refinement of the synchrotron diffraction
data proved the formation of Cmce structure modification with a gradual increase of the
orthorhombic distortion grade from Nd- to Eu-containing oxide.

All of the obtained nickelates demonstrated similar complete reduction conditions
determined using the H2-TPR technique. The reduction processes of Sm1.5Ca0.5NiO4 and
Eu1.5Ca0.5NiO4 and the properties of their reduction products are also described for the
first time. The composites obtained by R1.5Ca0.5NiO4 reduction at 900 ◦C consisted of Ni
metal, CaO, and corresponding R2O3 oxides. The microstructure of as-obtained metal-
oxide nanocomposites is very similar to the typical microstructure of the redox exsolution
products: the crystallites of the oxide phases formed dense agglomerates decorated by the
uniformly distributed ~25 nm anchored particles of Ni metal. The identical microstructure
of all of the Ni/(R2O3,CaO) nanocomposites in the study can be attributed to the similar
temperatures of their reduction.

Catalytic testing of the obtained Ni/(R2O3,CaO) materials in DRM and POM reactions
proved their excellent activity in both processes. Comparative analysis of their catalytic
properties demonstrated a gradual decrease of the syngas yield in the DRM process within
the Ni/(Nd2O3,CaO)–Ni/(Sm2O3,CaO)–Ni/(Eu2O3,CaO) series. This effect is most likely
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related to the decrease of the corresponding rare earth oxides’ basicity and less-efficient
CO2 activation. During POM testing, a slight increase in the methane conversion was
detected for the same series. The probable nature of this effect could deal with the in-
tensity increase of the total oxidation of methane, which led to the considerable decrease
in the CO selectivity of Ni/(Sm2O3,CaO) and Ni/(Eu2O3,CaO) in comparison with the
Ni/(Nd2O3,CaO) sample.
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