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Abstract: Crystalline materials with appealing luminescent properties are attractive materials for
various optoelectronic applications. The in situ bicomponent reaction of 1,2-ethylenedisulfonic
acid with 1,4-di(pyrid-2-yl)benzene, 1,4-di(pyrid-3-yl)benzene, or 1,4-di(pyrid-4-yl)benzene affords
luminescent crystals with hydrogen-bonded polymeric structures. Variations in the positions of the
pyridine nitrogen atoms lead to alternating polymeric structures with either a ladder- or zigzag-type
of molecular arrangement. By using a nanoprecipitation method, microcrystals of these polymeric
structures are prepared, showing polarized luminescence with a moderate degree of polarization.

Keywords: molecular crystals; hydrogen bond; luminescence; assembly

1. Introduction

Micro/nanoscale assembly materials with polarized luminescence have attracted great
attention in fields of anisotropic emission [1–4], circular polarized luminescence [5–7],
lasers [8,9], etc. By means of aligning small molecules into ordered arrangements with
noncovalent intermolecular interactions, various organic micro/nanocrystalline assemblies
have been developed [10–12]. Among them, hydrogen bonds featuring moderate interac-
tion strength and high directionality have been employed in bottom-up assemblies [13,14].
Furthermore, multicomponent coassembly relying on hydrogen-bonding interactions has
been demonstrated as an effective strategy for the construction of low-dimensional organic
microcrystals and micro/nanostructures [15,16]. However, the efficient preparation and
rational manipulation of multicomponent molecular cocrystals at micro/nanoscales is still
a challenging task.

Pyridine-containing functional chromophores are important organic dyes, which exhibit
interesting acid/base stimuli-responsive emission characteristics in solutions [17,18] and the
crystal state [19–24]. The multicomponent assemblies of pyridine-containing chromophores
have become a versatile platform to prepare molecular nanostructures with appealing photonic
applications in recent decades [25–28]. Here, we present a simple strategy for the fabrication
of hydrogen-bonded microscale molecular cocrystals using the in situ coassembly of linear
chromophores containing two terminal pyridine groups with a linear disulfonic acid component.
Cocrystals are a common and useful strategy for creating ordered and crystalline materials
from an assembly of multiple components. For instance, the formation of cocrystals is an
effective means for enhancing the solubility and release dynamics of some drugs [29–31]. In
addition, the pyridine–carboxylic acid interaction is commonly employed in crystal engineering
to obtain mono- or multicomponent crystals [32–35]. However, only limited numbers of
hydrogen-bonded cocrystals have been reported to show emission properties toward photonic
applications [28,36].
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Our recent works show that the in situ reaction and crystallization of a mixture of
pyridine-functionalized organic chromophores with a strong protonic acid, such as sulfonic
acid and perchloric acid, are able to provide cocrystals with an ordered morphology and
intense emission [4,16]. The use of a strong acid in this method, instead of a common
carboxylic acid compound, leads to the protonation of the pyridine units to give ionic
pyridinium moieties with strong charge transfer emissions. Stimulated by these results,
we are interested to examine the potential of the reactions of dipyridine-functionalized
organic chromophores with a diacid component. Specifically, the in situ reaction of the
pyridine-containing molecule 1,4-di(pyrid-2-yl)benzene (1), 1,4-di(pyrid-3-yl)benzene (2),
or 1,4-di(pyrid-4-yl)benzene (3) with 1,2-ethylenedisulfonic acid was found to yield pro-
tonated pyridinium-sulfonate binary cocrystals 4–6, respectively, with hydrogen-bonded
polymeric structures (Figure 1). Molecules 1–3 with a 1,4-dipyridylbenzene skeleton are
commonly used as ligands in coordination chemistry [37,38]. They were selected as the
model compounds for the binary assembly with 1,2-ethylenedisulfonic acid in the hope
of tuning the structures and properties of the obtained cocrystals through engineering the
hydrogen-bond directions. The variation of the positions of the pyridine nitrogen atoms
on the skeleton allows for the formation of hydrogen bonds between pyridinium protons
and sulfonate anions in different directions. In addition, the polarized emission properties
of organic crystals are highly dependent on the molecular arrangement, and those with
consistent parallel or antiparallel molecular orientation generally display a high degree of
emission polarization [39–42]. On account of the highly ordered binary molecular packing
in two-component linear hydrogen-bonded polymers, the fabricated microcrystals are
expected to display prominent polarized emissions.
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Figure 1. Schematic diagram of the reaction of 1,2-ethylenedisulfonic acid with 1–3 to give polymeric
structures 4–6, respectively.

2. Materials and Methods
2.1. Materials

Compounds 1,4-di(pyrid-2-yl)benzene (1), 1,4-di(pyrid-3-yl)benzene (2), and 1,4-
di(pyrid-4-yl)benzene (3) were purchased from Nanchang Chouhechem Pharmatech Co.,
Ltd., (Nanchang, China) and used as received without further treatment. The compound
1,2-ethylenedisulfonic acid hydrate was obtained from Anhui Senrise Technology Co.,
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Ltd. (Anqing, Anhui Province, China). The solvent of methanol used in this article was
chromatographically pure.

2.2. Sample Preparation

Growth of Single Crystals of 4, 5, and 6. These single crystals were obtained via slow
solvent evaporation from a mixed solution of 1,2-ethylenedisulfonic acid with 1 (1.2 mM),
2 (0.4 mM), or 3 (0.1 mM), respectively, in methanol in a 1:1 molar ratio.

Preparation of Microcrystals of 4. The microcrystals were prepared with a nanopre-
cipitation method. A solution of 1 (1 mL, 20 mM) in MeOH was quickly injected into a
solution of 1,2-ethylenedisulfonic acid (1 mL, 20 mM) in MeOH. After mild ultrasonication
for 2 min, a colloid solution was obtained, which was aged for 2 h at rt to give a mixture
containing the microcrystals of 4 at the bottom of the vial. After filtration, 3.7 mg of 4 was
obtained in 43.8% yield. 1 H NMR (400 MHz, DMSO-d6) δ 8.75 (d, J = 4.2 Hz, 2H), 8.24 (s,
4H), 8.16 (d, J = 7.9 Hz, 2H), 8.07 (t, J = 7.4 Hz, 2H), 7.56–7.48 (m, 2H), 2.64 (s, 4H).

Preparation of Microcrystals of 5. Using the same method for the preparation of the
microcrystals of 4, those of 5 were obtained from 2 (1 mL, 20 mM) and 1,2-ethylenedisulfonic
acid (1 mL, 20 mM) in 69.9% yield (5.9 mg of 5 was obtained). 1H NMR (400 MHz, DMSO-
d6) δ 9.12 (s, 2H), 8.73 (d, J = 5.0 Hz, 2H), 8.46 (d, J = 7.7 Hz, 2H), 7.98 (s, 4H), 7.76 (dd,
J = 7.7, 5.3 Hz, 2H), 2.63 (s, 4H).

Preparation of Microcrystals of 6. Using the same method for the preparation of the mi-
crocrystals of 4, those of 6 were obtained from 3 (1 mL, 20 mM) with 1,2-ethylenedisulfonic
acid (1 mL, 20 mM) in a 71.1% yield (6.0 mg of 6 was obtained). 1H NMR (400 MHz,
DMSO-d6) δ 8.80 (d, J = 6.1 Hz, 4H), 8.09 (s, 4H), 8.05 (s, 4H), 2.61 (s, 4H).

2.3. Characterization

X-Ray Diffraction Analysis. The single-crystal X-ray diffraction data were collected
using a Talab Synergy-R diffractometer on a rotating anode (Cu Kα radiation, 1.54184 Å)
at 170 K. The structure was solved with the direct method using SHELXS-97 and refined
with Olex 2. CCDC numbers were 2181166, 2208263, and 2181168 for crystals of 4, 5,
and 6, respectively. Powder X-ray diffractions were carried out on a Malvern Panalytical
Empyrean instrument.

2.4. Equipment Information of Physical Measurements
1H NMR spectra were recorded on a Bruker Avance 400 MHz spectrometer. Diffusion-

ordered spectroscopy (DOSY) NMR data were acquired with a Bruker Avance 600 MHz
spectrometer. FTIR spectra were obtained on a Bruker VERTEX 70 v spectrometer. A
thermogravimetric analysis (TGA) experiment was carried out on a Diamond TG/DTA
analyzer from PerkinElmer Inc. The photoluminescence and UV/VIS absorption spectrum
at room temperature were measured with an F-380 spectrofluorimeter from Tianjin Gang-
dong Sci. & Tech. Development Co., Ltd., (Tianjin, China) and a PerkinElmer UV/VIS/NIR
spectrometer Lambda 750 with a 150 mm integrating sphere, respectively. Bright-field
and fluorescence microscopy characterization was carried out using an Olympus BX53M
microscope by exciting the samples with LED and mercury lamps, respectively. The
morphology and crystallinity of microcrystals were examined with SEM using a Hitachi
SU8010 instrument operating at 10 kV. The absolute emission quantum yield and excited-
state emission lifetimes were measured with a Hamamatsu Quantaurus-QY spectrometer
C11347 and Hamamatsu Quantaurus-Tau spectrometer C11367, respectively. The polarized
luminescence measurements for individual microcrystals were carried out on a custom
micro-photoluminescence system, as illustrated in Supplementary Materials Figure S12.

2.5. Methods of Calculation

The electronic structures of [1-H2]2+, [2-H2]2+, and [3-H2]2+ were optimized by using
the density functional theory (DFT) calculations on the Gaussian 09 program package with
the B3LYP exchange correlation functional and the 6–31 G ** basis set [43]. Solvent effects
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in CH3OH were included. Time-dependent DFT (TDDFT) calculations were performed on
the optimized structures with the same level of theory.

3. Results
3.1. Studies on Single Crystals

Single crystals of the hydrogen-bonded binary cocrystals of 4, 5, and 6 were obtained
via a direct evaporation method from the stock solution of a mixture of 1,2-ethylenedisulfonic
acid with 1, 2, and 3 (1:1 molar ratio; 0.1–1.2 mM in CH3OH), respectively, under ambient
conditions. X-ray diffraction (XRD) data of these single crystals showed that the crystals of
4 and 5 belonged to crystallographic triclinic groups and the crystal of 6 had a monoclinic
group. The crystallographic data are summarized in Table 1.

Table 1. Crystallographic data of 4–6.

Compound 4 5 6

CCDC number 2181166 2208263 2181168
empirical formula C18H18N2O6S2 C18H18N2O6S2 C18H18N2O6S2

formula weight 422.46 422.46 422.46
temperature (K) 170.00(10) 170.00(10) 169.99(10)
crystal system Triclinic Triclinic Monoclinic
space group P-1 P-1 P2/c

a (Å) 5.18630(10) 5.4682(3) 16.0369(2)
b (Å) 8.3578(2) 8.5731(4) 9.90610(10)
c (Å) 10.4965(2) 9.9083(5) 11.22670(10)
α (°) 82.122(2) 81.978(4) 90
β (°) 86.845(2) 75.842(5) 90.3780(10)
γ (°) 88.969(2) 87.649(4) 90

V (Å3) 449.980(16) 445.97(4) 1783.47(3)
Z value 1 1 4

density (g/cm3) 1.559 1.573 1.573
R1 (final) 0.0326 0.0421 0.0310

wR2 (final) 0.0889 0.1177 0.0815
R1 (all) 0.0329 0.0438 0.0325

wR2 (all) 0.0892 0.1192 0.0826

The molecular packings of the single crystals of 4–6 are displayed in Figures 2–4. The
pyridine groups of the parent molecules (1–3) were protonated with acid to give ionic
pyridinium structures. In the resulting crystals of 4–6, there were hydrogen bonding
interactions between the pyridinium hydrogen atoms and the anionic sulfonate oxygen
atoms, with H···O lengths of 1.832 Å (4), 1.826 Å (5), and 1.863 Å (6), respectively. Because
each molecule of 1–3 contained two terminal pyridine groups, and 1,2-ethylenedisulfonic
acid possessed two terminal sulfonic acid units, their alternating bicomponent reactions
gave rise to hydrogen-bonded polymeric structures. However, as the positions of the
pyridine nitrogen atoms changed, the obtained crystals of 4–6 displayed different polymeric
configurations and molecular packing.

The bispyridinium and bis-sulfonate molecules of 4 were arranged in an alternating
and parallel fashion to give a hydrogen-bonded polymer with a ladder-type configuration
(Figure 2a). The molecular orientations of the long axes of both bispyridinium and bis-
sulfonate molecules were nearly parallel to the c axis of the crystal cell (Figure 2b). As
viewed from the c axis, the bispyridinium and bis-sulfonate molecules were well separated
from the surrounding structures (Figure 2c). The shortest interplanar distance between
adjacent pyridine/benzene segments was longer than 5 Å, suggesting that no distinct π···π
interactions were present in crystal 4.
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Figure 2. Molecular packing of the single crystal of 4 viewed from the (a) a, (b) b, and (c) c axes.

In the crystal of 5, the hydrogen-bonded polymer took an alternating zigzag shape, in
which the bispyridinium and bis-sulfonate molecules were parallel to each other and their
long axes were aligned in the same direction as the c axis of the crystal cell (Figure 3b). Some
weak π···π interactions were present between the pyridinium units of adjacent polymeric
structures, as shown in Figure 3c. The polymeric structure of 6 also displayed an alternating
zigzag shape (Figure 4c). However, the long axes of the bispyridinium and bis-sulfonate
molecules were almost perpendicular to each other, which was somewhat different with
respect to those of 5. The molecular packing showed that the polymeric chains of 6 were
packed in a distinct layered arrangement, as viewed from the a axis of the crystal cell
(Figure 4a). The image shown in Figure 4c corresponds to the top view of a single-layer
structure, in which the polymeric chains were stacked compactly with the presence of π···π
interactions between interchain benzene and pyridinium moieties (Figure 4d).
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respectively. (c) Molecular stacking with potential π···π interaction of 5.



Materials 2022, 15, 7247 6 of 11

Materials 2022, 15, x FOR PEER REVIEW 6 of 12 
 

 

 

Figure 3. (a,b) Molecular packing of the single crystal of 5 viewed from the (a) a and (b) b axes, 

respectively. (c) Molecular stacking with potential π∙∙∙π interaction of 5. 

 

Figure 4. (a–c) Molecular packing of the single crystal of 6 viewed from the (a) a, (b) c, and (c) b axis, 

respectively. (d) Molecular stacking with potential π∙∙∙π interaction of 6.  

H∙∙∙O: 1.826 Å

plane–plane centroid: 3.517 Å

plane centroid–plane centroid: 4.020 Å

plane–plane shift: 1.947 Å

(a)

(b)

(c)

H∙∙∙O: 1.863 Å

plane–plane centroid: 3.483 Å

plane centroid–plane centroid: 3.693 Å

plane–plane shift: 1.566 Å

(a) (b)

(c)

(d)

Figure 4. (a–c) Molecular packing of the single crystal of 6 viewed from the (a) a, (b) c, and (c) b axis,
respectively. (d) Molecular stacking with potential π···π interaction of 6.

3.2. Studies of Microcrystals

In conjugation with the recent interest in organic nanophotonics on the basis of lumi-
nescent nano/microcrystals [9–12], we intended to obtain small-sized crystals from the
bicomponent reactions of 1,2-ethylenedisulfonic acid with 1–3, respectively. By using a
nanoprecipitation method, in which a concentrated stock solution of 1, 2, or 3 (20 mM in
CH3OH) was quickly injected into the solution of 1,2-ethylenedisulfonic acid (20 mM in
CH3OH) under mild sonification, we were able to prepare microcrystals of 4 and 6 with a
rod- or needle-like shape and that of 5 with a platelet shape (Figure 5). The microrods of 4
had sizes of 50–100 µm in length and 3−5 µm in diameter. The platelet microcrystals of 5
showed a rhomboid morphology with a length of 8–15 µm and thickness of approximately
1 µm, as revealed by using the scanning electronic microscopy (SEM) analysis (Figure 5h).
The microneedles of 6 had lengths of 30–80 µm and diameters of 1–2 µm. These micro-
crystals displayed bright deep-blue or cyan emissions under the illumination of a mercury
lamp (Figure 5d–f).
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Figure 5. (a–c) Bright-field and (d–f) fluorescent microscopy images and (g–i) SEM images of the
microcrystals of (a,d,g) 4, (b,e,h) 5, and (c,f,i) 6. The fluorescent microscopy images were captured
under the illumination of UV band (330–385 nm) of a mercury lamp. The inset of panel (h) shows an
enlarged crystal. Scale bars are 50 µm unless otherwise noted.

1H NMR spectra of these microcrystals were recorded in deuterated dimethyl sulfoxide
(DMSO-d6; Figures S1, S3, and S5). The 1H signals from both the phenyl-bridged bipyridinium
moiety and the ethylene unit of 1,2-ethylenedisulfonate could be discerned. The integration of
the 1H signals suggested that these two components were present in a 1:1 molar ratio in the
microcrystals. However, the hydrogen-bonded polymeric structures may not have been present
in the solution, which would have been disrupted by the DMSO-d6 solvent. This was supported
by the 2D DOSY NMR spectra of these crystals (Figures S2, S4 and S6). These 1H NMR signals
displayed a diffusion coefficient of 2.031× 10−10, 2.063× 10−10, and 2.177× 10−10 m2/s for
4–6, respectively, in accordance with typical values for small molecules. The FTIR spectra
of these microcrystals in KBr pellets showed the presence of broad peaks at approximately
3500 cm−1, which could be attributed to the vibrations of hydrogen bonds (Figure S7). The
TGA results showed that the decomposition temperatures of 4–6 were 298, 240, and 311 ◦C,
respectively (Figure S8).

The powder X-ray diffraction (PXRD) results illustrated the crystallinity and regularity
of the above microcrystals (Figure 6). A set of prominent diffraction peaks was observed,
indexed to the exposed crystallographic planes of (010) of 4, (1–10) of 5, and (020) of 6,
respectively, besides some weak higher-order peaks. These peaks were in accordance with
the simulated patterns of corresponding single-crystal diffraction data (Figure S9).
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Figure 6. PXRD data of microcrystals of 4–6.
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Figure 7 displays the absorption and emission spectra of the microcrystals of 4–6. Their
absorption spectra were mainly located in the UV band range with the maximum absorption
wavelength at 280, 315, and 282 nm, respectively. In particular, the microcrystals of 5 showed
much shallower and broader absorption with respect to those of 4 and 6. Accordingly, the
emission spectrum of 5 was significantly red-shifted with respect to that of 4, with an
emission maximum wavelength at 385 and 456 nm, respectively. The emission spectrum of
6 covered a broader wavelength range, between 350 and 600 nm, with respect to those of 4
and 5. The reason for these differences was not clear at this stage. The π···π interactions in
the crystals of 5 and 6 may have played a role. The absolute emission quantum yields of the
microcrystals of 4–6 were 12.9%, 27.7%, and 18.0%, respectively. Their photoluminescence
lifetimes were in the range of 1.8–11.7 ns (Table S1 and Figure S10).

The absorption and emission properties of 4–6 are believed to be largely determined
by the π-conjugated phenyl-bipyridinium moiety. DFT and TDDFT calculations were
performed on the bisprotonated forms of 1–3, namely, [1-H2]2+, [2-H2]2+, and [3-H2]2+,
which were taken as the model compounds for the polymeric structures of 4–6, respectively
(Figure S11). In the case of [1-H2]2+, both the highest occupied molecule orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) had delocalized structures across the
whole phenyl-bipyridinium moiety, suggesting that the HOMO→ LUMO transition had
a π/π* character. However, in the cases of [2-H2]2+ and [3-H2]2+, heavy contributions of
the charger transfer from the central phenyl unit to the terminal pyridinium groups were
involved. These results suggested that the emission of 4 had a major π/π* character, while
those of 5 and 6 were dominated by charger transfer processes.
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Figure 7. Absorption (dashed lines) and photoluminescence (solid lines) spectra of microcrystals of
4–6. Excitation wavelength: 280 nm for 4 and 6; 315 nm for 5.

3.3. Polarized Luminescence

Micro/nanoscale crystalline materials with polarized emissions are important func-
tional materials for nanophotonic applications [11,44]. The polarized emission characteris-
tics of single microcrystals were determined on a home-made luminescence microscopy
platform (Figure S12). The microcrystal was excited with a 405 nm continuous-wave (CW)
laser. The photoluminescence intensity of the microcrystal displayed an angle-dependent
modulation of emission intensity as the polarization analyzer in front of the spectrometer
was rotated to a certain degree (Figure 8). Accordingly, the corresponding polarization
emission profile yielded a fitted curve in the shape of the number “8”. The long axis of the
fitted polarization emission profile was in accordance with the oriented direction of the
molecular transition dipoles (µ) of the crystal under study [39–42]. In other words, when
the electric field of the light was parallel to µ, the emission was the highest (Imax), while
the emission was the lowest (Imin) when the electric field was vertical to µ. The property
of polarization emission could be evaluated with the polarization degree P, which was
determined by using P = (Imax − Imin)/(Imax + Imin). The microcrystals of 4–6 were esti-
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mated to have P of 0.44, 0.24, and 0.35, respectively. This reflected the moderate polarized
emission property of these crystals. Organic and metal–organic microcrystals possessing
larger P values of approximately 0.9 have been reported [3,4]. In addition to the molecular
orientation, the P value was highly dependent on the quality of the crystal. The moderate
P values of 4–6 were possibly caused by the relatively low quality of these crystals.
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solid lines in panels (b,d,f) are fitted curves with the mathematical function of sin2. Insets are the
fluorescent microscopy images of corresponding microcrystals. All microcrystals were excited with a
focused semiconductor laser (CW, 405 nm).

4. Conclusions

In summary, luminescent crystalline materials were prepared from the bicomponent
reaction of linear dipyridine molecules with 1,2-ethylenedisulfonic acid. These crystals
possessed polymeric molecular structures linked by hydrogen bonds between pyridinium
protons and sulfonate oxygen atoms. Corresponding microcrystals displayed polarized
emission characteristics with a moderate degree of polarization. The changes of the positions
of the pyridine nitrogen atoms led to hydrogen-bonded polymeric structures with different
(ladder- or zigzag-type) molecular arrangements. We are currently working on the expansion
of this bicomponent reaction method into other pyridine-functionalized chromophores in
the hope of obtaining nano/microcrystals with improved luminescent properties.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15207247/s1, Figures S1, S3, and S5: 1H NMR spectra of 4–6;
Figures S2, S4, and S6: 1H NMR DOSY spectra of 4–6; Figure S7: FTIR spectra of the microcrystals of
4–6; Figure S8: TGA results of the microcrystals of 4–6; Figure S9: simulated powder XRD patterns of
4–6 based on their single-crystal data; Table S1: photophysics data of microcrystals of 4–6; Figure S10:
lifetime decay curves for microcrystals of 4–6; Figure S11: TDDFT calculation results of [1-H2]2+,
[2-H2]2+, and [3-H2]2+; Figure S12: schematic demonstration of the experimental setup for polarized
luminescence characterization for a single microcrystal.
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