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Abstract: The composition and antibacterial properties of copper particles synthesized by a very
simple reduction method were studied. For the preparation of particles in knitted fabrics, copper(II)
sulfate was used as a precursor and ascorbic acid as a reducing natural agent. X-ray diffraction
analysis showed the crystalline nature of the obtained particles. The round or oval particles and
their agglomerates in knitted fabrics consisted of copper with traces of copper(I) oxide—cuprite. The
element maps and energy dispersive X-ray spectra showed a high content of copper in the samples.
The samples of wool and cotton knitted fabrics with copper particles had excellent antibacterial
activity against gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli
(E. coli) bacterial strains. The maximum zones of inhibition were 19.3 mm for S. aureus and 18.3 mm
for E. coli using wool knitted fabric and 14.7 mm and 15.3 mm using cotton knitted fabric, respectively.
The obtained results showed that the modified wool and cotton fabrics are suitable for use as inserts
in reusable masks due to their noticeable and long-term activity against pathogenic bacteria.

Keywords: antibacterial activity; copper particles; ascorbic acid; S. aureus; E. coli

1. Introduction

The fast global spread of the COVID-19 pandemic has undoubtedly revealed the
unpreparedness of people to deal with airborne viruses and bacteria. Therefore, opportuni-
ties to create effective materials that protect against such diseases are especially relevant.
Bacteria and viruses have an inherent ability to survive on frequently touched surfaces,
making it easier for them to be acquired and transferred from surfaces to people. There-
fore, it is relevant to solve the problems related to surface contamination with various
bacteria and viruses in medical institutions and catering services or food industry com-
panies [1–3]. Various disinfectants used to kill bacteria often cause allergic reactions in
the human body and become an additional pollutant when released into the environment.
In recent years, great attention has been paid to the search for new, more effective, and
less damaging—in terms of human health and the environment—methods to kill bacte-
ria and viruses. Nowadays there is an increasing demand for antibacterial fabrics in the
form of medical clothes, protective garments, and bed spreads to minimize the chance
of nosocomial infections [4]. Bacterial strains are quickly killed on copper surfaces, and
copper ions on the surface play a significant role in the killing process. In laboratory tests,
it has been proven that many species of bacteria, such as Staphylococcus aureus, Salmonella
enterica, Escherichia coli, Listeria monocytogenes, Campylobacter jejuni, Clostridium difficile,
and Mycobacterium tuberculosis, are killed within a few hours on copper or copper alloy
surfaces [5–7]. The effectiveness of pure copper and copper alloy surfaces against a wide
range of microorganisms has recently been demonstrated through in vitro tests [8–14].
With an increase in the concentration of copper, the efficiency and speed of the killing of
bacteria and viruses increases as well [15]. Copper and its alloys are used to cover surfaces
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commonly touched by employees and patients of medical institutions: for example, door
handles, various holders, parts of chairs and tables, etc. One study [16] showed that when
comparing hospital waiting rooms with ordinary chairs and with chairs containing copper
particles, the microbial burden in waiting rooms with the latter was reduced by 73%. In
addition, the particles of copper oxides and other various copper species have been studied
for their antibacterial applications [6,10,17–23]. CuO nanoparticles are effective, non-toxic
and eco-friendly interactive materials with high antibacterial activity [17]; these particles
have been widely used in medical applications due to their antioxidant, antibacterial and
antifungal activities [22]. The bactericidal effect of metal and metal compound nanoparti-
cles is attributed to their small size and high surface to volume ratio, which allow them
to interact closely with microbial membranes [24]. For these reasons, the widespread use
of copper and its compounds for public health is particularly important in addressing
the challenges arising from the COVID-19 pandemic. One of the possible uses would be
the production of long-term individual protective masks with inserts containing copper
particles. Such modified materials would not only mechanically block the entry of bacteria
and viruses into the human respiratory system but would effectively kill them in the entire
volume of the filter material due to contact with copper particles. In this research, we
present a green route for chemical synthesis of copper particles using copper(II) sulfate and
L-ascorbic acid. Through this chemical synthesis, selected natural wool and cotton knitted
fabrics were modified with copper particles and used as inserts for reusable face masks. To
better understand the health impact of modified knitted fabrics containing copper particles,
we studied the antibacterial activity against two bacterial strains: S. aureus and E. coli.
In order to characterize synthesized particles, X-ray diffraction analysis (XRD), scanning
electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used.

2. Materials and Methods
2.1. Materials

Copper sulfate pentahydrate, CuSO4·5H2O, with a purity of 99% was acquired from
Sigma–Aldrich (Taufkirchen, Germany) L-ascorbic acid, C6H8O6, with a purity of 99%
was purchased from Fluka (Oslo, Norway). For this study, 100% wool fabric rib knit
(180 GSM) and 100% cotton fabric interlock knit (200 GSM) produced by Lithuanian Joint
Stock Company “Utenos trikotažas” with size of 40 mm × 40 mm were used. The reusable
face masks made of 92% cotton and 8% polyester (model 12802) in “Utenos trikotažas”
were also used.

2.2. Synthesis of Copper Particles in Knitted Fabrics

In a two-stage synthesis, particles containing copper were synthesized by a simple
reduction method over the entire textile volume. In the first stage, a sample of wool (W) or
cotton (C) knitted fabric was saturated in 0.5 mol/L solution of copper(II) sulfate at 25 ◦C,
and in the second stage it was treated with a 0.6 mol/L solution of reducing agent (ascorbic
acid) at 40 ◦C for 720 min. The formed copper particles remained in the used knitted
fabrics after washing with distilled water, while other reaction products were removed.
Then, the samples modified with copper particles were dried and used in further studies.
The synthesis of copper particles embedded in wool or cotton knitted fabrics and the
preparation of inserts for reusable face masks are shown in Figure 1.

2.3. XRD Characterization

X-ray diffraction analysis of knitted fabrics with copper particles was performed using
a D8 Advance diffractometer (Bruker AXS, Karlsruhe, Germany) operating at 40 kV and a
current of 40 mA. The X-ray beam was filtered with a Ni 0.02 mm filter to suppress Cu-k alfa
β-radiation. The XRD patterns were recorded in a Bragg-Brentano geometry by the use of a
fast counting 1-dimensional detector Bruker LynxEye (Bruker AXS, Karlsruhe, Germany)
based on silicon strip technology. Specimens were scanned from 2θ = 5 to 70◦ at a scanning
speed of 6◦ 1/min using a coupled two theta/theta scan type. The diffractometer was
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supplied together with software package DIFFRAC.SUITE. (Diffract.EVA.v.4.5 , Bruker AXS,
Karlsruhe, Germany). X-ray diffractograms were processed using the software packages
Crystallographica Search Match v.2.1 and Microsoft Office Excel.
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Figure 1. Schematic diagram of the synthesis of copper particles and the preparation of inserts for
reusable face masks.

2.4. SEM/EDX Characterization

SEM images were performed using the Scanning Electron Microscope Quanta 200
FEG (FEI, Eindhoven, The Netherlands). Samples of knitted fabrics with copper particles
were imaged under a residual pressure of 80 Pa, sufficient to avoid imaging artefacts such
as sample charging, commonly resulting during the high energy electron beam analysis.
Energy dispersive X-ray (EDX) spectroscopy was carried out using a Bruker XFlash 4030
detector (Bruker Corporation, Billerica, MA, USA).

2.5. Antibacterial Activity

Fresh 18 h cultures of gram-positive bacteria Staphylococcus aureus ATCC 25923 and
gram-negative bacteria Echerichia coli ATCC25922 were used. Bacterial cultures were
grown in soy peptone broth (LAB 04, LAB M) at 37 ◦C for 24 h. After cultivation, the
culture cells were mixed with a mini-shaker, and the turbidity of the suspensions was
adjusted according to 0.5 McFarland’s standard (Hood, Wilkinson, & Cavanagh, 2003).
Then, the suspensions were introduced into Plate Count Agar medium cooled to 47 ◦C,
and 10 ml of the suspensions were added with a pipette into Petri dishes with a diameter
of 90 mm. When the medium hardened, 8 mm diameter circles of the test knitted fabrics
were placed on the surface and pressed. The plates were incubated overnight (18–24 h)
at 37 ◦C. Circles of untreated knitted fabrics were used as negative control for bacteria at
the corresponding growing conditions. After incubation, the zones of bacterial growth
inhibition were measured in millimeters (including the circles of the test samples’ diameter)
and analyzed for antibacterial activity. Antibacterial activity assays were repeated thrice
in plate.

3. Results and Discussion
3.1. The XRD Characterization of the Formed Particles

The synthesis method of green chemistry is the best option, because it is environmen-
tally friendly and easier compared to the methods of traditional chemistry [25]. The green
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synthesis can be carried out in mild reaction conditions using a reducing natural agent, for
example, ascorbic acid and copper(II) ion solution [25,26].

In ref. [27], an aqueous solution of ammonia was used to control the pH value; there-
fore, copper sulfate first reacted with ammonia to form insoluble copper(II) hydroxide, and
then Cu(OH)2 was reduced using ascorbic acid, and the particles of copper were obtained.
In our work, as in ref. [25], copper(II) sulfate first dissociated to Cu2+ and SO4

2–; then,
ascorbic acid was oxidized, and copper(II) ion was reduced to Cu. The color of the reaction
medium changed from light blue (Cu2+) to light green (Cu+) and finally to brown (Cu0).
The XRD results in refs. [25–27] show that the formed particles consisted of copper (JCPDS
number 4–836). It was also shown in ref. [26] that at the early stages of the reaction between
copper ions and ascorbic acid, copper(I) oxide, Cu2O (JCPDS number 5–667), predominates,
which gradually turns into copper after 180 min. The authors explain this by the fact that
Cu particles are formed as a result of a two-stage reduction, with the formation of Cu2O
as an intermediate product. In order to determine the composition of our synthesized
particles, phase analysis of the particles was performed by X-ray diffraction analysis. The
data obtained were compared with JCPDS data and assigned to cubic copper Cu (4–836) and
cubic cuprite Cu2O (5–667). The data in the table show that the experimentally determined
interplanar spacings are close to the JCPDS data (Table 1).

Table 1. Comparison of experimentally determined interplanar spacings with JCPDS data.

2θ, (Degree)
Interplanar Spacing (d), Å

Experimental Data JCPDS Data

29.54 3.029 3.033
36.39 2.466 2.465
43.30 2.088 2.088
50.44 1.808 1.808

As can be seen from the data presented in the top of Figure 2, only the Cu (4–836) peaks
at 2θ = 43.30◦ and 50.44◦ clearly dominate in the X-ray diffractogram. At that time, only
two negligible peaks of Cu2O (5–667) were observed at 2θ = 29.54◦ and 36.39◦. Therefore,
it can be stated that the synthesized particles consist of copper with traces of copper(I)
oxide-cuprite.
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The data of X-ray diffraction analysis was also confirmed by the color of the formed
particles-brown particles, characteristic of elemental copper.

3.2. SEM/EDX Characterization of Knitted Fabrics with Formed Copper Particles

The morphology of modified samples and the structure and distribution of particles
in knitted wool or cotton fabrics was evaluated using scanning electron microscopy. The
round or oval spherical monodispersed copper particles and their agglomerates could be
observed in SEM images (Figure 3) at different magnification.
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It is known [25] that green synthesized Cu particles have a spherical morphology.
The chemical elemental composition of the modified samples was analyzed using

a scanning electron microscope with an EDX detector (Bruker Corporation, Billerica,
MA, USA); chemical element maps were also made. The presented element maps and EDX
spectra (Figure 4) showed a high content of copper in the studied samples.

The results of this analysis confirmed the results of X-ray diffraction analysis, since the
copper peaks predominated in the diffraction pattern (Figure 2), indicating the formation of
copper particles. A small amount of sulfur was also observed in EDX spectra. This can be
explained by the fact that a small amount of adsorbed sulfate ions remained in the samples.

3.3. Antibacterial Activity of Copper Particles in Knitted Fabrics

The antibacterial activities of the untreated and modified samples of wool and cotton
knitted fabrics were studied by zone of inhibition tests. Two the most common pathogenic
bacteria, S. aureus (gram-positive) and E. coli (gram-negative), were selected for the study
of the killing activity of modified wool and cotton. The antibacterial properties of copper,
copper alloys and various copper compounds were studied many works [1,3,11,15–23,25].
Staphylococci were identified as an important cause of both nosocomial and community-
acquired infections [16,21,28]. S. aureus bacteria is naturally found in the nasopharynx and
in the nose and skin and can be spread by contact; healthy carriers or sick people can pass
staphylococci to others by airborne droplets, as well as through contaminated hands or
a wide variety of household items. E. coli is a popular bacteria that is considered to be a
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common inhabitant of the human intestinal tract and has the ability to grow both with and
without oxygen [21]. Importantly, copper-based particles can kill gram-negative bacteria
(E. coli) and gram-positive bacteria (S. aureus) and can be used to treat surgical wounds,
burns, and diabetic foot infections [29].
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The antibacterial activities of modified wool and cotton knitted fabrics were examined
though a comparison with the untreated fabrics. In control experiments on the antimicrobial
behavior of wool and cotton knitted fabrics against the tested bacteria, it was found that
untreated samples did not show antibacterial activity because the diameter of the inhibition
zone was 0 mm (Figure 5, bottom). Samples of knitted fabrics with copper particles had
an excellent antibacterial activity because of a very large diameter of the inhibition zone
(Figure 5, top). The samples of modified wool had the largest zone of S. aureus bacteria
inhibition (19.3 ± 0.6 mm), and they also had a large inhibition zone (18.3 ± 0.6 mm) against
E. coli bacteria. The determined diameters of the inhibition zone indicated that the modified
wool samples inhibited S. aureus more effectively than E. coli, as in ref. [3], where samples
of copper-based membranes had an inhibition zone diameter of over 20 mm for S. aureus
bacteria and 15 mm for E. coli bacteria. The samples of modified cotton knitted fabrics also
had very good antibacterial activity, but the diameters of inhibition zones against both
bacteria were smaller. The diameter of the inhibition zone was 14.7 ± 0.6 mm for S. aureus
and 15.3 ± 0.6 mm for E. coli bacteria.

These differences in the antibacterial activity of the modified wool and cotton samples
can be explained by differences in the weight changes of the wool and cotton knitted fabrics
before and after treatment. The weight changes of the modified samples were about 15%
for wool and about 9% for cotton samples. Hence, a larger amount of physically adsorbed
copper particles was in the samples of modified wool. A higher adsorption capacity of
Cu2+ ions in wool fibers compared to other cations was noted by Monier et al. [30]. Due
to wool swelling, a large flow of Cu2+ ions could be adsorbed not only on the surface, but
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throughout the entire volume of wool knitted fabric. Consequently, more copper particles
were formed in the samples of modified wool.
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Figure 5. Photographs of untreated (bottom) and modified (top) samples of wool (W) and cotton (C)
knitted fabrics against S. aureus (a,c photos) and E. coli (b,d photos) bacteria.

The effect of the concentration of solutions on antibacterial properties was also studied.
Samples of wool and cotton knitted fabrics were exposed to solutions of different concen-
trations of copper(II) sulfate (0.25 M; 0.5 M and 0.75 M) and ascorbic acid (0.3 M; 0.6 M
and 0.9 M). From the data presented in Table 2, it can be seen that the samples had worse
antibacterial activity when using solutions with lower concentrations, as the inhibition
zones for S. aureus bacteria were much smaller, and an increase in the concentration of
solutions did not lead to a significant improvement in the bactericidal properties of the
samples; thus, the optimal variant was chosen, and for further studies 0.5 M CuSO4 and
0.6 M C6H8O6 solutions were used.

Table 2. Bactericidal activity of modified wool and cotton samples against S. aureus.

Concentrations of Solutions

Inhibition Zone, mm

Samples of Modified
Wool

Samples of Modified
Cotton

0.25 M CuSO4 and 0.3 M C6H8O6 15.7 ± 0.6 12.3 ± 0.6
0.5 M CuSO4 and 0.6 M C6H8O6 19.3 ± 0.6 14.7 ± 0.6
0.75 M CuSO4 and 0.9 M C6H8O6 21.0 ± 1.0 15.3 ± 0.6

In this study, the long-term bactericidal effect of copper particles was also investigated.
Since bacteria are often transmitted by contact, and S. aureus bacteria are also transmitted
by airborne droplets, inserts of modified knitted fabrics made from natural wool or cotton
fibers were placed in the reusable masks. The masks of the first group had an insert
(MI1, MI2 and MI3) made of wool knitted fabric with copper particles (W). The masks of
the second group had an insert (MI4, MI5 and MI6) made of cotton knitted fabric with
copper particles (C). A total of 18 masks were prepared, of which 9 were with modified
wool inserts and the other 9 were with modified cotton inserts. These masks were worn
by the authors of this article for 2, 4 and 8 h for 5 working days, namely, each mask was
worn for 5 days for a different set number of hours. Participants wore masks with inserts at
work, on the street, in shops and on public transport, striving to be as diverse as possible.
After wearing, the bactericidal activity of the inserts was examined and compared with the
antibacterial properties of the non-worn corresponding samples. The results are presented
in Table 3 and Figures 6 and 7.
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Table 3. Antibacterial results for non-worn samples (W and C) and the mask inserts.

Sample
Inhibition Zone, mm

Sample
Inhibition Zone, mm

S. aureus E. coli S. aureus E. coli

W 19.3 ± 0.6 18.3 ± 0.6 C 14.7 ± 0.6 15.3 ± 0.6
MI1(2) 17.0 ± 1.0 18.3 ± 0.6 MI4(2) 12.3 ± 0.6 13.0 ± 1.0
MI1(4) 15.7 ± 0.6 18.0 ± 1.0 MI4(4) 11.0 ± 1.0 12.0 ± 1.0
MI1(8) 14.3 ± 0.6 17.7 ± 0.6 MI4(8) 10.0 ± 1.0 11.0 ± 1.0
MI2(2) 17.7 ± 0.6 18.0 ± 1.0 MI5(2) 12.3 ± 0.6 11.7 ± 0.6
MI2(4) 16.3 ± 0.6 18.0 ± 1.0 MI5(4) 11.7 ± 0.6 11.3 ± 0.6
MI2(8) 15.7 ± 0.6 17.3 ± 0.6 MI5(8) 10.0 ± 1.0 10.7 ± 0.6
MI3(2) 19.0 ± 1.0 18.0 ± 1.0 MI6(2) 11.3 ± 0.6 11.0 ± 1.0
MI3(4) 16.0 ± 1.0 17.7 ± 0.6 MI6(4) 10.7 ± 0.6 10.7 ± 0.6
MI3(8) 15.7 ± 0.6 17.3 ± 0.6 MI6(8) 10.3 ± 0.6 10.3 ± 0.6

Materials 2022, 15, 7147 9 of 11 
 

 

 
Figure 6. Diameters (mm) of inhibition zones against S. aureus and E. coli bacteria of modified wool 
knitted fabric inserts used in reusable masks. W is the non-worn sample; MI1 (2), MI2 (2) and MI3 
(2) after 2 h of wearing; MI1 (4), MI2 (4) and MI3 (4) after 4 h of wearing; MI1 (8), MI2 (8), and MI3 
(8) after 8 h of wearing. 

 
Figure 7. Diameters (mm) of inhibition zones against S. aureus and E. coli bacteria of modified cotton 
knitted fabric inserts used in reusable masks. C is the non-worn sample; MI4 (2), MI5 (2) and MI6 
(2) after 2 h of wearing; MI4 (4), MI5 (4) and MI6 (4) after 4 h of wearing; MI4 (8), MI5 (8), and MI6 
(8) after 8 h of wearing. 

In summary, this research was designed to evaluate the possibility of the use of nat-
ural knitted fabrics with copper particles as inserts in reusable masks. The obtained results 
showed that the modified wool and cotton fabrics are suitable for use in long-term pro-
tection measures due to their noticeable and long-term activity against pathogenic bacte-
ria. 

0
2
4
6
8

10
12
14
16
18
20
22

W MI1(2) MI1(4) MI1(8) MI2(2) MI2(4) MI2(8) MI3(2) MI3(4) MI3(8)

In
hi

bi
tio

n 
zo

ne
, m

m

S.aureus E.coli

0

2

4

6

8

10

12

14

16

18

C MI4(2) MI4(4) MI4(8) MI5(2) MI5(4) MI5(8) MI6(2) MI6(4) MI6(8)

In
hi

bi
tio

n 
zo

ne
, m

m

S.aureus E.coli

Figure 6. Diameters (mm) of inhibition zones against S. aureus and E. coli bacteria of modified wool knitted
fabric inserts used in reusable masks. W is the non-worn sample; MI1 (2), MI2 (2) and MI3 (2) after 2 h of
wearing; MI1 (4), MI2 (4) and MI3 (4) after 4 h of wearing; MI1 (8), MI2 (8), and MI3 (8) after 8 h of wearing.

Materials 2022, 15, 7147 9 of 11 
 

 

 
Figure 6. Diameters (mm) of inhibition zones against S. aureus and E. coli bacteria of modified wool 
knitted fabric inserts used in reusable masks. W is the non-worn sample; MI1 (2), MI2 (2) and MI3 
(2) after 2 h of wearing; MI1 (4), MI2 (4) and MI3 (4) after 4 h of wearing; MI1 (8), MI2 (8), and MI3 
(8) after 8 h of wearing. 

 
Figure 7. Diameters (mm) of inhibition zones against S. aureus and E. coli bacteria of modified cotton 
knitted fabric inserts used in reusable masks. C is the non-worn sample; MI4 (2), MI5 (2) and MI6 
(2) after 2 h of wearing; MI4 (4), MI5 (4) and MI6 (4) after 4 h of wearing; MI4 (8), MI5 (8), and MI6 
(8) after 8 h of wearing. 

In summary, this research was designed to evaluate the possibility of the use of nat-
ural knitted fabrics with copper particles as inserts in reusable masks. The obtained results 
showed that the modified wool and cotton fabrics are suitable for use in long-term pro-
tection measures due to their noticeable and long-term activity against pathogenic bacte-
ria. 

0
2
4
6
8

10
12
14
16
18
20
22

W MI1(2) MI1(4) MI1(8) MI2(2) MI2(4) MI2(8) MI3(2) MI3(4) MI3(8)

In
hi

bi
tio

n 
zo

ne
, m

m

S.aureus E.coli

0

2

4

6

8

10

12

14

16

18

C MI4(2) MI4(4) MI4(8) MI5(2) MI5(4) MI5(8) MI6(2) MI6(4) MI6(8)

In
hi

bi
tio

n 
zo

ne
, m

m

S.aureus E.coli

Figure 7. Diameters (mm) of inhibition zones against S. aureus and E. coli bacteria of modified cotton knitted
fabric inserts used in reusable masks. C is the non-worn sample; MI4 (2), MI5 (2) and MI6 (2) after 2 h of
wearing; MI4 (4), MI5 (4) and MI6 (4) after 4 h of wearing; MI4 (8), MI5 (8), and MI6 (8) after 8 h of wearing.



Materials 2022, 15, 7147 9 of 11

The results obtained (Table 3, Figure 6) showed that after wearing the masks for
2 hours for 5 days, the bactericidal activity of the modified wool knitted fabric was slightly
reduced against S. aureus and almost unchanged against E. coli bacteria. An insignificant
decrease in the diameter of the zones of inhibition of bacteria was observed with increased
wear time, but the samples showed excellent antibacterial activity even after 8 h of wear.
The results in Table 3 and Figure 7 show that after 2 h of wearing for 5 days, the bactericidal
effect of the modified cotton knitted fabric against S. aureus and E. coli decreased slightly;
in all cases, a decrease in the diameter of the zones of inhibition of bacteria was observed.
There was a negligible decrease in the diameter of the bacterial inhibition zones with
increased wear time, and the samples still demonstrated good antibacterial activity.

In summary, this research was designed to evaluate the possibility of the use of natural
knitted fabrics with copper particles as inserts in reusable masks. The obtained results
showed that the modified wool and cotton fabrics are suitable for use in long-term protec-
tion measures due to their noticeable and long-term activity against pathogenic bacteria.

4. Conclusions

L-ascorbic acid (C6H8O6) is green and a suitable reducing agent for the formation of
copper particles by the use of copper(II) sulfate as a precursor. X-ray diffraction analysis of
the formed round or oval spherical particles revealed that copper (JCPDS number 4–836)
predominates, and this result was confirmed by energy dispersion X-ray spectroscopy. The
antibacterial efficacy of untreated wool and cotton knitted fabrics and those modified with
copper particles fabrics was tested against gram-positive bacteria Staphylococcus aureus
and gram-negative bacteria Escherichia coli. The modified wool fabric was found to have
the best antibacterial properties against S. aureus bacteria; the diameter of the inhibition
zone reached 19.3 mm, and the maximum zone of inhibition for E. coli was 18.3 mm. The
maximum zones of inhibition were 14.7 mm for S. aureus and 15.3 mm for E. coli using cotton
fabric. The presence of copper particles embedded in knitted fabrics ensured excellent and
long-term antibacterial activity against gram-positive and gram-negative bacteria; hence, it
is possible to use modified wool and cotton fabrics in the production of inserts for reusable
masks and infection prevention.
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