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Abstract: Ceramic composites with nanoparticles are intensively investigated due to their unique
thermal, mechanic and electromagnetic properties. In this work, dielectric properties of phosphate
ceramics with round silver nanoparticles of various sizes were studied in the wide frequency range
of 20 Hz–40 GHz for microwave shielding applications. The percolation threshold in ceramics is
close to 30 wt.% of Ag nanoparticles content and it is higher for bigger-sized nanoparticles. The
microwave complex dielectric permittivity of ceramics above the percolation threshold is rather high
(ε′ = 10 and ε′′ = 10 at 30 GHz for ceramics with 50 wt.% inclusions of 30–50 nm size, it corresponds to
almost 61% absorption of 2 mm-thickness plate) therefore these ceramics are suitable for microwave
shielding applications. Moreover, the microwave absorption is bigger for ceramics with a larger
concentration of fillers. In addition, it was demonstrated that the electrical transport in ceramics is
thermally activated above room temperature and the potential barrier is almost independent of the
concentration of nanoparticles. At very low temperature, the electrical transport in ceramics can be
related to electron tunneling.

Keywords: microwave shielding; silver nanoparticles; phosphate ceramics; electrical transport

1. Introduction

Nowadays, electromagnetic radiation is widely used in all areas of human life, includ-
ing telecommunications and electronics [1]. Electromagnetic interference becomes a very
important problem because some devices work in the same or neighborhood frequency
ranges; in addition, the power of electromagnetic radiation increases with the number of
pieces of equipment functioning in a close space and by fast progress of telecommunica-
tions, where higher frequencies and hence higher power are needed for transmission large
quantity of information. Moreover, electromagnetic interference can cause the destruction
of electronic devices and can be dangerous to human health.

Conductive metal nanomaterials are very important for fabrication of composites
and coatings, since these particles have a big surface area and outstanding mechanical
and optical properties [2]. Ceramics with conductive nanoparticles have thermally sta-
ble electromagnetic properties and excellent mechanical properties [3,4]. Therefore they
are highly desirable for various electromagnetic shielding applications [5,6]. One most
important parameter, which determines the electromagnetic properties of the composite
insulator–conductor system, is the percolation threshold, the lowest concentration of fillers
when the electrical conductivity is observed [7]. It is desirable that the percolation threshold
will be as low as possible. The percolation threshold is strongly dependent on the particle
aspect ratio and the distribution of nanoparticles in the matrix. Theoretically, the lowest
percolation threshold is expected for prolonged nanoparticles, i.e., for carbon nanotubes [8].
Moreover, experimentally low percolation threshold values are observed in composites with
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various carbon nanoinclusions: carbon nanotubes, carbon black, onion-like carbons and
graphene [8–11]. These composites are widely investigated for electromagnetic shielding
applications [12–14]. Moreover, the percolation threshold can be quite low for composites
with round metallic nanoparticles [15]. Particularly, the percolation threshold can be quite
low in composites with silver nanoparticles, therefore composites with these nanoparticles
can be interesting for electromagnetic applications [16,17]. Moreover, composites with
silver nanoparticles are widely used for electromagnetic shielding applications [18,19].
However, electromagnetic properties of ceramics with silver nanoparticles have not been
investigated up to now. The aim of this paper is to investigate broadband properties of
ceramic composites with silver nanoinclusions for electromagnetic shielding applications.

2. Materials and Methods

Phosphate ceramic composites with two kind of commercially available spherical silver
nanoparticles (30–50 nm and 80–100 nm) [20,21] were fabricated as follows. Phosphate
composite materials consisted of three components: main filler, functional additive (i.e.,
functional filler) and binder. At first step, the main filler was obtained by thorough
mixing of powdered aluminum oxide Al2O3 and aluminum nitride AlN with a mass ratio
equal to 9:1. Then, the main filler, Ag nanopowders, solid magnesium phosphate binder
(Mg(H2PO4)2·2H2O, designated as MPB) and distilled water were thoroughly mixed for
25–30 min at room temperature (21± 1 ◦C) until a homogeneous composition was obtained.
It was experimentally found that the optimal amounts of MPB and water were 20 and
10 wt.%, respectively. The content of Ag nanoparticles in the phosphate composites was
varied and fixed at 10, 20, 30, 40 and 50 wt.%. After mixing all the components, the
phosphate composites were pressed at 4.9 MPa into tablets 12 mm in diameter and 1–2 mm
of thickness (for carrying out further conductivity and electromagnetic measurements).
As-fabricated composite tablets were kept for 24 h at ambient room air temperature and
then thermal treatment was performed at up to 200 ◦C with a heating rate of 1 ◦C/min.

Scanning electron microscopy (SEM) was performed on a Helios Nanolab 650 mi-
croscope. The dielectric properties were investigated with an LCR meter, the HP4284A,
in the frequency range 20 Hz–1 MHz. The equivalent circuits for investigations were
selected as the capacitance and the loss tangent circuits. The complex dielectric permittivity
was calculated according to the planar capacitor equations [22]. For the low temperature
measurements, a cryostat with liquid nitrogen was used; while for higher temperatures
a home-made furnace was used. Each measurement was started at room temperature.
Silver paste was applied for electric contact. In microwave frequency range (26–35 GHz),
the dielectric properties were determined by a thin cylindrical rod method, measuring
reflection and transmission modulus [22]. In this frequency range measurements were
performed with a scalar network analyzer, the R2-408R.

3. Results
3.1. Structure of Ceramics and Room Temperature Properties

SEM images of phosphate ceramics with different Ag particle sizes and concentrations
are presented in Figure 1. The study of the surface morphology of prepared composite
samples showed that Ag particles were quite homogeneously distributed in the ceramics
matrix, independent of their size and concentration.

The frequency dependences of both dielectric permittivity and electrical conductivity
for different Ag aggregate sizes at room temperature in the frequency range 20 Hz–1 MHz
are presented in Figures 2 and 3.
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Figure 1. SEM images of phosphate ceramics samples with Ag inclusions of different size and con-

centrations: (a) 50 wt.% of 30–50 nm nanoparticles, (b) 30 wt.% of 80–100 nm nanoparticles, (c) 50 

wt.% of 80–100 nm nanoparticles. 
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Figure 2. Room-temperature dielectric permittivity (a) and electrical conductivity (b) of phosphate 

ceramics with Ag inclusions (30–50 nm nanoparticles) plotted as a function of frequency. 

Figure 1. SEM images of phosphate ceramics samples with Ag inclusions of different size and
concentrations: (a) 50 wt.% of 30–50 nm nanoparticles, (b) 30 wt.% of 80–100 nm nanoparticles,
(c) 50 wt.% of 80–100 nm nanoparticles.
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Figure 2. Room-temperature dielectric permittivity (a) and electrical conductivity (b) of phosphate
ceramics with Ag inclusions (30–50 nm nanoparticles) plotted as a function of frequency.

For some ceramics, the electrical conductivity is frequency-independent at low frequen-
cies; this effect was particularly observed for ceramics with 30–50 nm sized nanoparticles
and concentrations not lower than 30 wt.%, and for ceramics with 80–100 nm sized nanopar-
ticles and concentrations not lower than 40 wt.%. The frequency-independent conductivity
at low frequencies is related to DC conductivity. Therefore, the above-indicated concentra-
tions (30 wt.% for ceramics with 30–50 nm sized nanoparticles and 40 wt.% for ceramics
with 80–100 nm sized nanoparticles) were close to the percolation threshold in the systems.
Thus, the percolation threshold was higher for ceramics with bigger nanoparticles. Such a
percolation threshold value is in agreement with excluded volume theory [23,24], while
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the increasing of the percolation threshold with nanoparticles size can be explained by
the better distribution of nanoparticles inside ceramic matrices. Unfortunately, the dielec-
tric permittivity in the frequency range 20 Hz–1 MHz was determined only below the
percolation threshold, because at higher Ag nanoparticle concentrations tgδ is very high
and the dielectric permittivity cannot be determined. Below the percolation threshold,
the dielectric permittivity values were quite low (about 10–20 at 1 MHz) and were almost
concentration-independent. Electrical conductivity values under such conditions were also
quite low and were strongly dependent on frequency.
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Figure 3. Room-temperature dielectric permittivity (a) and electrical conductivity (b) of phosphate
ceramics with Ag inclusions (80–100 nm nanoparticles) plotted as a function of frequency.

Frequency dependences of real and imaginary parts of dielectric permittivity for the
investigated ceramics in microwave frequency range are presented in Figure 4. Above the
percolation threshold, values of real and imaginary parts of dielectric permittivity were
quite high (ε′ = 46 and ε′′ = 8 at 30 GHz for ceramics with 40 wt.% inclusions of 30–50 nm
size), therefore ceramics above the percolation threshold can be suitable for electromagnetic
shielding applications [3–5]. Indeed, if we consider a thin planar layer in free space with
the electromagnetic irradiation incident perpendicularly, then the scattering parameters
can be calculated according to Equations (1) and (2):

S11 = −j[(kz/k2z)2 − 1]sin(k2zτ)/(2jkz/k2zcos(k2zτ) + [(kz/k2z)2 + 1]sin(k2zτ), (1)

S21 = 2(k2z/kz)/(−2(k2z/kz)cos(k2zτ) + j[(k2z/kz)2 + 1]sin(k2zτ)), (2)

where kz = 2π/λ and k2z = 2πε0.5/λ are wave numbers in the vacuum and the sample’s
media correspondingly, and τ is the thickness of the layer. The absorption of the layer
was calculated as A = 1 − (S11)2 − (S21)2. Obtained calculations results for ceramics layers
with thickness 2 mm at 30 GHz are summarized in Table 1. It can be concluded that
the absorption of some ceramics (for example, the absorption of ceramics with 50 wt.%
inclusions of 30–50 nm size is 61%) was quite high. Moreover, by application of the
Salisbury screen method [25] to the presented ceramics it was possible to obtain even
100% absorption. These results are better than those previously reported for ceramics with
SiC nanoinclusions or carbon nanotubes [3,4,26]. Although values of complex dielectric
permittivity decrease with frequency according to the Jonscher universal power law [27,28],
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they increase with nanofiller concentration. Thus, microwave transmission is lower for
ceramics with higher filler concentration.
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Figure 4. Frequency spectra of the complex dielectric permittivity real and imaginary parts for
phosphate ceramics with Ag nanoinclusions in microwave frequency range at room temperature.

Table 1. Reflection, transmission and absorption of phosphate ceramics with Ag nanoinclusions of
2 mm thickness calculated at 30 GHz.

Concentration and
Average Size of

Ag Nanoparticles
Reflection Transmission Absorption

20% 30–50 nm 0.39 0.45 0.16
30% 30–50 nm 0.39 0.08 0.53
40% 30–50 nm 0.59 0.07 0.35
50% 30–50 nm 0.38 0.01 0.61

20% 80–100 nm 0.13 0.62 0.25
50% 80–100 nm 0.75 0.08 0.17

3.2. Electrical Transport at Different Temperatures

Frequency spectra of electrical conductivity for ceramics with 50 wt.% Ag nanoinclu-
sions (80–100 nm) are presented in Figure 5. From these spectra is possible to conclude
that the AC conductivity coincided with DC conductivity values in the frequency range
20 Hz–1 MHz. Additionally, the electrical conductivity changed several times in the tem-
perature range 250–450 K, which is important for evaluation of the thermal stability of
coatings for electromagnetic shielding applications.

The temperature dependence of DC conductivity is presented in Figure 6. Three
different regions can be separated: (1) in 300–500 K temperature range the electrical conduc-
tivity increased with temperature due to the thermal activation mechanism [29], (2) below
room temperature the electrical conductivity increased on cooling due to rapid shrinkage
of ceramics, (3) and at very low temperatures (below 200 K) for ceramics with 50 wt.%
Ag nanoparticles of 30–50 nm the electrical conductivity decreased on cooling due to the
electron tunneling effects [30]. Above room temperature, the temperature dependence of
DC conductivity fitted with the Arrhenius law:
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σ = σ0e−
E

kT (3)

where σ0 is the pre-exponential factor, k is the Boltzmann constant and E is the activation
energy. Because ln{σDC}(1/T) has a slope close to temperature Tr, it was fitted separately
below and above this temperature. Obtained parameters are summarized in Table 2. The
activation energy value was about several tenths of meV and it was almost independent of
filler concentration. This is typical for thermally activated electrical conductivity [29].
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Table 2. Fit parameters of the temperature dependence of DC conductivity in different temperatures
ranges.

Ag (wt.%),
Size Temperature Region E, eV ln(σ0, Sm−1)

30% 30–50 nm
T > Tr 0.118 4.62
T < Tr 0.086 3.62

40% 30–50 nm
T > Tr 0.056 8.86
T < Tr 0.041 8.43

50% 30–50 nm
T > Tr 0.077 7.57
T < Tr 0.130 9.17

50% 80–100 nm
T > Tr 0.079 5.91
T < Tr 0.037 4.76

The DC conductivity data for temperatures below 220 K fitted well to the fluctuation-
induced tunneling (FIT) model [30]:

σ = σ0e
− E

k(T+T0) (4)

T1 =ωAε2
0/8πk, (5)

T0 = Aε2
0/4π2χk, (6)

whereω is the width of the tunneling gap, A is the area of the capacitance formed by the
tunnel junction, ε0 = 4V0/ew, where V0 is the potential barrier height, e is the electron
charge, and χ = (2mV0/h2)1/2, where m is the electron mass and h is Planck’s constant. The
tunneling law fit parameters for ceramics with 50 wt.% of silver nanoparticles of 30–50 nm
size were σ0 = 56.68 mS/m, T1 = 28.4 K, T0 = 11.7 K, T1/T0 = 2.43. We assume that for
other ceramics under investigation, the tunneling conductivity also should be observed;
however, at substantially lower temperatures (below the lowest possible temperature in
our measurements) due to the bigger potential barrier height.

4. Conclusions

Broadband dielectric investigations of phosphate ceramics with round silver nanopar-
ticles of various sizes indicated that the percolation threshold was close to 30 wt.% of Ag
nanoparticles, which is typical for composites with round nanoparticles, and it was bigger
for bigger nanoparticles. The microwave complex dielectric permittivity of ceramics above
the percolation threshold was rather high (ε′ = 10 and ε′′ = 10 at 30 GHz for ceramics with
50 wt.% inclusions of 30–50 nm size: it corresponded to 61% absorption of 2 mm thick-
ness plate). Therefore, these ceramics are suitable for microwave shielding applications,
for example, in Salisbury screen geometry, where thermally stable coatings with good
mechanical properties are needed. Moreover, it was found that the electrical transport
in ceramics is thermally activated above room temperature and the potential barrier was
almost independent of the concentration of nanoparticles. At very low temperature, the
electrical transport in ceramics can be related to electron tunneling.
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