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Abstract: To expand the application scope of prestressed carbon fiber-reinforced polymer (CFRP)
cables in civil engineering, the ultimate tensile strength of these cables was tested and evaluated under
bending conditions. First, the study analyzed the tensile failure mechanism of CFRP cables under
bending conditions based on elastic bending analysis theory. Thereafter, the ultimate stress state of
individual tendons and cables was derived and a calculation model for the tensile strength of bent
CFRP cables was established. Second, 14 sets of test conditions were created for CFRP cables under
bending angles of 20–40◦ and bending radii of 1.5–3 m. Then, bending tensile tests were conducted
to evaluate the effects of the above factors on the ultimate tensile strength, and the correctness of the
computational model was verified using experiments. Finally, the ultimate performance of CFRP
cables was theoretically predicted using the established model. The results showed that the cable
bending tensile strength was associated with the radius r, tensile strength f, and elastic modulus E of
the reinforced material and the bending radius R, but was not correlated with the interface buffer
material or the bending angle of the steering system. Moreover, the flexural tensile residual strength
was only affected by R/r and E/f. When E/f involved conventional material parameters, the residual
strength increased nonlinearly with increased R/r. When R/r ≥ 600, the residual strength reached
more than 80%. Therefore, R/r at 600 could be used as the design basis for a safe critical radius.

Keywords: bridge engineering; CFRP cables; bending tensile strength; prestressing force; steering
systems

1. Introduction

Carbon fiber-reinforced polymer (CFRP) is recognized in engineering as an ideal
substitute for traditional steel tendons in harsh environments [1–5] due to its high strength,
light weight, and high corrosion resistance, which can effectively reduce structural weight
and improve structural durability [6–8]. In the 1980s, Japan, the United States, and other
countries began to study its engineering applications [9,10] and the U.S. Specification ACI
440.4R-04 [11] recommends the use of CFRP cables as a prestressing material. However, in
potential practical engineering applications, such as the flexural reinforcement of simply
supported beams with external prestressed CFRP cables [12–14] and CFRP cables spanning
cable saddles of suspension bridge [15–17], CFRP cables need to be bent at a certain
angle [18–20]. Traditional materials tend to use steel strands and cables as members,
which have less performance compromise from bending due to the superior ductility and
plastic deformation of steel. This is one of the reasons as to why such problems are rarely
studied in depth. Different from steel, because CFRP materials are brittle, the unidirectional
arrangement of carbon fiber precursors in the matrix leads to poor lateral mechanical
properties in such materials [21–23]. Further studies describe a significant decline in the
mechanical properties of CFRP cables after bending [24,25], which is also one of the leading
constraints on its development. Therefore, it is particularly important to evaluate the
ultimate tensile strength of CFRP cables in a bent state.
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At present, research on the tensile properties of CFRP cables in a linear state is rel-
atively mature, especially regarding the material mechanical properties [11,26] and an-
choring system [27,28]. In this regard, they have demonstrated good results in practical
applications [29].

With the continued development of CFRP cables, more and more scholars have begun
to pay attention to their tensile properties in a bent state and have carried out related
studies. Jerrett et al. [24] conducted the first performance test of CFRP tendons under
bending behavior (with a turning radius of 406 mm) in 1996 and proposed the related
basic hypothesis. It was found that the outer fiber strain of CFRP tendons far exceeds
the central axial strain, causing cumulative damage that may further reduce the strength.
Adachi et al. [30] and Jerrett et al. [31] conducted an experimental study by increasing
the turning radius to almost 510 mm and found that the turning radius has a large effect
on the strength of CFRP tendons. The American Concrete Institute (ACI) [32] and the
Society for Testing and Materials (ASTM) [33,34] proposed a test method for assessing
the tensile strength of CFRP tendons under bending, applicable to a situation in which
tendons are bent in use. El-Sayed et al. [35] found in their experimental research that the
tensile strength of CFRP tendons in a bending state is substantially reduced when the
bending radius is small. Menezes et al. [36] developed a finite element model to simulate
the mechanical properties of CFRP tendons under tensile and four-point bending loads.
Ping Z et al. [37] tested the ultimate bending load of CFRP tendons under three bending
radii and presented curves of the effects of the bending radius and diameter of tendons
on tensile strength. Zhang et al. [38] designed a four-point loading bending test for CFRP
tendons with various diameters, studied the relationship between the outer fiber strain and
load, and recommended the design value for the bending tensile strength based on the test
results. Through experimental research, Sami et al. [39] put forward an empirical formula
for the bending tensile strength of CFRP tendons with a small bending radius.

In summary, the research results on the bending tensile strength of CFRP tendons
are mainly derived from experiments or finite element simulations, but the theories on
the evaluation of their failure behavior under bending are not perfect, and the failure
mechanism is not yet clear. This is especially true for theoretical and experimental studies
on the evaluation of the performance of cords under bending, as to which there are few
published reports and further research is needed.

In order to further reduce the impact of bending on the performance of CFRP ropes and
to expand the application scope of prestressed CFRP cables in civil engineering, this paper
conducts an exploratory study for the working conditions with a turning radius greater
than 2000 mm, which has not been studied by scholars before. Moreover, an analytical
and evaluation model for the tensile strength of CFRP cables under bending conditions
was established through theoretical analysis and experimental verification, and the cable
residual strength under different bending conditions was predicted using the model. First,
the internal force failure criterion was employed to analyze the bending and tensile failure
behavior of individual CFRP tendons and cables, to determine the failure mechanism,
and to establish an evaluation calculation model. Second, based on different bending
radii, bending angles, and interfacial buffer materials, 14 sets of working conditions were
established to conduct experimental research and verify the correctness of the calculation
model. Finally, the ultimate bearing capacity (UBC) and flexural tensile residual strength
were predicted theoretically using the model. These research achievements can be used in
the evaluation and reference of prestressed CFRP cable engineering applications.

2. Theoretical Research
2.1. Failure Mechanism

CFRP tendons generally use a steering system to achieve overall bending steering
and the CFRP tendons in a bending state are taken for the force analysis (Figure 1a). The
following basic assumptions were made [24]: (1) Under the limit state, the cross-section
satisfies the assumption of a plane cross-section; (2) cross-sectional changes due to axial
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stress are ignored; and (3) the CFRP fiber strands are always in an elastic state in the
axial direction.
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A schematic diagram of the overall force of a CFRP tendon during turning is shown
in Figure 1a, where θ represents the tendon bending angle, R the bending radius of the
turning block, A the tangent point at which the tendon enters into the bogie, B the point of
the tension end, and C any point on the turning segment. When the left end of the tendon
was placed under tension by load P, the tendon on the steering block was subjected to
a rightward frictional force Ff(x). At this time, the local force of the tendons at the bogie
involved the axial force of tendons, which remained unchanged from point B at the tension
end to point A entering the bogie (Figure 1b). The axial force continuously decreased from
points A to C due to the existence of the friction force on the bogie interface (FNJ -Ff(x)).
At the same time, the elongation values of the inner and outer fibers of the tendons on
the bogie were different and there was a strain difference, which led to different stress
distributions in the cross-section at point B (section b-b), point A (section a-a), and point C
(section c-c). The outer stress of the section at point A was then the maximum, such that
the section at point A could be used as the CFRP reinforcement-control section under the
limit state.

According to Ping Z et al. [37], the residual strength ftu after bending can be ex-
pressed as

ftu = ftk −
r
R

E
(

R ≥ 2E
ftu

r
)

(1)

For convenience, the ratio of the flexural tensile residual strength ftu to the material
tensile strength ftk was defined as the flexural tensile strength retention rate ηt, expressed as

ηt =
ftu

ftk
× 100% =

(
1− E

ftk
· r

R

)
× 100% (2)

According to E = ftk
εu

, then εu = ftk
E , where εu represents the ultimate strain of the

material. As mentioned above, there was a strain difference ∆ε caused by bending between
the inner and outer sides and the strain increment εb = 1

2 ∆ε = 1
2 ·

θ(R+r)−θR
θR = r

R of the
outer fibers compared to the fibers at the center of the circle obtained, such that Equation (2)
was expressed as

ηt = (1− εb
εu

)× 100% (3)

The retention rate of flexural tensile strength ηt is the major index for evaluating the
flexural resistance of CFRP tendons, which can intuitively reflect the performance rate
of the material. A larger ηt indicates the higher performance of the material and better
bending resistance.
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2.2. Tensile Strength of CFRP Tendons

As mentioned above, Equation (2) is only applicable to the initial failure state of
outermost fiber fracture and, in fact, for CFRP tendons with a general circular cross-section,
the overall ultimate failure state has not yet been reached. With increased load, failure is
layered. When outer fibers reach the ultimate tensile strength, the remaining fibers have
not yet reached their ultimate tensile strength. After the initial failure of the tendon, the
outer fibers fracture and are out of service, the stress redistributed, and the above process
repeated until the overall limit state is reached.

The cross-sectional state of CFRP tendons at the ultimate failure was assumed
(Figure 2a) with the shaded area the effective working cross-section and the stress at the
upper edge of the shaded area at σ1 at this time. The stress distribution of the section is
shown in Figure 2b. The stress at the center of the circle is σ1 − E

R y, the stress of the full

circular section is
(

σ1 − E
R y
)
· A, and stress of the out-of-service section is approximately

σ1 A1, such that its effective bearing capacity in this state, F, could be expressed as

F = (σ1 −
E
R

y) · A− σ1 A1 (4)

where, the circular full cross-sectional area A = πr2, the failure cross-sectional area
A1 = arccos

( y
r
)
· r2 −

√
r2 − y2 · y
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When the stress σ1 on the upper edge reached the ultimate strength of the material
ftk, the tendons as a whole reached the ultimate failure state. In Equation (4), the effective
bearing capacity F is a function of y. Based on the calculations, F was found to only have
one maximum value within the range of y ∈ (0, r), which conformed to the actual failure
relationship, such that the UBC was

Fmax = ( ftk −
E
R

y) · A− ftk A1 (5)

where, y = r ·
√

1−
(

Eπr
2R ftk

)2
.

Therefore, the residual strength retention (RSR) rate of bending was

η =
Fmax

A ftk
= (1− Ey
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− A1

A
)× 100% (6)

In conclusion, after substitution and simplification, it was obtained that

η = 1− 1
2
· εb

εu

√
1− (

π

2
· εb

εu
)2 − 1

π
arccos

(√
1− (

π

2
· εb

εu
)2
) (

εb
εu
≤ 2

π
≈ 0.637

)
(7)

where the material limit strain was εu = ftk
E , the strain increment caused by bending εb = r

R .
At this time, the UBC under bending is Ftu = η ftk A.
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2.3. Tensile Strength of CFRP Cables

A CFRP cable is composed of multiple CFRP tendons and the bending radii of the
tendons at different heights within the cable body are different under the bending state. In
the same cross-section, there are slight differences in the strain distribution across tendons
within the cable. Therefore, it is necessary to comprehensively analyze the stress–strain
state of each single tendon to determine the ultimate failure mode, so as to be able to derive
the theoretical evaluation model for the ultimate strength of CFRP cables in the bending
tension state.

A section of a CFRP cable is a regular hexagon or close to a hexagon and is regularly
arranged (Figure 3). The number of CFRP tendons in the first layer gradually increases
from n1 = 1. According to the characteristics of the hexagonal section, the relationship
between the number of the first layer n1, the total number n, and the number of layers a
was calculated.
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According to Equation (5), for each layer of tendons in the cable body, the value of R
in the formula changes to R + (i−1) d. The UBC of each tendon within the cable body was
assumed to be expressed by variables, including

Fmax(i) = ( ftk −
E

R + (i− 1)d
y)A− ftk A1 (8)

where i denotes the particular layer to which a single tendon belongs.
Then, the ultimate strength of each tendon within the cable body was expressed as

fi =
Fmax(i)

A
(9)

According to Equations (11) and (12), the strengths of the tendons in the same layer
are equal and the strength of the tendons of the first layer at the bottom is the lowest and
then increased in turn outward.

Point A of the control section was assumed to be in ideal axial tension, with the tension
force applied on each tendon within the parallel cable being the same, such that, when the
load reached nf 1, the tendons of the first layer with the lowest strength f1 failed and then
became out of service, and the load redistributed to the remaining (n−n1) tendons. There
were two failure modes:

Failure mode (1): If nf1 > (n−n1)f2, the remaining (n−n1) tendons cannot bear the load
and the tendons of the 2nd layer with the 2nd-lowest strength f2 will fail and become out of
service synchronously. Further, nf1 and (n−n1−n2)f3 are compared to judge the failure of
tendons of the 3rd layer.
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Failure Mode (2): If nf1 < (n−n1)f2, the remaining (n−n1) tendons can bear the load and
more loads are applied. When the tendons of the 2nd layer with the 2nd-lowest strength
f2 failed and became out of service, (n−n1)f2 and (n−n1−n2)f3 are compared to judge the
failure of tendons of the 3rd layer.

The above steps are repeated until the judgment of failure of all tendons is completed
and the equivalent ultimate strength of each tendon within the cable body obtained as

fe = max{n f1, (n− n1) f2, . . . , fn}/n (10)

Then, the UBC of the CFRP cables is Fs = nAf.
Considering the CFRP cables to be in the ideal axial tension situation, the critical

number n corresponding to different R’s was obtained by calculation (Table 1). When R
was 0.7 m, the ultimate failure mode of n < 5550 belonged to the first mode above, such that
the first low-strength tendon failed and the remaining tendons could not bear the original
load and continuously failed.

Table 1. Critical number n under the two failure modes.

Bending Angles/m n a Failure Mode

0.7 (Critical Radius)
≤5550 ≤87 1
≥5550 ≥87 2

1
≤16,500 ≤149 1
≥16,500 ≥149 2

1.5
≤92,800 ≤352 1
≥92,800 ≥352 2

2
≤272,400 ≤603 1
≥272,400 ≥603 2

Considering the actual application scenario, the number n was much smaller than the
data calculated in Table 1, such that Equation (10) was simplified to

fe = f1 (11)

According to the failure criterion P ≥ FS (maximum axial force failure criterion), the
UBC of the CFRP cable was

Fs = nA f1 (12)

The strength retention rate under bending was the same as in Section 2.2 (Equation (7)),
expressed as

η =
f1

ftk
× 100% (13)

3. Experimental Study
3.1. Tensile Strength Test of CFRP Cables

The reliability of the cable-anchor system used in this test was verified and the effects
of anchorage performance ruled out using bending tests. A static load test of the CFRP
cable was carried out to measure the true ultimate tensile strength of the test piece.

Three CFRP tendons of 10 mm diameter were used as test pieces. The length of the free
end was 500 mm (Refer to American Standard ACI 440.3R-04: the length of the specimen
should not be less than 40 times the diameter of the tendon), and the anchorage lengths at
both ends were 150 mm. The specific sizes of the test pieces are shown in Figure 4.

During tests, the universal servo tensile testing machine was employed to apply load
on the test pieces and the data related to the force, displacement, and failure mode of
the cable were recorded. By reference to the Japanese standard JSCE-E 531-1995 [40], the
following loading scheme was used. For anchorage assembly parts of the cable, preloading
and unloading were performed with 5% of the standard value of the tensile strength of the
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CFRP material provided by the manufacturer. Then, step-by-step loading was performed
with a load increment of 10% of the standard value of the tensile strength at a loading rate
of ~150 MPa/min. Finally, loading was continued until complete failure to obtain the UBC.

Materials 2022, 15, x FOR PEER REVIEW 8 of 20 
 

 

45

150 500 150
800

 CFRP Cable Anchor 

20

10

1

1

1-1

 
Figure 4. Test pieces of CFRP cable (in mm). 

During tests, the universal servo tensile testing machine was employed to apply 
load on the test pieces and the data related to the force, displacement, and failure mode of 
the cable were recorded. By reference to the Japanese standard JSCE-E 531-1995 [40], the 
following loading scheme was used. For anchorage assembly parts of the cable, 
preloading and unloading were performed with 5% of the standard value of the tensile 
strength of the CFRP material provided by the manufacturer. Then, step-by-step loading 
was performed with a load increment of 10% of the standard value of the tensile strength 
at a loading rate of ~150 MPa/min. Finally, loading was continued until complete failure 
to obtain the UBC. 

In this test, the only failure mode of the CFRP cable anchorage system was overall 
rupture failure of the cable body and “wire rupture” failure occurred in the free segment 
of the cable (Figure 5b). Based on the tensile tests of triplicate pieces, data on tensile UBC 
were obtained (Table 2). 

Anchor

CFRP Cable

  
(a) (b) 

Figure 5. (a) Installation, (b) Failure. Static load test on the CFRP cable. 

Table 2. Static load test data of the CFRP cable. 

Test 
Conditions Specification/mm 

UBC F 
/kN 

Average Value of UBC ⎯F 
/kN  

S-1 3 × 10 494.6 
492.1 S-2 3 × 10 513.9 

S-3 3 × 10 467.7 

The average test value of three test pieces was 492.1 kN. The ultimate strength of the 
CFRP cable ft was 2089 MPa by converting F = A·ft. The ultimate tensile strength provided 
by the CFRP material manufacturer was 2200 MPa. Therefore, the anchorage efficiency of 
the test pieces used in this test was 95.0%, which was consistent with that required by the 
standard. 
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In this test, the only failure mode of the CFRP cable anchorage system was overall
rupture failure of the cable body and “wire rupture” failure occurred in the free segment
of the cable (Figure 5b). Based on the tensile tests of triplicate pieces, data on tensile UBC
were obtained (Table 2).
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Table 2. Static load test data of the CFRP cable.

Test Conditions Specification/mm UBC F
/kN

Average Value of UBC F
/kN

S-1 3 × 10 494.6
492.1S-2 3 × 10 513.9

S-3 3 × 10 467.7

The average test value of three test pieces was 492.1 kN. The ultimate strength of the
CFRP cable ft was 2089 MPa by converting F = A·ft. The ultimate tensile strength provided
by the CFRP material manufacturer was 2200 MPa. Therefore, the anchorage efficiency
of the test pieces used in this test was 95.0%, which was consistent with that required by
the standard.

3.2. Tensile Strength Test of CFRP Cable under Bending
3.2.1. Test Scheme

A beam from a bridge that was over 25 years old was tested. The beam type was a
hollow slab beam, 1000 × 600 × 6000 mm in size, with a concrete grade of C30 and without
prestressed steel tendons. The overall condition was good.

The test used the external prestress tensioning technique, consisting of an anchorage,
connection, steering system, tensioning system, and monitoring systems (Figure 6). The
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monitoring system consisted of a load cell and static-strain collection box. The steering
system consisted of prefabricated bogies. The test piece was securely connected with the
beam body by the connection system after it was turned by the steering system. During
tensioning, the connection system was used to securely connect it to the tensioning system
and real-time data collection was conducted through the external static-strain collection box.
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Tensile strength tests of CFRP tendons under bending included the following main
steps: (1) Concrete pretreatment, with polishing of the installation area to ensure smooth-
ness; (2) installation into the reaction frame and the bogie on the beam through the planting
screw, with a planting depth at 12 cm (≥6 d, d the planting diameter), and completion of
connection and installation of all devices; (3) tension, with first pre-tensioning and checking
whether the force was uniform through the two sets of load cells arranged at the tension
and fixed ends. Then, formal loading was performed until complete failure at a loading
speed of 150 MPa/min and the ultimate load obtained.

The first set of tests used CFRP tendons with a diameter of 10 mm as test pieces and the
test parameters included the bending angle θ and interfacial buffer material. Three different
turning angles of 20, 30, and 40◦ were selected and control conditions without buffer
material and with a PTFE plate as buffer material were set (Figures 7 and 8, respectively).
The first set of tests involved a total of six sets of working conditions (Table 3).
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Table 4. Bending test conditions of CFRP cables. 

Test Conditions Bending Radii R 
/m 

Bending Angles θ 
/° 

Cushion Material Specification 
/mm 

BF-R1.5-A 1.5 
20 / 

3 × 10 
BF-R1.5-B 3 × 10 
BF-R2-A 
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3 × 10 

BF-R2-B 3 × 10 

Figure 7. Test part without buffer material.
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Table 3. Bending test conditions of CFRP tendons.

Test Conditions Bending Radii R
/m

Bending Angles θ
/◦ Cushion Material Specification

/mm

BF-20

1.5

20
/ 1 × 10

B-20 PTFE 1 × 10
BF-30

30
/ 1 × 10

B-30 PTFE 1 × 10
BF-40

40
/ 1 × 10

B-40 PTFE 1 × 10

The second set of tests used three CFRP cables composed of single tendons of 10 mm
diameter. Four bending radii of 1.5, 2, 2.5, and 3 m were selected (Figure 6). A total of eight
sets of working conditions were set in the second group (Table 4).

Table 4. Bending test conditions of CFRP cables.

Test Conditions Bending Radii R
/m

Bending Angles θ
/◦ Cushion Material Specification

/mm

BF-R1.5-A
1.5

20 /

3 × 10
BF-R1.5-B 3 × 10
BF-R2-A

2
3 × 10

BF-R2-B 3 × 10
BF-R2.5-A

2.5
3 × 10

BF-R2.5-B 3 × 10
BF-R3-A

3
3 × 10

BF-R3-B 3 × 10
Note: Bending angle and interface parameters in working conditions in Table 4 determined and supplemented
according to the test results in Table 3.

3.2.2. Test Results

According to the theoretical analysis of Section 2.2, the bending stress caused prema-
ture tensile damage to the outermost fibers of the CFRP tendon, at which time the section
did not fail completely and was in the initial damage state. As the load increased, the
fibers continued to break in tension until the section failed completely and reached the
ultimate damage state. In the bending test, all specimens failed at the contact tangent
position between the CFRP bars and the bogie, exhibiting a tensile damage mode of the
fibers. Two stages were observed, including the initial and ultimate failure stages. After
initial failure, fibers on the outer side of the tendons ruptured and were out of service,
with the stress redistributed in the cross-section (Figure 9a). After further loading, the test
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pieces underwent continuous fiber fracture until ultimate failure and direct rupture. At this
time, the internal force approached 0.00 kN and test pieces experienced uniform explosive
failure (Figure 9b).

Materials 2022, 15, x FOR PEER REVIEW 11 of 20 
 

 

BF-R2.5-A 2.5 3 × 10 
BF-R2.5-B 3 × 10 
BF-R3-A 3 3 × 10 
BF-R3-B 3 × 10 

Note: Bending angle and interface parameters in working conditions in Table 4 determined and 
supplemented according to the test results in Table 3. 

3.2.2. Test Results 
According to the theoretical analysis of Section 2.2, the bending stress caused 

premature tensile damage to the outermost fibers of the CFRP tendon, at which time the 
section did not fail completely and was in the initial damage state. As the load increased, 
the fibers continued to break in tension until the section failed completely and reached 
the ultimate damage state. In the bending test, all specimens failed at the contact tangent 
position between the CFRP bars and the bogie, exhibiting a tensile damage mode of the 
fibers. Two stages were observed, including the initial and ultimate failure stages. After 
initial failure, fibers on the outer side of the tendons ruptured and were out of service, 
with the stress redistributed in the cross-section (Figure 9a). After further loading, the test 
pieces underwent continuous fiber fracture until ultimate failure and direct rupture. At 
this time, the internal force approached 0.00 kN and test pieces experienced uniform 
explosive failure (Figure 9b). 

The load-time curve for cases B-20 and BF-20 under single bending showed that two 
peaks existed on the curve, points a and b (Figure 10), representing the axial force at the 
tensile end, which corresponded to the initial and the ultimate failure states (Figure 9a,b, 
respectively). In addition, there was a difference between the axial force curves of the 
tensioned and fixed ends, and the BF-20 working condition demonstrated a larger gap 
than the B-20 working condition. This was because BF-20 had no buffer material and 
larger friction loss than B-20. However, the UBC results of the two sets of working 
conditions were similar and the same result was also obtained on the basis of 
comparisons among the working conditions of B-30 and BF30 and of B-40 and BF40. This 
verified that the bending angle parameter in Equation (7) of the calculation model was 
not the parameter that influenced the results. Thus, the bending angle and buffer material 
in the experimental research conditions were not deemed to be factors that affected the 
ultimate bending capacity. 

Deviator

Fiber rupture 

CFRP tendons
 

CFRP fracture failure 

Deviator
 

(a) (b) 

Figure 9. (a) Initial failure test, (b) Ultimate failure test. Failure in CFRP tendon tests. Figure 9. (a) Initial failure test, (b) Ultimate failure test. Failure in CFRP tendon tests.

The load-time curve for cases B-20 and BF-20 under single bending showed that
two peaks existed on the curve, points a and b (Figure 10), representing the axial force at the
tensile end, which corresponded to the initial and the ultimate failure states (Figure 9a,b,
respectively). In addition, there was a difference between the axial force curves of the
tensioned and fixed ends, and the BF-20 working condition demonstrated a larger gap than
the B-20 working condition. This was because BF-20 had no buffer material and larger
friction loss than B-20. However, the UBC results of the two sets of working conditions
were similar and the same result was also obtained on the basis of comparisons among the
working conditions of B-30 and BF30 and of B-40 and BF40. This verified that the bending
angle parameter in Equation (7) of the calculation model was not the parameter that influ-
enced the results. Thus, the bending angle and buffer material in the experimental research
conditions were not deemed to be factors that affected the ultimate bending capacity.
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Figure 10. (a) Load-time curve for working condition B-20, (b) Load-time curve for working condition
BF-20. Load-time curve of CFEP tendon tests.

Similar to CFRP tendon tests, the failures of CFRP cables all occurred at the tangent
position where the cable and bogie contacted. In the bending test, after the initial failure
of the CFRP cable, with increased load, the stress of the section was redistributed and the
remaining CFRP tendons were unable to bear the original load, at which point the fibers
ruptured continuously; finally, the CFRP cable underwent uniform explosive failure at the
rupture site (Figure 11).
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Figure 11. Failure in CFRP cable tests.

The test results of the CFRP tendons showed that the variation in all results was
within 5%, demonstrating high consistency and further verifying that the ultimate bending
bearing capacity was not correlated with the bending angle or buffer material (Figure 12a).
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under different working conditions.

The test results of the CFRP cable also showed that, with an increased bending ra-
dius, the curves exhibited a clear upward trend, indicating that the bending radius had a
significant impact on the strength retention rate (Figure 12b).

3.2.3. Test Verification

The above test results were compared and verified using Equation (7). The ratio of the
measured to theoretical values of the UBC under each working condition showed that the
measured values of each group were relatively close and consistent with the theoretical
analytical results (Table 5). According to the data under all working conditions, the mean
ratio µ of the experimental to theoretical values was 0.970 and the coefficient of variation
δ was 0.051 (Table 5). The measured value error under the BF-R1.5-B working condition
was great, which might have been caused by an installation accuracy error. Therefore, after
removing this working condition, the mean ratio µ of the test to theoretical values was
0.981 and the coefficient of variation δ dropped to 0.030. The proposed theoretical method
was thus concluded to be accurate.
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Table 5. Test and theoretical values of bending bearing capacity.

Test Conditions Test Value
/kN

Theoretical Value
/kN

Test Value and Theoretical Value Ratio
/%

BF-20 131.5

131.3

1.002
B-20 126.5 0.963

BF-30 132.8 1.011
B-30 125.5 0.956

BF-40 129.1 0.983
BF-40 131.8 1.004

BF-R1.5-A 360.6
393.9

0.915
BF-R1.5-B 326.2 0.828
BF-R2-A 401.4

424.5
0.946

BF-R2-B 411.6 0.970
BF-R2.5-A 445.2

443.1
1.005

BF-R2.5-B 435.9 0.984
BF-R3-A 457.7

455.7
1.004

BF-R3-B 460.7 1.011

Comparisons between the measured and theoretical values of the strength retention
rate under each working condition showed that the bending radius had a significant impact
on tensile strength (Table 6). The strength loss was great and more likely to be lower
than the theoretical residual strength as a result of an installation error when the bending
radius was small. Compared with working conditions with bending radii of 1.5 or 2 m, the
strength of a test piece increased by 15.4% and 6.6%, respectively. Moreover, the difference
was only 3.6% compared with the working condition with a 3 m bending radius. It was
found that, when the bending radius was 2.5 m, the residual strength significantly increased
and reached ~85%.

Table 6. Residual tensile strength under bending.

Test Conditions ηt
(%)

ηt
(%)

η
(%)

BF-20 76.10
74.65

75.98

B-20 73.21
BF-30 76.85

74.74B-30 72.63
BF-40 74.71

75.49BF-40 76.27

BF-R1.5-A 69.57
69.57 75.99BF-R1.5-B 62.93

BF-R2-A 77.44
78.42 81.89BF-R2-B 79.40

BF-R2.5-A 85.89
84.99 85.48BF-R2.5-B 84.09

BF-R3-A 88.30
88.59 87.91BF-R3-B 88.88

Note: ηt and η are measured mean values of the retention rate of residual tensile strength and theoretical values
of retention rate of tensile residual strength, respectively. Removal condition BF-R1.5-B.

The above tests showed that the bending strength was not affected by the bending
angle, the interface buffer material, or the number of CFRP tendons within the cable.
When the diameter of the tendons was constant, the bending strength increased with an
increased bending radius. The results of the theoretical calculation model of the tensile
strength of the cable in the bending state were properly consistent with the experimental
results. This basically conformed to the relationship changes of the cable bearing capacity
under different working conditions, which also verified the correctness of the theoretical
calculation model.
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4. Discussion and Prediction
4.1. Discussion

From a historical point of view, high-strength steel has good mechanical properties,
and the use of traditional steel strand and steel cable has led to tremendous developments
in bridge engineering; however, its high post-maintenance cost and unstable long-term
performance have been major problems for the industry. In comparison, CFRP has a
superior performance, its tensile strength is 8–10 times that of steel, and its density is only
1/5 that of steel. Moreover, its corrosion rate is only 1/1000 that of steel, or even lower [1,2].
Therefore, CFRP cables have been considered for bridge structures since 1982 [5]. The
first application of CFRP cables in highway bridges was the Stork bridge in Sweden [41].
They have been gradually applied since then, such as in the Neigles pedestrian bridge in
Switzerland [42], the Laroin pedestrian bridge in France, and the Penobscot bridge in the
United States [43].

With the expansion of applications, problems related to material bending become in-
evitable. However, scholars have not studied the bending tensile properties of steel strands
or cables in depth, because the bending behavior has little effect on their performance. For
CFRP ropes, Jerrett et al. [24] directly used bogies of steel strands at the beginning and
tested whether the performance was much reduced. They realized the necessity of bending
research on CFRP ropes and proceeded to develop bogies suitable for CFRP materials.

In this paper, bending tensile tests were conducted for CFRP ropes at bending angles
of 20–40◦ and turning radii of 1.5–3 m to verify the correctness of the theoretical findings
in Section 2. Moreover, we used the calculation model obtained in the previous paper to
predict and evaluate the residual strength under actual conditions, so as to provide an
intuitive assessment and reference for engineering applications of prestressed CFRP ropes.

4.2. Prediction

The research results of previous scholars are often only applicable to their specific
materials [35–38] and cannot be well applied to engineering applications. Furthermore,
due to the heterogeneity of material properties, material suppliers can only guarantee the
approximate range of material parameters [44]. Therefore, we needed theoretical calcula-
tions to predict the error envelope range and thus the ultimate performance. According to
the theoretical calculation model (Equation (7)) established in Section 2.2, the influencing
factors of the residual tensile strength were the radius of the CFRP tendon r, the elastic
modulus E, the tensile strength f, the bending radius R of the bogie, and the numerical range
of parameters of common reinforcement CFRP tendons [11,12,44,45], with r at 3–7 mm, f at
2100–2500 MPa, and E at 120–160 GPa.

The lower limits of the applicable ranges of Equations (4) and (8) were calculated from
the above parameter ranges as R/r≥ 153 and R/r≥ 120, respectively. The value of R ≥ 200 r
was conservatively taken, which thus applied to R ≥ 2 m.

Examination of the variations in the UBC and RSR of CFRP tendons with different
radii with bending radius showed that they increased with an increased bending radius
(Figure 13). When the turning radius was constant, the UBC increased with increased
tendon radius r, residual strength decreased with increased radius r, and the magnitude of
decrease was large.

Examination of the variation of the UBC and RSR of CFRP tendons with different
strengths with bending radius showed that they increased with an increased bending radius
(Figure 14). When the bending radius was constant, both the UBC and RSR increased with
increased tendon strength f, the residual strength increased by <4%, and the magnitude of
increase was small.
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Examination of the variation of the UBC and RSR of CFRP tendons with different
elastic modulus with the bending radius showed that they increased with an increased
bending radius (Figure 15). When the bending radius was constant, both the UBC and the
RSR decreased with an increased elastic modulus, residual strength decreased by less than
6%, and the magnitude of decrease was small.
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Within the performance parameters of the common reinforcement CFRP tendons
above, r > f > E were ranked by the extent of effects on the UBC (Figures 13–15). E had
minor effects and was ranked as r > E > f by the effects on residual strength, in which
the effects of f and E were minor. Within the range of 2100–2500 MPa in strength and
120–160 Gpa in elastic modulus, when R≥ 3 m and r≤ 7 mm, the residual strength reached
over 80%; when R ≥ 6 m and r ≤ 7 mm, the residual strength reached over 90%; and when
R ≥ 10 m and r ≤ 7 mm, the residual strength reached almost 95%.

However, a further analysis indicated that the above four parameters were not inde-
pendent of each other in terms of results. Based on the analysis in Section 2.2, the residual
strength of bending tensile was only affected by the quantities of R/r and E/f. Thus, by
referring to Equation (7), a prediction model was obtained (Figure 16).
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Within the performance parameters of the common reinforcement CFRP tendons exam-
ined above, RSR increased nonlinearly with increased R/r (Figure 16). When 200 ≤ R/r ≤ 600,
this variation was significant; when R/r ≥ 600, the increasing trend was not significant; and
with the RSR of over 80%, and when R/r ≥ 1200, the RSR reached more than 90%. The
RSR decreased almost linearly with increased E/f. Under the most unfavorable condition,
E/f = 120, R/r = 200, the RSR was only ~50%. It was thus clear that both R/r and E/f had a
great impact on the residual strength and comprehensive consideration should be given to
avoid any unfavorable conditions.
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In the example of the test material in this study, E/f = 72.7, when R/r ≥ 800, the RSR
reached 90% and, when R/r ≥ 1600, the RSR reached 95%. At present, most CFRP tendons
with a 5 mm radius are used in actual bending and shear resistance reinforcement projects
and the bending radius is generally >5 m, i.e., R/r ≥ 1000. Hence, CFRP cables are highly
reliable in engineering reinforcement applications due to their low loss in residual strength
and high tensioning efficiency.

5. Conclusions

To evaluate the tensile strength of CFRP cables under bending, this study conducted
theoretical analyses and experimental tests, which revealed the tensile performance and
failure mechanism of CFRP cables under bending, and established a residual tensile strength
evaluation model based on the internal force failure criterion. The major conclusions were
as follows:

(1) Based on theoretical research in Section 2, the tensile failure mode of CFRP cable
involved tensile failure of the fiber. Based on the failure criterion of the maximum axial
force, the study established an evaluation and calculation model for the tensile strength of
CFRP cables under bending and verified the model through test results. This model was
applied to a case where the bending radius R was ≥2 in practical engineering and could be
used to analyze the behavioral characteristics of the initial and ultimate failure of CFRP
cables in applications.

(2) The experimental results indicated that the residual tensile strength of CFRP cables
was associated with the radius r, tensile strength f, elastic modulus E, and bending radius
R of CFRP tendons. It was not correlated with the interfacial buffer material or bending
angle. The r and R were found to have great effects on the residual strength.

(3) The discussion and prediction showed that the RSR was only affected by the
combination of R/r and E/f, it decreased with increased E/f, and it increased with increased
R/r. When E/f involved conventional material parameters, R/r ≥ 600, the RSR reached more
than 80%, and when R/r ≥ 1200, the RSR reached >90%. As a result, R/r = 600 may be
utilized as a basis in the design of a safe critical radius.
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