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Abstract: Magnetoactive elastomers (MAEs) have gained significant attention in recent years due
to their wide range of engineering applications. This paper investigates the important interplay
between the particle microstructure and the sample shape of MAEs. A simple analytical expression
is derived based on geometrical arguments to describe the particle distribution inside MAEs. In
particular, smeared microstructures are considered instead of a discrete particle distribution. As a
consequence of considering structured particle arrangements, the elastic free energy is anisotropic. It
is formulated with the help of the rule of mixtures. We show that the enhancement of elastic moduli
arises not only from the induced dipole–dipole interactions in the presence of an external magnetic
field but also considerably from the change in the particle microstructure.

Keywords: magnetoactive elastomers; anisotropic particle distribution; smeared microstructures;
effective elastic properties

1. Introduction

Magnetizable particles embedded in soft elastomer matrix form a smart rubber com-
posite known as magnetoactive elastomers (MAEs), whose mechanical and rheological
properties can be manipulated externally with the magnetic field [1–14]. The ability of
controlling mechanical properties externally with an applied magnetic field provides a
promising technology for soft robotics and biomedical devices [15,16]. Thus, these MAEs
can be used in a variety of engineering applications including but not limited to actuators,
adaptive engine mounts, metamaterials, artificial cilia, retina magnetic fixators, tunable
vibration absorbers, long-term biofilm control, etc. [17–24]. The fabrication of such MAEs
under the application of an external magnetic field rearranges the randomly distributed
magnetic particles into chain-like or plane-like microstructures [25–30]. If a homogeneous
external magnetic field is applied during the cross-linking, particles tend to align into
chains along the field direction. Alternatively, the use of a rotating magnetic field trans-
forms the particle distribution to a plane-like microstructure [31]. Recently, anisotropic
MAEs are also synthesized using novel 3D-printing techniques [32–34]. The mechanical
properties of MAEs are highly sensitive to the initial shape of a sample [35–38] as well as to
the particle microstructure [39–41]. MAEs possess the ability to change their elastic moduli
in the presence of an external magnetic field [42–45]. To observe large enhancements in the
moduli, one needs a very soft polymer matrix. Recently, ultra soft elastomeric matrices
are introduced with the bottlebrush architecture [46]. A three-order increase in the shear
modulus is demonstrated by using these “supersoft” elastomer matrices.

A variety of theoretical works can be found in the literature that investigate the effect
of microstructure on the mechanical properties of MAEs [29–31,47–52]. In most works,
the particle microstructure is described by the discrete particle positions inside an elastomer
matrix. For that, different lattice models are considered. However, the precise particle
positions are usually not known. Such lattice models show some pragmatic limitations
due to the consideration of perfectly ordered microstructures. As an alternative, a differ-
ent characterization scheme has been proposed in Ref. [53]. Instead of discrete particle
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distribution, the particle positions are smeared over an elongated columnar-like microstruc-
ture. The assumption of smeared microstructures replaces the discrete summation with
an integral over the whole MAE sample. The transition from discrete summation to an
integral significantly simplifies the model of MAEs with chain-like particle distribution.
The present work extends this formalism to plane-like structures and attempts to simplify
the formalism even further by converting the integral that describes the smeared particle
microstructure in Ref. [53] into a simple analytical expression.

Such microstructures in MAEs also introduce a mechanical anisotropy in the material
already in the absence of an external magnetic field [54,55]. Therefore, one has to consider
an additional contribution due to anisotropic structures to the elastic free energy of MAEs.
The anisotropic MAEs with smeared microstructures exhibit transverse isotropy along the
symmetry axis, as illustrated in Figure 1. Transversely isotropic materials are also called
unidirectional composites that show isotropic properties in the plane perpendicular to
the preferred direction. Thus, the elastic free energy density is formulated by considering
transverse isotropy in anisotropic MAEs. The dimensionless parameters related to the
stretch of anisotropic microstructures are estimated using the rule of mixtures.
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Smeared columnar structures
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Figure 1. Smearing of magnetic particles (total volume fraction φ) into columnar and disk-like
structures. φp is the volume fraction of magnetizable particles inside a smeared structure, and φ f =

φ
φp

represents the volume fraction of smeared structures inside an elastomer matrix. MAEs, in both cases,
exhibit transverse isotropy along a unit vector~e1.

Following our previous works [37,38], an ellipsoidal MAE sample of two equal semi-
axes and one distinct semi-axis is considered, as shown in Figure 2. We study the effect of
different particle microstructures and the initial shape of an MAE sample on its mechanical
properties. The magnetic particles are considered as point-like dipoles, and the linear
magnetization regime is assumed. The paper is arranged as follows: In the next section,
the material model of ellipsoidal MAE is presented. The simplification of the formalism
presented in Ref. [53] is explained in detail by providing simple geometrical arguments.
The magneto-induced deformations and magneto-rheological effects are investigated in
Sections 3 and 4, respectively. In the last section, conclusions are drawn, and the effect of
particle rearrangement is discussed.
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Figure 2. The image on the left represents schematics of an MAE sample with the shape of an ellipsoid
of revolution having two equal semi-axes b0 = c0 and one distinct semi-axis a0. The magnified image
on the right side depicts a smeared columnar structure.

2. Materials and Methods

The deformation gradient tensor is defined as F = ∂~x
∂~X

, where ~X is the position vector
of a material point in the reference configuration (undeformed), and ~x is the position vector
in the current configuration (deformed). The resultant right and left Cauchy deformation
tensors are C = FT · F, b = F · FT, respectively. The principal invariants of the right Cauchy
deformation tensor are given as [56]

I1 = tr(C), I2 =
1
2
((tr(C))2 − tr(C2)), I3 = det(C) = J2 (1)

where J is the volume ratio between current and reference configurations [57]. For incom-
pressible materials, J = 1 [58]. It is a common practice to separate the elastic free energy of
transversely isotropic materials into a contribution for the elasticity of the matrix material
ψiso and the influence of anisotropic structures ψaniso. The anisotropic part is defined with
additional invariants, called “pseudo-invariants” I4, I5, and I6, under rotations around the
preferred direction in the material. They describe the effects of reinforcement due to the
presence of rigid anisotropic structures [58,59].

The chain-like structures in MAEs can be approximated as fibers [54]. In the liter-
ature [56], the fiber-reinforced elastic composites are typically modeled as transversely
isotropic materials. The pseudo invariant I4 characterizes a family of fibers with some
preferred direction (for instance, along unit vector~a0). The invariant I5 is only considered
during the shear deformations, as shown in [59]. It is omitted for uniaxial elongation
by considering a modification I∗5 = I5 − I2

4 . For uniaxial elongation, the invariant I∗5 is
always zero. Similarly, the MAEs with plane-like structures are also transversely isotropic
materials [54]. However, in this case, it is not possible to model the plane-like structures
with only pseudo invariant I4, as we explain further in Section 2.2. In order to model such
a microstructure, we consider additionally auxiliary pseudo invariant I6 that describes the
same family of fibers but with a different preferred direction (for example, along unit vector
~b0, and~a0 ∦~b0) [56].

I4 =~a0 · C ·~a0, I5 =~a0 · C2 ·~a0, I6 =~b0 · C ·~b0 (2)

In this work, we restrict ourselves to uniaxial deformations. Thus, we describe the
total elastic free energy density in the following form:

ψel = ψiso(I1, I2, I3) + ψaniso(I4, I6). (3)
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Furthermore, we consider the isotropic elastic part as Neo-Hookean solid. The anisotropic
elastic part can be described by a variety of forms reviewed in Ref. [59]. Anisotropic MAEs
with chain-like structures can be approximated as elongated columnar structures or “fibers”.
Such an alternative description for chain-like structures was introduced in Ref. [53]. In this
work, we extend this description to plane-like structures. Since the precise particle positions
are generally unknown, we smear them continuously over some expanded microstructure;
see Figure 1. We approximate the chain-like structures as smeared columns (SCs) and
plane-like structures as smeared disks (SDs). The anisotropic MAEs with SCs and SDs have
different anisotropic contributions to the elastic free energy and magnetic energy densities.

In the linear magnetization regime, the total magnetic energy density in the sample is
given by [31,37,53]:

ψmag = − µ0

2Vs

∫
Vs

d3r ~M · ~H0 (4)

where µ0 = 4π × 10−7 NA−2 is the permeability of vacuum. The magnetization field
~M = ~M(~r) depends on the sample shape and the particle distribution. We consider the
homogeneous external magnetic field ~H0. Then, the volume integral in Equation (4) can be
written as:

ψmag = −µ0

2
φ〈 ~M〉 · ~H0 (5)

where 〈 ~M〉 denotes the average magnetization among all inclusions in the sample. Since
the elastic matrix is not magnetizable, the factor φ, the total volume fraction of particles,
enters Equation (5).

Previous works showed that assuming an ellipsoidal sample shape, the magnetic
energy can be decomposed into two independent contributions. One represents the
macroscopic shape of the sample, fmacro, and the other refers to the microscopic parti-
cle distribution, fmicro [31,53]. Here, fmacro is closely related to the demagnetizing factor
of a homogeneously magnetized ellipsoid. In order to model the microscopic contribu-
tion fmicro, the individual particle positions must be presumed. For example, this can be
achieved considering lattice-like particle distributions [29,31,47]. However, as mentioned
previously, the precise particle positions are unknown in realistic samples [53]. Further-
more, we consider constant density φp within smeared structures, as depicted in Figure 1.
Thus, we define φp as the volume fraction of particles inside a smeared structure, and it
follows: φp ≥ φ. The volume fraction of smeared structures (at φp > φ) is obtained as
the ratio of φ f = φ

φp
[54]. At φp = φ, the particle density is the same all over the sample

describing the isotropic distribution of particles (no smeared structures) and consequently
φ f = 1. To attain magnetic energy for samples with SCs, the locally varying magnetization
field ~M(~r) was calculated self-consistently in Ref. [53]. Such “full” self-consistent treatment
requires an elaborate formulation, and the solution can be computed only numerically.

Recently, an efficient approximation scheme [41,60] could be established to calculate
magnetization fields in composite materials under rather general conditions. For example,
a tensorial notation was introduced to describe the effects of arbitrarily oriented external
magnetic fields and/or more generic particle microstructures or sample shapes. In particu-
lar, the tensor Gmicro was introduced to describe the microstructure. In the present work,
we consider the external magnetic field ~H0 aligned with the symmetry axis of the particle
structure. Furthermore, also the symmetry axis of the sample form itself, i.e., ellipsoid of
revolution, is co-aligned with ~H0. Accordingly, the tensorial notation can be reduced to a
scalar description with all fields oriented along the x-direction, i.e., ~H0 = H0~e1, ~M = M~e1
and consequently also the total magnetic field ~H = H~e1 (a unit vector~e1 is aligned along
the x-direction). Assuming the linear magnetization regime, ~M = χ~H with isotropic
susceptibility χ, the average magnetization in the sample is found via the leading order
approximation [41,60] as:

〈M〉 =
χe f f H0

1− χe f f (φ fmacro + fmicro)
. (6)
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Here, χe f f =
χ

1+χnd
denotes the effective susceptibility, with nd being the particle de-

magnetization factor. Considering spherical inclusions, we have nd = 1
3 . The macroscopic

contribution from the sample shape for ellipsoidal MAEs reads fmacro = 1
3 − Ja, where

Ja is the demagnetizing factor of an ellipsoid along its symmetry axis [37]. According to
Refs. [53,60], the contribution due to microscopic particle structure is formally obtained as:

fmicro =(Gmicro)11=
1

4πVMS

∫∫
VMS

d3r d3r′ Φ(~r′)
3(x′−x)2 − | ~r′−~r |2

| ~r′ −~r |5
Θ(| ~r′−~r | −dp). (7)

Here, VMS denotes a mesoscopic portion of the sample where the local particle struc-
ture is resolved, i.e., a representative volume in form of a mesoscopic sphere [53,60]. Since
in the present approach, we describe the particle distribution as continuous (locally vary-
ing) fields, Equation (7) is formulated in terms of integrals instead of discrete summations
over explicit particle positions. The particles are assumed to be of spherical shape with
diameter dp and, accordingly, the Heavyside step function Θ(x) is introduced to restrict
the integration to positions outside of the particle located at~r (no self-interaction of particle
positions) [53,60]. Thus, from Equations (5)–(7), the magnetic energy density is

ψmag = −
µ0φH2

0
2

(
1

R + φJa − fmicro

)
(8)

where R = χ−1 + 1
3 −

φ
3 [38]. The total free energy density of anisotropic MAEs is now

a combination of three contributions: ψiso, ψaniso, and ψmag. As mentioned previously,
by considering the isotropic elastic part as Neo-Hookean solid, the total free energy density
can be given as

ψMAE =
Giso

2
(I1 − 3) + ψaniso(I4, I6)−

µ0φH2
0

2

(
1

R + φJa − fmicro

)
. (9)

Here, Giso = Gmkiso is the effective shear modulus of an isotropic MAE, and kiso is the hy-
drodynamic reinforcement factor [61,62] obtained via the rule of mixtures (see Appendix A).

kiso =
Giso
Gm

=

(
1 +

2.5φ

1− 2φ

)
(10)

where Gm is the shear modulus of a pure elastomer matrix. Equation (9) represents a general
form of the free energy density of anisotropic MAEs. One needs to choose the appropriate
form of ψaniso depending on the microstructure under consideration. The values of the
dimensionless parameter fmicro also change with respect to the particle distribution. In the
following section, we derive the specific form of ψaniso and fmicro for MAEs with SCs
and SDs.

2.1. Free Energy of Anisotropic MAEs with Smeared Columns

Anisotropic MAEs with SCs can be approximated as fiber-reinforced materials that
exhibit unidirectional anisotropy along the fibers. For such materials, we consider a
quadratic form of I4 as given in Ref. [59].

ψaniso =
Giso

2
ζSC(I4 − 1)2 (11)

where the dimensionless parameter ζSC describes the fiber (smeared column) stretch. In this
case, I4 is invariant under the rotations around a unit vector ~e1 ≡ (1, 0, 0), as shown in
Figure 1. Thus,

I4 = ~e1 · C ·~e1 = C11. (12)
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The SCs are all aligned in the same direction, and thus, they are described by only
one pseudo-invariant I4 (thus, here, I6 = 0). The longitudinal elastic modulus EL of MAEs
with SCs along the symmetry axis is larger than the elastic modulus ET in the transverse
direction. We compare the longitudinal elastic modulus derived from the elastic free energy
of anisotropic MAEs having SCs with the modulus predicted from the rule of the mixtures
to obtain values of the dimensionless parameter ζSC; for details, see Appendix B. For MAEs
with SCs,

ζSC =
3
4

(1− φ f + kφ f

kiso
− 1
)

(13)

where k is also the hydrodynamic reinforcement factor [61,62] given as

k =
G f

Gm
= 1 +

2.5φp

1− 2φp
(14)

where G f is the shear modulus of the isotropic fiber/smeared column. In the present
formulation, an isotropic distribution is realized when φp = φ, and consequently φ f = 1.
Thus, one obtains following relations:

k = kiso, G f = Giso, ζSC = 0. (15)

In Ref. [53], the form of fmicro for columnar structures has been studied in detail.
There, a self-consistent treatment with locally varying magnetization ~M(~r) within the
microstructure is derived. Here, we aim to provide an approximate, but in return, analytic
form for the microstructure effect. In the following, we make use of some relations provided
in Ref. [53]. We note that in smeared structures along~e1, the local particle volume fraction
Φ(~r) does not depend on the x-coordinate (Φ 6= Φ(x)). Then, the contributions to fmicro
originating from material portions situated at finite lateral distances (y − z-directions)
with respect to the reference location, i.e., position~r in Equation (7), vanish. A non-zero
contribution results from particles found above and below the reference particle i, see
Figure 2, and we denote it as f ′micro. Another non-zero contribution relates to volume
portions located sufficiently far away so that the micro-structure is not resolvable anymore
and the particle distribution appears homogeneous with Φ(~r) = φ. The corresponding
share to fmicro evaluates to − φ

3 [53].
In order to calculate the contribution f ′micro, we neglect effects due to particles located

exactly on or close to the boundaries of a smeared column. Neglecting such ‘boundary’
effects has the beneficial outcome that f ′micro, and thus fmicro altogether, adopts a very simple
analytic form. Accounting for the boundaries of particle-containing columns results in an
explicit dependency on the actual lateral size, or diameter, of the columns. Upon introduc-
ing the elastic free energy, we describe the mechanical effect of particle microstructures in
terms of fiber-like structures with enhanced stiffness parameter ζSC. The formulation is
restricted to the parameters φp and φ f . No dependency on the thickness of the smeared
columns is presumed. Accordingly, neglecting such structural size effects in the magnetic
formulation represents a consistent simplification. Assuming any reference particle posi-
tioned well inside the columnar structure, and considering the particle volume fraction in
such column as constant with Φ = φp, we note that every particle experiences an identical
filler concentration above and below its actual position. Consequently, the contribution
f ′micro is calculated as [53]

f ′micro = φp

∫ ∞√
d2

p−ρ2
dx
∫ dp

0
ρdρ

2x2 − ρ2

(x2 + ρ2)5/2 =
φp

3
(16)

and the total ( fmicro)SC in the case of SCs reads:

( fmicro)SC =
1
3
(
φp − φ

)
. (17)
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This expression is remarkably neat and compact. Note that Equation (17) correctly re-
produces the result for an isotropic particle distribution, i.e., fmicro = 0 at φp = φ [31,41,63].
The formation of columnar structures requires φp > φ and in turn, fmicro > 0 [31,41,63].
By substituting Equations (11) and (17) into (9), we obtain

ψMAE =
Giso

2

(
(I1 − 3) + ζSC(I4 − 1)2 −

µ0φH2
0

2Giso

(
1

R + φJa − ( fmicro)SC

))
. (18)

Equation (18) refers to the specific form of the free energy density of anisotropic MAEs
with SCs.

2.2. Free Energy of Anisotropic MAEs with Smeared Disks

We consider the plane-like microstructure of MAEs as smeared disks, as shown in
Figure 1. In this case, too, MAEs exhibit transverse isotropy along the symmetry axis of
SDs. However, SDs require at least two invariants to describe the plane of isotropy, which
is perpendicular to a unit vector~e1. Thus, here, we consider two pseudo invariants I4 and
I6 to take into account the anisotropic contribution due to SDs to the elastic free energy of
MAEs. We define I4 and I6 with respect to unit vectors~e2 ≡ (0, 1, 0) and~e3 ≡ (0, 0, 1) as

I4 = ~e2 · C ·~e2 = C22

I6 = ~e3 · C ·~e3 = C33
. (19)

The unit vectors~e2 and~e3 are perpendicular to each other and also to the direction of
anisotropy~e1 such that~e2 ·~e3 = 0 and~e1 = ~e2 ×~e3, as shown in Figure 1. The invariants
I4 and I6 are typically used in the modeling of transversely isotropic materials with two
families of fibers. In this work, we consider a disk (or plane) formed by a single family
of fibers but with directions along~e2 and~e3, retaining the preferred direction the same as
in the previous case (along ~e1). As the SD has uniform properties around its symmetry
axis, the mathematical manipulation of considering two directions such that ~e2 ·~e3 = 0
does not lead to orthotropic materials [56], keeping the material transversely isotropic.
By considering the quadratic form of I4 and I6, we propose the following anisotropic
contribution of SDs

ψaniso =
Giso

2
ζSD

(
(I4 − 1)2 + (I6 − 1)2

)
(20)

where ζSD is related to the stretch of SDs in anisotropic MAEs. Unlike in the previous
sections, MAEs with SDs have larger transverse modulus ET in the plane perpendicular the
symmetry axis (~e1) and smaller EL along this axis. In this case, we compare the transverse
modulus calculated from the free energy of MAEs with SDs using Equation (20) to the
modulus obtained from the rule of mixtures to estimate the value of ζSD (see Appendix C
for more details). Here, an analytical expression for ζSD is not possible, and the solution is
calculated numerically. With the proposed ψaniso for MAEs with SDs, one can attain total
elastic free energy density. Analogous to Equation (15), we have

ζSD

∣∣∣∣
φp=φ

= 0. (21)

The contribution of SDs to magnetic energy density also differs from the previous
case of MAEs with SCs. The prefactor 1

3 for SCs in Equation (17) can be easily understood
from geometrical considerations. Smeared columns may be interpreted as infinitely long
cylinders or as prolate spheroids with an infinitely large aspect ratio γ. The demagnetizing
factor along such spheroid reads Ja(γ→ ∞) = 0, and the shape factor becomes f = 1

3 .
Analogously, we may describe smeared disks as infinitely expanded oblate spheroids
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with vanishing γ. The demagnetizing factor for such objects turns to Ja(γ→ 0) = 1,
and consequently, we immediately find:

( fmicro)SD = −2
3
(
φp − φ

)
. (22)

Equivalently, this result may be derived from the explicit calculation of Equation (7).
By combining the Equations (9), (20) and (22), the total free energy density of an anisotropic
MAE with SDs reads:

ψMAE =
Giso

2

(
(I1−3)+ζSD

(
(I4−1)2+(I6−1)2

)
−

µ0φH2
0

2Giso

(
1

R+φJa−( fmicro)SD

))
. (23)

As mentioned earlier, for φp = φ, one has the isotropic particle distribution and sub-
sequently, ζSC = ζSD = ( fmicro)SC = ( fmicro)SD = 0. Thus, from Equations (15) and (21),
we have ψel = ψiso. Therefore, the present formalism is fully consistent with the previous
studies of isotropic MAEs [31,37,38,53].

3. Magneto-Induced Deformations

The tensile mechanical test is a destructive process that characterizes the tensile
strength and the extent to which the sample elongates [64]. In the case of MAE, the tensile
tests are carried out in the presence of an external magnetic field ~H0. This section investi-
gates the magneto-induced elongation of anisotropic MAEs for different volume fractions
of magnetic particles. The unit vector~e1 and applied magnetic field ~H0 are aligned along
the x-axis, as shown in Figure 3. The uniaxial deformation gradient tensor in matrix form
can be given as

F =

λ1 0 0
0 λ2 0
0 0 λ3

 (24)

where λ1, λ2, and λ3 are the stretch ratios along the x, y, and z-directions, respectively.
The incompressibility condition states:

λ1λ2λ3 = 1. (25)

The demagnetizing factor of an ellipsoid Ja along its symmetry axis is a function of
aspect ratios γ1 and γ2. The change in aspect ratio is governed by the applied loading
(mechanical or magnetic loadings) as:

γ1 = γ0
λ1

λ2
, γ2 = γ0

λ1

λ3
(26)

where γ0 = a0
b0

= a0
c0

is the initial aspect ratio of a spheroidal MAE sample; see Figure 2.
Accordingly, the demagnetizing factor Ja is a function of the deformation gradient tensor
F. We choose the value of magnetic susceptibility χ = 1000 to model highly magnetizable
material such as carbonyl iron with χ� 1 [10,31,53]. As the linear magnetization regime
is assumed, we restrict the magnitude of applied magnetic field to a maximum value of
470 kA/m. A very soft elastomer matrix of shear modulus Gm = 17 kPa is considered [46]
to achieve maximum field-induced effects. All these parameters are summarized in Table 1.
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Table 1. The values of parameters used in the numerical calculations.

Parameter Description Value

Gm Shear modulus of a matrix 17 kPa
H0 External magnetic field 470 kA/m
φ Total volume fraction of magnetic particles 0.15, 0.2, 0.3
χ Magnetic susceptibility 1000

!!
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!! !!
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!"

𝑥

𝑦

𝐻#

𝑒!

𝑒!

(A)

(B)

Figure 3. Uniaxial deformation of an ellipsoidal MAE sample with different microstructures.
The orange-coloured MAE sample represents the reference configuration, while the green-coloured
sample depicts the deformed configuration. φp is the volume fraction of magnetizable particles inside
a smeared structure, and φ f =

φ
φp

represents the volume fraction of smeared structures inside an
elastomer matrix. (A) SC microstructure and (B) SD microstructure.

With the deformation gradient tensor F and Equation (9), the Cauchy stress tensor of
the MAE in the general case reads:

σMAE = −pI + Gisob +
∂ψansio

∂F
FT + Gisoη fN

∂Ja

∂F
FT . (27)

In the above Equation (27), we introduced two dimensionless parameters:

η =
µ0φ2H0

2

2Giso
(28)

and

fN =
1

(R + φJa − fmicro)
2 . (29)

Note that fmicro does not depend on the actual size of a smeared structure. Thus,
the microstructure deformation is neglected ( ∂ fmicro

∂F = 0). In the following sections, we
investigate the magneto-induced elongations and magneto-rheological effects of MAEs
with SCs and SDs. Accordingly, we substitute the expressions of ψaniso and fmicro in
Equation (27).
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3.1. Smeared Columns

Here, we examine the uniaxial elongation of anisotropic MAEs with SCs under the
application of an external magnetic field, as shown in Figure 3. We apply the external mag-
netic field along the symmetry axis of a spheroidal MAE sample of the initial aspect ratio
γ0 and calculate the magneto-induced elongation in the applied field direction. For SCs,
the values of dimensionless parameters ( fmicro)SC and (ζ)SC are positive and given by
Equations (13) and (17), respectively. By substituting Equations (11) and (17) into (27), the
corresponding Cauchy stress components can be calculated as:

σ11 = −p + Giso

((
λ2

1 + 2ζSC

(
λ2

1 − 1
)

λ2
1

)
+ η fN

(
J′1 + J′2

))
σ22 = −p + Giso

(
λ2

2 − η fN J′1
)

σ33 = −p + Giso

(
λ2

3 − η fN J′2
) (30)

where J′1 = ∂Ja
∂γ1

γ1 and J′2 = ∂Ja
∂γ2

γ2. To calculate the magneto-induced elongation, we
consider σ22 = σ33 = 0. From incompressibility condition (25) and Equation (30), we
receive the relationship between the stretch ratios and the hydrostatic pressure p

λ2 =
1√
λ1

p =
Giso
λ1

. (31)

Thus, the non-zero Cauchy stress component along the symmetry axis of an MAE
sample is

(σ11)SC = Giso

(
λ2

1 −
1

λ1
+ 2ζSC

(
λ2

1 − 1
)

λ2
1

)
+ η fN

(
2J′1 + J′2

)
. (32)

The stretch ratio λ1 = λH
1 λm

1 in Equation (32) is a total stretch [37] combining: (1) a
stretch due to the applied magnetic field λH

1 and (2) a stretch due to external mechanical
loadings λm

1 . In this section, we consider purely magnetic loadings. Hence, λm
1 = 1.

The magneto-induced (equilibrium) elongation
(
λH

1 = λeq
)

is calculated at equilibrium
condition when (σ11)SC = 0. Figure 4 shows the magneto-induced elongation of an MAE
with SC microstructure as a function of the initial aspect ratio γ0 and the volume fraction of
particles inside a smeared column φp at different total volume fractions φ. The equilibrium
elongation λeq decreases with an increase in φp at constant total particle volume fraction
φ. The volume fraction inside an elongated column φp is directly related to the column’s
strength. Consequently, the dimensionless parameter ζSC is strongly increasing as φp → 0.5.
Furthermore, the strengthening of columns, especially when φp → 0.5, outweighs the
magnetic field effect. As a result, magneto-induced elongation reduces. The optimal
initial aspect ratio γ0, where the maximum magneto-induced elongation is predicted, shifts
toward higher values with an increase in φp and an overall decrease in the magnitude of
λeq (for example, refer to Figure S1A in the Supporting Information).
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Figure 4. The magneto-induced elongation λeq for MAEs with SC microstructure as a function of
the initial aspect ratio γ0 and the volume fraction φp at constant | ~H0 |= 470 kA/m, Gm = 17 kPa.
(A) φ = 0.15, (B) φ = 0.2, (C) φ = 0.3.

3.2. Smeared Disks

For MAEs with SDs, the value of the dimensionless parameter ( fmicro)SD is negative
while ζSD is positive. The Cauchy stress components for MAEs with SDs are derived from
Equations (20), (22) and (27) as

σ11 = −p + Giso

(
λ2

1 + η fN
(

J′1 + J′2
))

σ22 = −p + Giso

(
λ2

2 + 2ζSD

(
λ2

2 − 1
)

λ2
2 − η fN J′1

)
σ33 = −p + Giso

(
λ2

3 + 2ζSD

(
λ2

3 − 1
)

λ2
3 − η fN J′2

). (33)

Similar to the previous case, here, σ22 = σ33 = 0, and the relationship between stretch
ratios and the hydrostatic pressure p is given by Equation (31). Thus, the non-zero Cauchy
stress component along the field direction for MAEs with SDs is

(σ11)SD = Giso

(
λ2

1 −
(

1
λ1

+ 2ζSD

(
1

λ1
− 1
)

1
λ1

)
+ η fN

(
2J′1 + J′2

))
. (34)

The effect of φp and φ on the magneto-induced elongation of MAEs with SD structures
is investigated as a function of the initial aspect ratio γ0. Analogous to SC structures,
the equilibrium elongation λeq decreases with an increase in the values of φp at constant φ,
as seen in Figure 5. Here also, as φp → 0.5, the dimensionless parameter ζSD becomes very
high, which results in the overall decrease in the magneto-induced elongations. In contrast
to the previous section, in this case, the shifting of maxima is negligible, as illustrated in the
Supporting Information; see Figure S1B. Both SCs and SDs lead to an overall elongation
of an MAE sample. It is because the surrounding columns and disks do not interact, and
the shape effect is dominant. In addition, the elongation λeq is more pronounced for SCs
( fmicro > 0) than SDs ( fmicro < 0) because the magnetic energy increases with an increase in
fmicro; see Equation (8). Nevertheless, when φp → 0.5, the elastic parameters ζSC and ζSD
dominate the effect of the applied magnetic field.
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Figure 5. The magneto-induced elongation λeq for MAEs with SD microstructure as a function of
the initial aspect ratio γ0 and the volume fraction φp at constant | ~H0 |= 470 kA/m, Gm = 17 kPa.
(A) φ = 0.15, (B) φ = 0.2, (C) φ = 0.3.

4. Magneto-Rheological Effect

The magneto-rheological effect (MR) is defined as the change in the elastic moduli of
the MAE in the presence of an external magnetic field [37]. The initial shape of an MAE
sample affects the MR effect significantly, as already shown in our previous works [37,38].
Here, along with the initial shape, we also study the effect of different microstructures (SCs
and SDs).

4.1. Smeared Columns

The longitudinal elastic modulus E‖ of an ellipsoidal MAE sample with SCs in the
presence of an external magnetic field is calculated by taking the derivative of the Cauchy
stress component (σ11)SC over the stretch ratio λ1 at λ1 = λeq. Similarly, the transverse
Cauchy stress component σ22 is needed to calculate the MR effect perpendicular to the field
direction. For that, we consider a uniaxial elongation applied perpendicular to the field
direction. Thus, in this case, σ11 = σ33 = 0. From the incompressibility condition (25) and
Equations (30), the stretch relation is given as:

λ2 =
1

λ1
(
λ2

1 + 2ζSC
(
λ2

1 − 1
)
λ2

1
)
+ η fN

(
J′1 + 2J′2

)1/2 . (35)

Here, λ2 = λH
2 λm

2 , where λH
2 = 1√

λeq
. Considering the stretch relation in Equation (35),

we derive the transverse Cauchy stress component

(σ22)SC = Giso

((
λ2

2 −
(

λ2
1 + 2ζSC

(
λ2

1 − 1
)

λ2
1

))
− η fN

(
2J′1 + J′2

))
. (36)

The expression for transverse elastic modulus (E⊥) is obtained by taking the derivative
of Equation (36) over λm

2 . The elastic modulus (E⊥) is calculated at λm
2 = 1 and λH

2 = 1√
λeq

.

Thus, the elastic moduli (at | ~H0 |6= 0) of MAEs with SC microstructure are given as:(
E‖
)

SC
=

∂(σ11)SC
∂λ1

∣∣∣∣
H0 6=0

(E⊥)SC =
∂(σ22)SC

∂λ2

∣∣∣∣
H0 6=0

. (37)
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The % MR-effect of MAEs with SCs is calculated as

(
K‖
)

SC
=

(
E‖
)

SC

∣∣∣∣
H0 6=0

−
(

E‖
)

SC

∣∣∣∣
H0=0(

E‖
)

SC

∣∣∣∣
H0=0

× 100

(K⊥)SC =

(E⊥)SC

∣∣∣∣
H0 6=0

− (E⊥)SC

∣∣∣∣
H0=0

(E⊥)SC

∣∣∣∣
H0=0

× 100

. (38)

Similar to isotropic MAEs [37], the MR effect of anisotropic MAEs with SC microstruc-
ture is positive along the field direction and is negative transverse to it, as illustrated in
Figures 6 and 7. The MR effect along the field direction for SC microstructure

(
K‖
)

SC
increases with the volume fraction of particles inside a smeared structure φp for different
total volume fractions (φ = 0.15, φ = 0.2, φ = 0.3). However, after a critical value of
φp ≈ 0.4, irrespective of the total volume fraction φ, the effects begin to vanish, as seen in
Figure 6. It is the consequence of an increase in the effective elastic modulus of an elastomer
composite due to higher values of ζSC when φp ≥ 0.4.

For the MR effect perpendicular to ~H0, the magnitude of (K⊥)SC increases with an
increase in φp for low total volume fractions φ = 0.15, φ = 0.2 (see Figure 7A,B), and it
decreases for φ = 0.3, as shown in Figure 7C.

0.15 0.35
10 1

100

101

0

(A)

0.20 0.35
p

(B)

0.3 0.4

(C)

0 10 20 30 40 50 60 70 80
% MR effect

Figure 6. The magneto-rheological effect
(

K‖
)

SC
of an ellipsoidal MAE with SC microstructure

stretched along the field direction at constant | ~H0 | = 470 kA/m, Gm = 17 kPa. (A) φ = 0.15,
(B) φ = 0.2, (C) φ = 0.3.
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Figure 7. The magneto-rheological effect (K⊥)SC of an ellipsoidal MAE with an SC microstructure
stretched perpendicular to the field direction at constant | ~H0 | = 470 kA/m, Gm = 17 kPa. (A) φ = 0.15,
(B) φ = 0.2, (C) φ = 0.3.

4.2. Smeared Disks

In this case, to calculate the longitudinal elastic modulus of MAEs with SDs, we
use (σ11)SD. Analogous to the previous section, to calculate the transverse Cauchy stress
component (σ22)SD, we consider a uniaxial elongation applied perpendicular to the field
direction. Thus, as explained previously, σ11 = σ33 = 0. From the incompressibility
condition (25) and Equation (33), the stretch relation for MAEs with SDs is given as:

λ2 =
1

λ3
(
λ2

3 + 2ζSD
(
λ2

3 − 1
)
λ2

3
)
− η fN

(
J′1 + 2J′2

)1/2 (39)

where λ3 = 1
λ1λ2

. Note that again λ2 = λH
2 λm

2 , and λH
2 = 1√

λeq
. Thus, the transverse

Cauchy stress component is

(σ22)SD = Giso

(
λ2

2 + 2ζSD

(
λ2

2 − 1
)

λ2
2 − λ2

1 − η fN
(
2J′1 + J′2

))
. (40)

By substituting the Cauchy stress components (σ11)SD and (σ22)SD in Equation (37),

we obtain the elastic moduli and consequently the relative MR effects
(

K‖
)

SD
and (K⊥)SD

of MAEs with SDs.
Contrary to MAEs with SCs, the magnitude of MR effects

(
K‖
)

SD
and (K⊥)SD de-

crease monotonically with φp, as shown in Figures 8 and 9. The longitudinal MR effect(
K‖
)

SD
can even change sign and become negative for higher values of φp and oblate

shapes; see Figures 8B,C. Similarly to magneto-induced elongation, in the case of MR effects,
too, the shifting of maxima can be seen in Figures S2 and S3 in the Supporting Information.
For MR effects along the field direction in both cases (SCs and SDs), the optimal value of
the initial aspect ratio γ0 shifts toward smaller values with increasing φp. On the other
hand, for MR effects perpendicular to the field direction (SCs and SDs), the maxima shifts
toward higher values of γ0 with an increase in φp.
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Figure 8. The magneto-rheological effect
(

K‖
)

SD
of an ellipsoidal MAE with SD microstructure

stretched along the field direction at constant | ~H0 | = 470 kA/m, Gm = 17 kPa. (A) φ = 0.15,
(B) φ = 0.2, (C) φ = 0.3.
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Figure 9. The magneto-rheological effect (K⊥)SD of an ellipsoidal MAE with SD microstructure
stretched perpendicular to the field direction at constant | ~H0 | = 470 kA/m, Gm = 17 kPa. (A) φ = 0.15,
(B) φ = 0.2, (C) φ = 0.3.

5. Discussion

In the present work, we illustrated the effect of the microstructure on the mechanical
properties of ellipsoidal magnetoactive elastomers. By extending the previous approach [53]
to describe the distribution of magnetic particles, a much simplified analytical expression
is derived depicting the chain-like and plane-like microstructures as smeared columns and
disks, respectively. The proposed expression for fmicro reproduces accurate results [31,41,63]
for an isotropic particle distribution, fmicro = 0, for a chain-like microstructure, fmicro > 0,
and a plane-like microstructure, fmicro < 0. The formalism presented in Equation (9),
where the shape factor fmacro 6= 0 and the microstructure description fmicro 6= 0, allows us
to simultaneously study the effect of the initial shape of an MAE sample and the initial
particle distribution. The optimum values of the volume fraction of particles inside a
smeared structure φp, where the MR effect is maximal, are obtained as a function of the
initial aspect ratio γ0 and the total volume fraction of magnetic particles φ. The effect of the
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microstructure shows an increase in the field-dependent modulus in the case of SCs. Yet,
it is a small enhancement compared to isotropic MAEs and the enhancement reported in
experimental studies [65].
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100

101

0

0

200

400

600

800

1000

1200

1400

%
 M

R effect

Figure 10. The magneto-rheological effect: Transition of isotropic MAE to anisotropic MAE with
smeared columns at | ~H0 | = 470 kA/m, Gm = 17 kPa, φ = 0.3.

The critical value of φp seen in Figure 6 directly points toward the overall increase
in the effective elastic modulus of an MAE sample due to the consideration of smeared
columns. According to [66–68], the application of an external magnetic field leads to
restructuring of the particle arrangement in MAEs. Thus, one can consider the particle
microstructure starting from the isotropic distribution, which changes to form smeared
columns in the presence of an external magnetic field. The formation of smeared columns
highly depends on the strength and orientation of an applied magnetic field as well as on
the initial shear modulus of the elastomer matrix [69]. In that case, our model predicts
a very high MR effect (14 fold), as depicted in Figure 10, by assuming the formation of
smeared columns. It shows the large enhancement of the elastic modulus, where a major
contribution arises from the elastic free energy density in addition to the field-induced
stiffening. In this MR effect, the hydrodynamic reinforcement factor k plays a key role.
The factor k diverges at φp = 0.5, at which the drastic increase in the MR effect is realized,
as shown in Figure 10. The divergence of k is exactly equivalent to the percolation threshold
defined in Ref. [66]. The analysis presented in this work provides an approximate but
promising hypothesis to understand the reasoning behind the huge (over several orders of
magnitude) MR effects seen in experimental studies [70]. In conclusion, the present work
covers the entire spectrum of MAEs ranging from chain-like to plane-like microstructure,
including the isotropic particle distribution. The proposed model shows the ability to
predict the uniaxial magneto-mechanical behavior of MAEs with remarkable consistency
between different microstructures.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.339
0/ma15020645/s1, Figure S1: The magneto-induced elongations of anisotropic MAEs as a function
of the initial aspect ratio γ0 at different volume fractions φp and φ = 0.3. (A) For smeared columns,
(B) for smeared disks. Figure S2: The magneto-rheological effect of anisotropic MAEs with SCs as
a function of the initial aspect ratio γ0 at different volume fractions φp and φ = 0.3. (A) The MR
effect along ~H0, (B) The MR effect perpendicular to ~H0. Figure S3: The magneto-rheological effect of
anisotropic MAEs with SDs as a function of the initial aspect ratio γ0 at different volume fractions φp
and φ = 0.3. (A) The MR effect along ~H0, (B) The MR effect perpendicular to ~H0.

https://www.mdpi.com/article/10.3390/ma15020645/s1
https://www.mdpi.com/article/10.3390/ma15020645/s1
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Appendix A. The Rule of Mixtures

The anisotropic MAEs behave as transversely isotropic materials already in the absence
of an external magnetic field. Such materials are characterized with the help of five
independent material parameters. The five material parameters include two elastic moduli
(longitudinal and transverse), two shear moduli (longitudinal and transverse), and a
major Poisson’s ratio. For an incompressible MAE, the Poisson’s ratio is 0.5. A simplified
approach is proposed by Chen et al. [71] to calculate the effective elastic properties of
anisotropic MAEs. In this approach, the microstructure in MAEs is approximated as
fiber-like structures. The shear modulus of the fiber G f is calculated using the Pade
approximation [72] as G f = Gmk with

k = 1 +
2.5φp

1− 2φp
(A1)

where k is referred to as the hydrodynamic reinforcement factor [61,62], as described in
Section 2. Then, the effective shear modulus of the MAE with isotropic particle distribution
is calculated by setting φp = φ, where φ is the total volume fraction of magnetic particles
inside the elastomer matrix (G f = Giso at φp = φ). Equation (A1) diverges at φp = 0.5;
therefore, the values of φp are bound to φ ≤ φp ≤ 0.5. The fiber is assumed to be isotropic,
and the effective elastic modulus can be easily obtained from Equation (A1) as E f = 3G f .
According to the rule of mixtures, we calculate the effective longitudinal elastic modulus of
an anisotropic MAE as

EL = (1− φ f )Em + φ f E f (A2)

where Em is the elastic modulus of isotropic matrix. Similarly, the inverse rule of mixtures
provides the transverse elastic modulus as

1
ET

=
(1− φ f )

Em
+

φ f

E f
. (A3)

As shown in Figure 3, we consider that smeared columns lie parallel, and the smeared
disks lie perpendicular to the symmetry axis (x-axis) of a spheroidal MAE sample. Thus,
for smeared disk structures, the longitudinal and transverse elastic moduli should
be interchanged.
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Appendix B. The Estimation of ζSC

In the absence of an external magnetic field, the elastic Cauchy stress components of
MAEs with SCs can be obtained from Equation (27) by taking η = 0 as

(σ11)el = −p + Giso

(
λ2

1 + 2ζSC

(
λ2

1 − 1)λ2
1

))
(σ22)el = −p + Gisoλ2

2

(σ33)el = −p + Gisoλ2
3

. (A4)

In the case of uniaxial elongation along the x-direction, (σ22)el = (σ33)el = 0. From the
incompressibility condition (25) and Equation (A4), the relation between stretch ratios can
be derived

λ2 = λ3 =
1√
λ1

. (A5)

The Cauchy stress component of MAEs along the symmetry axis in the absence of an
external magnetic field is

(σ11)el = Giso

(
λ2

1 −
1

λ1
+ 2ζSC

(
λ2

1 − 1)λ2
1

))
. (A6)

The corresponding elastic modulus along the x-axis is calculated by taking the deriva-
tive of the Cauchy stress component (σ11)el over the stretch ratio λ1 at λ1 = 1.

(EL)SC =
(

E‖
)

SC

∣∣∣∣
H0=0

=
∂(σ11)el

∂λ1

∣∣∣∣
λ1=1

= Giso(3 + 4ζSC) (A7)

In this case, we receive an analytical expression for the effective elastic modulus
as a function of the dimensionless parameter ζSC. During uniaxial elongation along
the y-direction, (σ11)el = (σ33)el = 0. From the incompressibility condition (25) and
Equation (A4), the relation between stretch ratios can be derived as:

λ2 =
1

λ1
(
λ2

1 + 2ζSC
(
λ2

1 − 1
)
λ2

1
)1/2 . (A8)

The transverse elastic Cauchy stress component is

(σ22)el = Giso

(
λ2

2 −
(

λ2
1 + 2ζSC

(
λ2

1 − 1
)

λ2
1

))
. (A9)

The corresponding transverse elastic modulus can be obtained by taking the derivative
of Equation (A9) over the stretch ratio λ2 at λ2 = 1 using relation (A8).

(ET)SC = (E⊥)SC

∣∣∣∣
H0=0

=
∂(σ22)el

∂λ2

∣∣∣∣
λ2=1

(A10)

Here, unlike (EL)SC, only a numerical solution is possible for the transverse elastic
modulus (ET)SC. To extract the values of the dimensionless parameter ζSC, we equate
Equations (A7) and (A2) and receive expression (13) in the main text. The longitudinal and
transverse elastic moduli of MAEs with SCs in the absence of an external magnetic field as
a function of φp are shown in Figure A1A.
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(B)(A)

Figure A1. The elastic moduli comparison from mixture rule and elastic free energy. (A) For smeared
columns, (B) for smeared disks.

Appendix C. The Estimation of ζSD

Similar to Appendix A, the elastic Cauchy stress components of MAEs with SDs as
obtained from Equation (27) are

(σ11)el = −p + Gisoλ2
1

(σ22)el = −p + Giso

(
λ2

2 + 2ζSD

(
λ2

2 − 1)λ2
2

))
(σ33)el = −p + Giso

(
λ2

3 + 2ζSD

(
λ2

3 − 1)λ2
3

)). (A11)

Using the incompressibility condition (25), the elastic Cauchy stress component along
the symmetry axis of MAEs with SDs is

(σ11)el = Giso

(
λ2

1 −
(

1
λ1

+ 2ζSD

(
1

λ1
− 1
)

1
λ1

))
. (A12)

The corresponding elastic modulus along the symmetry axis is

(EL)SD =
(

E‖
)

SD

∣∣∣∣
H0=0

=
∂(σ11)el

∂λ1

∣∣∣∣
λ1=1

= Giso(3 + 2ζSD) (A13)

The transverse elastic Cauchy stress component and corresponding elastic modulus are

(σ22)el = Giso

(
λ2

2 + 2ζSD

(
λ2

2 − 1
)

λ2
2 − λ2

1

)
(A14)

(ET)SD = (E⊥)SD

∣∣∣∣
H0=0

=
∂(σ22)el

∂λ2

∣∣∣∣
λ2=1

. (A15)

In this case, to calculate the values of a dimensionless parameter ζSD, we equate
Equations (A2) and (A15) . In Figure A1, the elastic moduli obtained from the rule of the
mixtures and calculated through the proposed elastic free energy are plotted as a function
of φp. By comparing (A7) and (A15) with (A2), we obtain the values of ζSC and ζSD,
respectively. Thus, the elastic moduli, obtained from the rule of mixtures, (EL)mix and
(ET)mix exactly match with (EL)SC and (ET)SD. In contrast, a deviation can be seen in the
other two cases, as shown in Figure A1. According to the rule of mixtures, the longitudinal
modulus of MAEs with SCs is always greater, and the transverse modulus is always less
than the isotropic elastic modulus. It is exactly the opposite (exchange (EL)mix and (ET)mix)
in the case of smeared disks. On the other hand, the free energy density of transversely
isotropic materials is typically formulated in such a way that the longitudinal modulus
(for MAEs with SCs) is always greater than the transverse modulus, and both moduli are
greater than the isotropic elastic modulus (and vice versa in the case of SDs).
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