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Abstract: Different microstructures were obtained under various thermal conditions by adjusting
the heat treatment parameters of the Cr-Co-Ni-Mo series of ultra-high strength stainless steel. The
effect of organizational evolution on the stress corrosion cracking (SCC) of the Cr-Co-Ni-Mo series
of ultra-high strength stainless steel was investigated using potentiodynamic polarization curves,
electrochemical impedance spectroscopy (EIS), transmission electron microscopy (TEM), scanning
electron microscopy (SEM) and other test methods in combination with slow strain rate tensile tests
(SSRTs). The results show that the Mo- and Cr-rich clusters and precipitation of the Laves phase
reduce the corrosion resistance, while increasing the austenite content can improve the corrosion
resistance. The Cr-Co-Ni-Mo series of ultra-high strength stainless steel has a high SCC resistance
after quenching at 1080 ◦C and undergoing deep cooling (DC) treatment at −73 ◦C. With increasing
holding time, the strength of the underaged and peak-aged specimens increases, but the passivation
and SCC resistance decreases. At the overaged temperature, the specimen has good SCC resistance
after a short holding time, which is attributed to its higher austenite content and lower dislocation
density. As a stable hydrogen trap in steel, austenite effectively improves the SCC resistance of steel.
However, under the coupled action of hydrogen and stress, martensitic transformation occurs due to
the decrease in the lamination energy of austenite, and the weak martensitic interface becomes the
preferred location for crack initiation and propagation.

Keywords: ultra-high strength stainless steel; SCC; laves phase; austenite

1. Introduction

Ultra-high strength stainless steel is widely used in aviation marine and other fields such
as aircraft landing gear, wing girder and bolts due to its high strength, high toughness and
good corrosion resistance [1–3]. The excellent mechanical properties of ultra-high strength
stainless steel is attributed to martensitic transformation strengthening [4] and precipitation
strengthening [5]. To obtain a higher strength, researchers have carried out considerable re-
search, especially on the precipitation strengthening behaviour of ultra-high strength stainless
steel with different strength grades. For example, Habibi Bajguirani [6] et al. investigated
the precipitation strengthening behaviour of 15-5PH and showed that the formation of
Cu-rich precipitates had a significant precipitation strengthening effect and that the tensile
strength could reach 1240 MPa, while the overaging treatment coarsened the Cu-rich pre-
cipitates, which in turn led to a decrease in the strength of the steel. Researchers developed
PH13-8Mo with higher strength by reducing the Cr content and increasing the Ni content
based on the 15-5PH alloy ratio. The strength of PH13-8Mo is enhanced by precipitation
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strengthening of the β-NiAl precipitates with a B2 superlattice structure [7,8]. However,
with increasing strength, a new problem, namely stress corrosion cracking (SCC), occurs
and the SCC susceptibility increases with increasing strength [9–11]. Therefore, it is of great
practical significance to study the SCC of ultra-high strength stainless steel.

When ultra-high strength stainless steel is applied as a strained component in an
environment containing erosive ions (such as Cl−), SCC mainly originates in pitting. The
nucleation of pitting is influenced by various factors, among which inclusions, precipitates,
grain boundaries, passivation film rupture, and plastic deformation are the main factors
that cause pitting nucleation in ultra-high strength stainless steel [12–14]. As the main
strengthening phase in steel, it is very important to study the effect of precipitates on
pitting nucleation. For this reason, the influence of precipitates on pitting nucleation
has been studied extensively [15–17]. It has been found that the precipitates of Cr-rich
carbides at grain boundaries leads to Cr-poor zones around them, which in turn trigger
pitting nucleation. For example, Luo et al. investigated the effect of holding time on
the organization and electrochemical behaviour of precipitation-hardened stainless steel
(15-5 PH) using various techniques, such as a three-dimensional atom probe (3DAP), and
found that (Cu, Nb)-rich MC nanoparticles began to precipitate with increasing holding
time, while Cr-poor zones appeared near the (Cu, Nb)-rich MC nanoparticles, which
led to nucleation by pitting [18]. Chen et al. [19] found that the strain energy at the
interface between the G-phase and ferrite matrix was higher than that of the intracrystalline
atoms and was prone to react with Cl− in solution to form pitting corrosion. In addition,
scholars [20–22] found that σ and χ precipitates had a significant effect on the pitting of
stainless steels.

The SCC crack initiation process of ultra-high strength stainless steel is controlled
by pitting, while the crack propagation stage is mainly controlled by anodic dissolu-
tion (AD) and hydrogen embrittlement (HE) mechanisms [23,24]. Among them, the
AD mechanism contains the slip dissolution mechanism [25], the oxide film cracking
mechanism [26], and the selective dissolution mechanism [27]. The HE mechanisms in-
clude hydrogen-enhanced decohesion (HEDE) [28], hydrogen-enhanced localized plasticity
(HELP) [29], and adsorption-induced dislocation emission (AIDE) [30]. There is consider-
able evidence [31,32] that H plays a key role in SCC. For example, Beaver and Harle noted
that SCC was caused by AD and propagated by the HE mechanism [33]. In fact, the H
generated by metal cation hydrolysis at the crack tip and cathodic hydrogen evolution
would increase the sensitivity of HE during the SCC process of ultra-high strength stainless
steel. Therefore, the occurrence of HE could be effectively reduced by introducing benign
H trapping sites to capture H or slow down the migration of H to the metal lattice. The
existence of hydrogen traps was first proposed by Darken and Smith in 1949. Currently,
the known hydrogen traps in steel include dislocations [34], grain boundaries [35], inclu-
sions [36], precipitates [37], austenite [38], etc. Li et al. [39] found that the resistance to
HE of the specimens correlated well with the content of austenite. He believed that it was
feasible to improve the HE resistance by increasing the content of austenite. Tsay et al. [40]
also obtained similar results. However, Fan et al. [41] argued that the beneficial effect of
austenite should not be overestimated since cracking along the tempered martensite/newly
generated martensite boundary occurred after martensitic transformation due to the re-
distribution of hydrogen. Therefore, the effect of austenite on the HE of steel has to be
further confirmed.

In summary, the organizational evolution of ultra-high strength stainless steel, such as
the formation of precipitates, content of austenite and dislocation density, has an important
influence on SCC [42]. The purpose of this study is to obtain microstructures under
different thermal conditions by adjusting the heat treatment process and to study the effect
of microstructural evolution on the SCC of the Cr-Co-Ni-Mo series of ultra-high strength
stainless steel in nearly neutral 3.5 wt.% NaCl solution. The mechanism of SCC crack
nucleation and crack propagation is also analysed and discussed.
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2. Experimental Methods
2.1. Preparation of Specimens and Experimental Methods

Vacuum induction and consumable-electrode vacuum melting were used to obtain
Cr-Co-Ni-Mo ultra-high strength stainless steel. After melting, the ingots were heated at
1160 ◦C and forged into φ450 mm round bars. A 20 mm × 20 mm × 20 mm sample was
cut from the bar for measuring chemical composition, and the result is shown in Table 1.
All specimens were cut from the round bars by wire-electrode cutting. The specimens were
solution-treated at 1080 ◦C for 60 min, quenched in oil at room temperature and then cryo-
genically treated (deep cooling (DC)) at −73 ◦C for 8 h. Finally, the specimens were aged at
480 ◦C, 540 ◦C and 600 ◦C for 0.5 h, 4 h and 80 h, respectively, and these thermal conditions
were designated 480A-0.5/4/80, 540A-0.5/4/80, and 600A-0.5/4/80, respectively.

Table 1. Chemical composition of the specimen.

Element C Cr Ni Mo Co Fe

wt.% 0.12 ± 0.003 13.5 ± 0.005 4.52 ± 0.005 5.36 ± 0.005 14.53 ± 0.005 Bal.

The SSRT specimens with a diameter of 3 mm and a gauge length of 23 mm were
prepared according to the requirements of GB/T15970.7-2000 [43], and the specimens were
first sequentially sanded with #1000, #1500 and #2000 sandpaper and then cleaned in
alcohol solution. The SSRTs were performed on tensile specimens in air and 3.5 wt.% NaCl
solution at a constant strain rate of 10−6 s−1 using a WDML-300 kN testing machine.

The relative plasticity loss was used to evaluate the SCC susceptibility of the specimens
in 3.5 wt.% NaCl solution. The relative loss of postextension and section shrinkage of the
specimens were calculated using Equations (1) and (2), respectively.

ϕloss =
ϕA − ϕS

ϕA
× 100% (1)

δloss =
δA − δs

δA
× 100% (2)

where ϕloss and δlossare the relative reduction in the area and elongation to fracture, respec-
tively, ϕAand ϕS are the area reduction of the specimens in air and 3.5 wt.% NaCl solution,
respectively, δA represents the elongation to fracture of the specimens in air, and δS stands
for the elongation to fracture of the specimens in 3.5 wt.% NaCl solution.

2.2. Electrochemical Analyses

Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were
performed with a Zennium pro electrochemical workstation. A three-electrode system,
in which a 10 mm × 10 mm × 5 mm specimen was the working electrode, a platinum
sheet was the auxiliary electrode, and a saturated calomel electrode (SCE) was the reference
electrode, was used for electrochemical measurements in 3.5 wt.% NaCl solution. First, a
constant potential polarization of −1 V vs. SCE was applied for 800 s to remove the oxide
film. Then, an AC amplitude of 10 mV was applied to the open circuit potential (OCP),
and EIS was performed in the frequency range of 100 kHz to 10 mHz. ZsimpWin software
(1.0.0.0) was used to merge impedance data and establish an equivalent circuit diagram.
Finally, the potentiodynamic polarization curves were measured by a scanning rate of
50 mV/s, and the scanning potential range was −1.0–0.5 V.

2.3. Microstructure Characterization and Fracture Analysis

Specimens for microstructural observations were ground and polished following
conventional metallographic standard procedures and then etched with Fry’s reagent (1 g
CuCl2 + 50 mL HCl + 25 mL HNO3 + 150 mL H2O). The microstructures of the specimens
were observed using a Zeiss-40 MAT optical microscope (OM, Carl Zeiss AG, Oberkochen,
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Germany). The volume fraction of austenite, dislocation density and precipitates extracted
by electrolysis were determined by a Bruker D8 Advance X-ray diffractometer (Bruker,
Karlsruhe, Germany) with a Co-Kα radiation source operated at a voltage of 35 kV and a
current of 40 mA. The scanning rate and step size were 5◦ min−1 and 0.02◦, respectively.
The volume fraction of austenite and dislocation density were processed using a modified
Williamson-Hall method [44].

The morphology and distribution of austenite in the sample were characterized by
electron back-scattered diffraction (EBSD, FEI, Hillsboro, OR, USA). The specimen size
was 8 mm × 5 mm × 1 mm. The surface of the specimens was slightly polished with
a velvet polishing cloth and 2.5 µm polishing paste until the surface of the specimens
was bright and unpolluted. Then, the sample was electropolished to remove the surface
stress layer and tested by EBSD. Transmission electron microscopy (TEM, FEI Talos F200X,
FEI, Hillsboro, OR, USA) was used to observe the fine tissue. The TEM specimens were
prepared by mechanically grinding thin wafers to a thickness of 40 µm. Then, the wafers
were jet polished in a 10 vol.% HClO4 methanol electrolyte at −20 ◦C with a constant
current of 50 mA. The fractured specimens were cleaned in an ultrasonic cleaning machine,
and the fracture morphology of the specimens was observed by manual emission scanning
electron microscopy (SEM, FEI Quanta 650, FEI, Hillsboro, OR, USA) after cleaning.

3. Results
3.1. Microstructure

An optical micrograph of the prior austenite grain boundaries (PAGBs) of DC and the
microstructure of the specimens under different thermal conditions are shown in Figure 1.
The average grain size of DC measured by Nano Measure image analysis software is ap-
proximately 96.28 µm (Figure 1a), and the metallographic structure of the specimens is
typical lath martensite (Figure 1b). As shown in Figure 1c–k, the metallographic organisa-
tions of the specimens were all typical lath martensite, and the martensite structure became
vague upon increasing the aging temperature and extending the aging time.
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Figure 1. Microstructure of the specimens under various thermal conditions: (a) PAGBs, (b) DC, (c) 
480A-0.5, (d) 480A-4, (e) 480A-80, (f) 540A-0.5, (g) 540A-4, (h) 540A-80, (i) 600A-0.5, (j) 600A-4, and 
(k) 600A-80. 

Figure 1. Microstructure of the specimens under various thermal conditions: (a) PAGBs, (b) DC,
(c) 480A-0.5, (d) 480A-4, (e) 480A-80, (f) 540A-0.5, (g) 540A-4, (h) 540A-80, (i) 600A-0.5, (j) 600A-4,
and (k) 600A-80.
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Figure 2 shows the XRD patterns of specimens under various thermal conditions.
Figure 2a shows that the XRD patterns of the specimens have obvious martensite diffraction
peaks and austenite diffraction peaks, but the diffraction peak intensities are different. For
example, (111)γ shows stronger intensity in the specimens aged at a higher temperature
or held for a longer holding time, which indicates that the volume fraction of austenite
increases. Figure 2b shows that the volume fraction of austenite increases with increasing
ageing temperature and holding time. The austenite content of DC is approximately 3.52%.
When the holding time is extended from 0.5 h to 80 h, the austenite content of the specimens
aged at 480 ◦C increases from 4.35% to 7.72%, and the austenite content of the specimens
aged at 540 ◦C and 600 ◦C increases from 6.15% to 12.82% and 8.40% to 23.56%, respectively.
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Figure 2. XRD analysis of the 444specimens under various thermal conditions: (a) XRD diffraction
pattern, (b) volume fraction of austenite determined by XRD, and (c) dislocation density determined
by XRD.

Figure 2c shows the dislocation density of specimens under different thermal condi-
tions. The dislocation density of the specimens gradually decreases with increasing ageing
temperature and holding time. DC has the highest dislocation density of approximately
6.1 × 1011/cm2. With the increase in holding time from 0.5 h to 80 h, the dislocation density
decreases as follows: 480 ◦C-aged specimens from 5.3 × 1011/cm2 to 4.6 × 1011/cm2,
540 ◦C-aged specimens from 5.1 × 1011/cm2 to 2.5 × 1011/cm2 and 600 ◦C-aged specimens
from 1.8 × 1011/cm2 to 2.2 × 1010/cm2.

Figure 3a,b show the TEM micrographs of DC. The microstructure of DC is composed
of lath martensite with a high dislocation density, and the width of the martensite lath is
approximately 100~400 nm. Figure 3c–h show the TEM morphology after ageing at 480 ◦C
for various holding times. It can be seen from Figure 3c,d that the TEM microstructure
after holding for 0.5 h still shows lath martensite with a high dislocation density, and the
dislocation density decreases with the increasing holding time, which is related to the
recovery of dislocations with the holding time. No obvious precipitates are found when
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the holding time was 4 h. The clusters form obviously at 80 h and grow gradually with
increasing holding time, as shown in Figure 3f,h.
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Figure 3. TEM morphology of the specimens under various thermal conditions: (a) bright-field image
of DC, (b) dark-field image of DC, (c) bright-field image of 480A-0.5, (d) dark-field image of 480A-0.5,
(e) bright-field image of 480A-4, (f) dark-field image of 480A-4, (g) bright-field image of 480A-80, and
(h) dark-field image of 480A-80.

Figure 4 shows the TEM micrographs of the specimens aged at 540 ◦C for different
holding times. As shown in Figure 4c,d, when the holding time is 4 h, a large number
of small and uniform precipitates begin to precipitate. After increasing the holding time
to 80 h, the precipitates grow. From the diffraction spot calibration results, it can be seen
that the precipitates are the Laves phase of the hexagonal system, as shown in Figure 4e,f.
Figure 5 shows the TEM micrographs of the samples aged at 600 ◦C for various holding
times. Compared with the precipitates at lower ageing temperatures, the precipitates
precipitate after ageing at 600 ◦C for 0.5 h, with a size of approximately 30 nm (Figure 5a,b).
A large number of precipitates with a size of approximately 40 nm precipitate in the
specimens with a holding time of 4 h, as shown in Figure 5c,d. When the holding time is
increased to 80 h, the precipitates are significantly coarsened, as shown in Figure 5e. From
the diffraction spot calibration results of the precipitates in Figure 5f, it can be seen that the
precipitates in 600A-80 are still the Laves phase with a size of approximately 50 nm.
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Figure 4. TEM morphology of the specimens under various thermal conditions: (a) bright-field image
of 540A-0.5, (b) dark-field image of 540A-0.5, (c) bright-field image of 540A-4, (d) dark-field image of
540A-4, (e) bright-field image of 540A-80, (f) dark-field image of 540A-80 and the diffraction spot
calibration results of the precipitates.
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Figure 5. TEM morphology of the specimens under various thermal conditions: (a) bright-field image
of 600A-0.5, (b) dark-field image of 600A-0.5, (c) bright-field image of 600A-4, (d) dark-field image of
600A-4, (e) bright-field image of 600A-80, (f) dark-field image of 600A-80 and the diffraction spot
calibration results of the precipitates.
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3.2. Results of the Electrochemical Tests

Figure 6 shows the potentiodynamic polarization curve of the specimens in 3.5 wt.%
NaCl solution. Figure 6a shows that DC is passivated in 3.5 wt.% NaCl solution, which is
caused by the oxide or hydroxide film of Fe, Cr, Ni, Mo and other elements on the surface of
the specimens. When the potential is higher than 0.193 VSCE, a large increase in the current
density indicates that the rupture of the local passivation film causes anodic dissolution
and pitting. As shown in Figure 6b,c, the electrochemical behaviour of the specimen
changes significantly with the increasing holding time. It can be seen from the curve
that the samples with holding times of 0.5 h and 4 h are passivated, while the specimens
with holding times of 80 h are in a state of activation and dissolution, indicating that the
corrosion resistance of the matrix is reduced by the long ageing treatment. Figure 6d shows
that there are passivation intervals for specimens with different holding times. However,
with the increasing holding time, the passivation interval decreases, which indicates that
the corrosion resistance of each sample decreases with the increasing holding time. The
potentiodynamic polarization curve was fitted using Thales XT software. The fitting results
of the potentiodynamic polarization curve of the specimens are shown in Table 2. At
the same ageing temperature, Ecoor and Epit decrease with increasing holding time, and
Icorr and IP increase with increasing holding time, indicating that a long ageing treatment
reduces the corrosion resistance of the specimens.
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Figure 7 shows that the Nyquist diagrams of the specimens in 3.5 wt.% NaCl solution.
As shown in Figure 7a, the capacitance arc radius of DC is larger than that of the aged
specimens, which indicates that the ageing treatment reduces the corrosion resistance of
the specimens. As shown in Figure 7b–d, at the same ageing temperature, the capacitive
reactance arc decreases with the increasing holding time. However, the capacitance arc
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radius of 600A-80 is significantly greater than that of 480A-80 and 540A-80. The EIS data
are fitted according to the equivalent circuit shown in Figure 8, and the fitting results are
shown in Table 3. In the above circuit, RS is the solution resistance, R1 and R2 are the
passive film resistance and charge transfer resistance, respectively, CPE1 and CPE2 are the
passive film capacitance and double-layer capacitance, respectively, and n is the dispersion
coefficient. Generally, the polarization resistance RP (the sum of R1 and R2) can be used
to evaluate the corrosion resistance of specimens. Table 3 shows that with the increasing
holding time, the polarization resistance and corrosion resistance of the samples decrease,
which is consistent with the test results of the potentiodynamic polarization curve.

Table 2. Fitting parameters of the potentiodynamic polarization curve of specimens in 3.5 wt.% NaCl
solution. Icorr: corrosion current density, Ecorr: corrosion potential, IP: pitting current density, Epit:
pitting potential.

Heat
Treatment States Ecorr (V vs. SCE) Icorr (uAcm−2) Epit (V vs. SCE) Ip (µAcm−2)

DC −0.255±0.02 0.125 ± 0.02 0.193 ± 0.01 1.959 ± 0.02
480A-0.5 −0.231±0.02 0.271 ± 0.02 0.087 ± 0.01 2.983 ± 0.02
480A-4 −0.249±0.02 0.326 ± 0.02 0.039 ± 0.01 3.512 ± 0.02
480A-80 −0.288±0.02 0.717 ± 0.02 - -
540A-0.5 −0.269±0.02 0.229 ± 0.02 0.026 ± 0.01 3.016 ± 0.02
540A-4 −0.285±0.02 0.353 ± 0.02 −0.019 ± 0.01 3.787 ± 0.02
540A-80 −0.297±0.02 0.373 ± 0.02 - -
600A-0.5 −0.223±0.02 0.171 ± 0.02 0.063 ± 0.01 1.887 ± 0.02
600A-4 −0.245±0.02 0.219 ± 0.02 −0.066 ± 0.01 2.791 ± 0.02
600A-80 −0.258±0.02 0.231 ± 0.02 −0.093 ± 0.01 4.397 ± 0.02
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Table 3. Electrochemical impedance spectrum fitting parameters of the specimens in 3.5 wt.%
NaCl solution.

Heat
Treatment States Rs (Ω cm2)

CPE1
(Ω−1cm2sn) n1 R1 (Ωcm2)

CPE2
(Ω−1cm2sn) n2 R2 (Ωcm2)

DC 1.53 1.31 × 10−5 0.996 2.75 × 105 1.56 × 10−5 0.823 5.61 × 105

480A-0.5 1.19 2.57 × 10−5 0.863 1.49 × 105 2.54 × 10−5 0.877 2.16 × 105

480A-4 1.63 5.39 × 10−5 0.919 4.61 × 104 2.87 × 10−5 0.878 8.38 × 104

480A-80 1.45 6.88 × 10−5 0.915 1.55 × 102 3.39 × 10−5 0.826 3.23 × 104

540A-0.5 1.96 5.85 × 10−5 0.935 8.35 × 103 1.27 × 10−5 0.829 7.99 × 104

540A-4 1.85 6.14 × 10−5 0.926 2.05 × 102 1.19 × 10−5 0.802 7.12 × 104

540A-80 1.58 2.75 × 10−4 0.893 1.32 × 102 1.23 × 10−4 0.795 6.28 × 103

600A-0.5 1.22 1.92 × 10−5 0.837 1.62 × 105 2.02 × 10−5 0.919 2.43 × 105

600A-4 1.43 4.31 × 10−5 0.929 5.23 × 104 2.26 × 10−5 0.934 1.25 × 105

600A-80 1.26 4.98 × 10−5 0.879 3.19 × 104 2.35 × 10−5 0.926 1.12 × 105

3.3. Tensile Properties

The engineering stress-displacement curves of the specimens in air and 3.5 wt.%
NaCl solution are shown in Figure 9. Table 4 shows the detailed results of the SSRTs.
Table 4 shows that 540A-4 has a high strength and a good plasticity. According to the
comprehensive mechanical properties, the peak ageing condition is 540 ◦C for 4 h. Therefore,
480 ◦C and 600 ◦C are defined as the underaged and overaged temperatures, respectively.
As shown in Figure 9a, the engineering stress-displacement curves of DC in air and 3.5 wt.%
NaCl solution almost coincide, indicating that DC has no SCC susceptibility. It can be seen
from Figure 9b,c that there is a significant difference in the engineering stress-displacement
curve of the sample in air and 3.5 wt.% NaCl solution. Compared with the specimens in
air, the tensile strength and plasticity of the sample in 3.5 wt.% NaCl solution decreases
significantly with the increasing holding time. This shows that at the underaged and
overaged temperatures, the SCC susceptibility of the samples increases with the increasing
holding time. As shown in Figure 9d, 600A-0.5 does not show obvious SCC susceptibility,
but the SCC susceptibility first increases and then decreases with the increasing holding
time. This is related to the precipitates, austenite content and dislocation density in steel,
which will be discussed in Section 4.

3.4. Fractography

Figure 10 exhibits the fracture morphology of DC. As shown in Figure 10a,d, the
fracture of the DC in air and 3.5 wt.% NaCl solution is composed of a central fibre zone and
an external shear lip zone. From the local enlarged view of the fibre zone, it can be seen
that the fibre zone contains a large number of deep dimples with high tear edges, as shown
in Figure 10b,e. The shear lip zone is composed of many small and shallow dimples, as
shown in Figure 10c,f.
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Figure 9. Engineering stress-displacement curves of the specimens in air and 3.5 wt.% NaCl solution:
(a) DC, (b) 480A-0.5/480A-4/480A-80, (c) 540A-0.5/540A-4/540A-80, and (d) 600A-0.5/600A-4/600A-80.

Table 4. Mechanical properties of the specimens under various thermal conditions in air and 3.5 wt.%
NaCl solution.

Heat
Treatment States

Ultimate Tensile
Strength (mpa)

Elongation To
Fracture (%)

Reduction of
Area (%)

δloss
(%)

ψloss
(%)

DC-A 1536.09 7.48 22.13
0.67 0.36DC-S 1535.53 7.43 22.05

480A-0.5-A 1546.12 16.71 48.37
12.09 49.39480A-0.5-S 1545.34 14.69 24.48

480A-4-A 1621.52 16.07 46.09
67.08 83.16480A-4-S 1494.19 5.29 7.76

480A-80-A 1880.18 11.44 38.43
81.73 95.24480A-80-S 1300.14 2.09 1.83

540A-0.5-A 1615.22 13.91 45.04
19.81 31.71540A-0.5-S 1599.29 9.73 30.76

540A-4-A 1909.65 11.39 46.72
76.21 91.18540A-4-S 1162.21 2.71 4.12

540A-80-A 1908.98 10.99 19.13
82.98 99.63540A-80-S 1121.16 1.87 0.07

600A-0.5-A 1803.32 12.59 44.81
0.63 0.29600A-0.5-S 1784.99 12.51 44.68

600A-4-A 1726.82 11.46 15.55
74.26 82.06600A-4-S 1387.97 2.95 2.79

600A-80-A 1467.37 12.75 18.15
42.67 72.78600A-80-S 1417.36 7.31 4.94
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SCC sensitivity increases. The 480A-80 fracture is a typical brittle fracture with a flat mor-
phology. The fracture is mainly composed of QC in the central zone and a small amount 
of shallow dimples at the edge, as shown in Figure 11f. 

Figure 10. SEM fractographs of DC after SSRTs in air and 3.5 wt.% NaCl solution: (a–c) air and
(d–f) 3.5 wt.% NaCl solution.

Figure 11 shows the SEM fractographs of the sample aged at 480 ◦C after SSRTs in
air and 3.5 wt.% NaCl solution. Figure 11a,c,e show that the fracture of the sample in air
presents ductile fracture characteristics with obvious necking phenomena, and the fracture
is composed of a central fibre zone and an external shear lip zone. When in 3.5 wt.% NaCl
solution, the fracture morphology changes significantly. This change is mainly manifested
where the crack source of the sample in air appears in the fibre zone, and this fracture
is caused by plastic deformation. In contrast, the crack source appears on the surface of
the sample in 3.5 wt.% NaCl solution, and this fracture is caused by pitting corrosion.
In addition, the fracture morphology of 480A-0.5 and 480A-4 in 3.5 wt.% NaCl solution
consists of quasi-cleavage (QC) and intergranular (IG) fracture in the crack source zone
and crack propagation zone and the shallow dimple morphology of the transient fracture
zone, as shown in Figure 11b,d. Compared with 480A-0.5, the area of QC + IG fracture of
480A-4 significantly increases, and the necking phenomenon decreases, which indicates
that the SCC sensitivity increases. The 480A-80 fracture is a typical brittle fracture with a
flat morphology. The fracture is mainly composed of QC in the central zone and a small
amount of shallow dimples at the edge, as shown in Figure 11f.

The fracture morphology of samples aged at 540 ◦C for different holding times in air
and 3.5 wt.% NaCl solution is basically consistent with that of specimens aged at 480 ◦C,
as shown in Figure 12a–f. The difference is that the areas of the fibre zone and shallow
dimple zone of 540A-80 in air are larger than 480A-80, indicating that the plasticity of
540A-80 clearly decreases. In addition, at the same holding time, compared with 480 ◦C
aged samples, the QC ratio of crack source zone and propagation zone of fracture aged at
540 ◦C in 3.5 wt.% NaCl solution decreases and the IG ratio increases.

As shown in Figure 13a,b, there is no obvious difference in the fracture morphology
of 600A-0.5 in air and 3.5 wt.% NaCl solution, and the fracture is caused by plastic defor-
mation. As shown in Figure 13c, 600A-4 in air does not have obvious necking, and the
plasticity decreases significantly compared with 480A-4 and 500A-4. This is attributed to the
coarsening of the Laves phase, the increase in the resistance to dislocation movement and
the decrease in plasticity. A similar phenomenon also occurs in the fracture morphology of
600A-80 in air, as shown in Figure 13e. Interestingly, the proportion of the shallow dimple
zone of 600A-80 in 3.5 wt.% NaCl solution is significantly higher than that of 480A-80 and
540A-80, as shown in Figure 13f. Table 4 shows that the SCC susceptibility of 600A-80
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is significantly lower than that of 480A-80 and 540A-80, indicating that prolonging the
holding time at the overaged temperature can decrease SCC susceptibility.
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Figure 12. Fracture morphology of the specimens aged at 540 ◦C for various holding times after
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(d) solution, 540A-4; (e) air, 540A-80; and (f) solution, 540A-80.
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Figure 13. Fracture morphology of the specimens aged at 600 ◦C for various holding times after
SSRTs in air and 3.5 wt.% NaCl solution: (a) air, 600A-0.5; (b) solution, 600A-0.5; (c) air, 600A-4;
(d) solution, 600A-4; (e) air, 600A-80; and (f) solution, 600A-80.

Figure 14 exhibits the SEM morphology of the brittle fracture zone, plastic fracture
zone and corresponding interface zone of different effective specimens in 3.5 wt.% NaCl
solution. The fracture of the 480A-0.5 brittle fracture zone is mainly IG and a small amount
of QC fracture, while the fracture of the plastic fracture zone is composed of a large number
of shallow dimples, as shown in Figure 14a–c. It is worth noting that micropores and tear
ridges are observed on the fracture surface of the IG fracture, which is a typical feature of
the HE of high strength steel [45,46]. The fracture of the 480A-80 brittle fracture zone is
mainly a QC fracture, and the fracture of the plastic fracture zone is composed of a large
number of shallow dimples, as shown in Figure 14d–f. As shown in Figure 14g–i, the
fracture morphology of 540A-0.5 is similar to that of 480A-0.5, except that the proportion of
QC fractures in the brittle zone increases. With an increase in holding time, the fracture
morphology of the sample clearly changes, and the brittle zone can be divided into the
IG and QC zones. Micropores and tear ridges are observed on the surface of the IG
fracture, and secondary cracks are observed on the surface of the QC fracture, as shown
in Figure 14j–l. Table 4 shows that 600 A-0.5 has low SCC sensitivity, which is verified in
the fracture morphology diagram; that is, the fracture of 600 A-0.5 is composed of a deep
dimple morphology in the fibre zone and a shallow dimple morphology at the edge, as
shown in Figure 14m–o. The crack source area of 600A-80 shows obvious HE characteristics.
As shown in Figure 14q, a large number of secondary cracks are found in the PAGB, which
mainly propagate along the martensitic laths. Fan et al. [41] reported that this is because
after the martensitic transformation of thin-film austenite in the lath boundary, cracking
along the tempered martensite/newly formed martensite boundary will occur due to the
redistribution of hydrogen.



Materials 2022, 15, 497 15 of 22Materials 2022, 15, x FOR PEER REVIEW 14 of 17 
 

 

 

 

 

 

 

  

Figure 14. Morphology of the brittle fracture zone, plastic fracture zone and corresponding interface 
zone of the specimens in 3.5 wt.% NaCl solution: (a–c) 480A-0.5, (d–f) 480A-80, (g–i) 540A-0.5, (j–l) 
540A-80, (m–o) 600A-0.5, and (p–r) 600A-80. 

4. Discussion 
4.1. Effect of Ageing Treatment on Corrosion Resistance 

It can be seen from the potentiodynamic polarization curve in Figure 6 and the Nyquist 
spectrum in Figure 7 that the ageing treatment has a significant effect on the corrosion 

Figure 14. Morphology of the brittle fracture zone, plastic fracture zone and corresponding interface
zone of the specimens in 3.5 wt.% NaCl solution: (a–c) 480A-0.5, (d–f) 480A-80, (g–i) 540A-0.5,
(j–l) 540A-80, (m–o) 600A-0.5, and (p–r) 600A-80.

4. Discussion
4.1. Effect of Ageing Treatment on Corrosion Resistance

It can be seen from the potentiodynamic polarization curve in Figure 6 and the Nyquist
spectrum in Figure 7 that the ageing treatment has a significant effect on the corrosion
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resistance of the specimens. The corrosion resistance of DC is obviously better than
that of aged specimens. Specifically, the Ecorr, Epit and capacitance arc radius of DC
are higher than those of the aged specimens, indicating that ageing treatment reduces
the corrosion resistance of the matrix. In addition, at the same ageing temperature, the
corrosion resistance of the specimens decreases with the increasing holding time. At the
same holding time, the corrosion resistance of the sample decreases first and then increases.
Therefore, the change in microstructure during ageing treatment has a significant effect on
the corrosion resistance.

Table 5 exhibits the quantitative analysis results of the precipitates. The clusters in
480A-4 are Mo- and Cr-enriched clusters and the precipitates in 540A-4 and 600A-4 are
Laves phases rich in Mo- and Cr; notably, the mass fraction of precipitates increases rapidly
with the increasing ageing temperature. Figure 15 shows the distribution of Cr, Mo and Ni
in 480A-4, 540A-4 and 600A-4 in the matrix. As shown in Figure 15b,c,f,g,j,k, with increasing
ageing temperature, the enrichment degree of Mo- and Cr increases, and obvious Mo- and
Cr-depleted areas appear around the Mo- and Cr-enriched areas. It is well known that Mo
is an effective element to improve the pitting resistance of stainless steel in Cl− solution [47].
Mo can improve the pitting corrosion resistance of stainless steel in the following ways.
First, as a passive film-forming element, Mo easily combines with O in solution to form
MoO2. MoO2 can improve the stability of the passive film on the surface of stainless steel,
thereby improving the pitting corrosion resistance of stainless steel [48]. Second, MoO4

2−

combines with Fe2+ to form FeMoO4, which is adsorbed around the pits and inhibits pit
expansion [49]. Finally, at the bottom of the pit, the accumulation of Mo6+ inhibits the
growth of pits [50]. Cr is an important component in stainless steel, and the formation of a
dense Cr oxide or hydroxide rust layer on the surface of stainless steel will isolate stainless
steel from the corrosive environment, greatly decreasing the corrosion rate [51]. Therefore,
during the ageing treatment, the precipitation and growth of the Mo- and Cr-enriched
clusters and Laves phase lead to the formation of Mo- and Cr-depleted regions around the
clusters, which is the main reason for the reduction in corrosion resistance.

Table 5. Quantitative analysis results of the second phase in the sample.

Heat Treatment States
Mass Fraction of Elements in the Second Phase of the Specimens (wt.%)

Fe Cr Ni Co Mo W V Σ

480A-4 0.063 0.034 0.007 0.005 0.102 0.019 0.002 0.232
540A-4 2.262 1.211 0.266 0.583 3.367 0.645 0.023 8.357
600A-4 3.591 1.923 0.419 0.916 5.361 1.021 0.038 13.269

It is worth noting that a thin-film Ni-enriched region is formed near the Cr-depleted
region in 540A-4 and 600A-4, as shown in Figure 15h,l. It can be seen from the TEM
characterization that the thin-film Ni-enriched region in 600A-4 contains reverted austenite,
and the morphology and diffraction spot calibration results are shown in Figure 16a–c.
Song et al. confirmed that the reverted austenite was enriched by austenite stabilized with
Ni, which tended to nucleate in the Cr-depleted region [52]. Previous studies have shown
that Ni-enriched reverted austenite has excellent corrosion resistance, and the formation of
reverted austenite may slow the decrease in corrosion resistance caused by the formation
of a Cr-depleted zone [44]. Tables 2 and 3 list the electrochemical fitting parameters. The
corrosion resistance of 600A-4 is better than that of 480A-4 and 540A-4 because the content
of reverted austenite in 600A-4 is 73.64 % and 38.73 % higher than that of 480A-4 and
540A-4, respectively (Figure 2b). In addition, as shown in Figure 2b, 600A-80 has the
highest content of reverted austenite, approximately 195.14 % higher than 600A-4. Under
the combined action of Laves phase growth and reverted austenite formation, the corrosion
resistance of 600A-80 is only slightly lower than 600A-4, but is significantly better than
480A-80 and 540A-80, as shown in Tables 2 and 3. Therefore, it can be concluded that with
an increasing ageing temperature and holding time, the precipitation and growth of the
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Mo- and Cr-enriched clusters and Laves phase lead to a decrease in corrosion resistance,
while the formation of reverted austenite slows the decrease in corrosion resistance.
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4.2. Effect of Ageing Treatment on SCC

As shown in Table 4, DC has no SCC sensitivity. At the underaged and peak-aged
temperatures, the SCC sensitivity increases with increasing holding time. At the overaged
temperature, the SCC sensitivity first increases and then decreases with increasing holding
time. This is closely related to the increase in the amount of the Laves phase (Figure 5), the
increase in reverted austenite content (Figure 2b) and the decrease in dislocation density
(Figure 2c) during the ageing treatment. DC does not have SCC sensitivity, mainly due to
its uniform structure and its good corrosion resistance. As shown in Tables 2 and 3, the Epit
and polarization resistance of DC are significantly higher than those of aged specimens. The
dense passive film on the surface of DC effectively prevents Cl− corrosion [53]. Therefore,
DC does not have SCC sensitivity. The increase in the SCC sensitivity of the underaged
and peak-aged specimens with increasing holding time is caused for two reasons. First,
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with the increasing holding time, the precipitation and growth of the Mo- and Cr-enriched
clusters and Laves phase with a high number density are observed in the martensitic
matrix, resulting in a significant decrease in the corrosion resistance of the specimens. In
particular, 480A-80 and 540A-80 are always in the activated dissolution state, as shown in
Figure 6b,c, so that the content of H produced by the corrosion reaction increases [54]. H
accumulates near the crack tip under the action of stress. When the stress intensity and
H concentration at the crack tip reach a certain critical value, HE easily occurs. On the
other hand, with the increasing holding time, the strength of the underaged and peak-
aged specimens increases, resulting in a decrease in the critical H concentration during
fracture [55]. Therefore, the decrease in corrosion resistance and the increase in strength
lead to an increase in SCC sensitivity.

The low SCC sensitivity of 600A-0.5 is mainly due to its high austenite content and
its low dislocation density in addition to good corrosion resistance. The gap position in
austenite is larger than that in martensite, which increases the solubility of H and reduces
the diffusion rate [56,57], thus inhibiting the enrichment of H at the crack tip. Dislocation
as a reversible hydrogen trap in steel has a certain effect on the transfer of H in the metal
lattice. Dislocation-enhanced H transport can lead to greater H penetration in the metal at
rates faster than typical diffusion processes [58]. Especially at slow strain rates, dislocations
are saturated by H and transport H to the embrittlement region [34], thus increasing SCC
sensitivity. Therefore, a high austenite content and low dislocation density can improve
the SCC resistance of the specimens. Although, 600A-4 has a higher austenite content and
lower dislocation density than 600A-0.5, the corrosion resistance of 600A-4 is lower than
that of 600A-0.5, and the precipitation of a large Laves phase in 600A-4 easily causes a stress
concentration area. Driven by stress, H is more likely to transfer to the stress concentration
area and realize local embrittlement. Therefore, the SCC sensitivity of 600A-4 is higher than
that of 600A-0.5.

The SCC sensitivity of 600A-80 is lower, mainly due to having the highest austenite
content, as shown in Figure 2b. Figure 17 is the EBSD phase diagram corresponding
to specimens under various thermal conditions. Figure 17 shows that there are three
types of austenite structures in specimens under various thermal conditions, namely, large
blocky, smaller strip-like, and thin-film austenite, and the austenite content increases with
increasing ageing temperature and holding time. As shown in Figure 17f, a large amount
of austenite in 600A-80 is dispersed in the martensitic matrix. Austenite plays two roles in
the SCC of steel: on the one hand, Ni-enriched thin-film austenite is in the thermodynamic
steady state and can be used as a ductile phase to passivate the crack tip and improve
the crack resistance of the specimen [52]; on the other hand, austenite, as an irreversible
hydrogen trap (pinning energy = 55 kJ/mol), can slow the enrichment of the crack tip and
reduce the occurrence of HE [59]. However, as austenite is the main H capture point in
steel, H can accumulate in austenite. Under the action of H and stress, the stacking fault
energy of austenite decreases, martensitic phase transformation occurs, and the weaker
martensitic interface becomes the preferred location for cracking and extension [60,61].
Similar phenomena are found in this study. Figure 14b shows that a large number of
secondary cracks appear along the martensitic lath boundary in the crack propagation
stage. Therefore, the beneficial effect of austenite on SCC should not be overestimated.
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5. Conclusions

The effect of organizational evolution on the SCC of the Cr-Co-Ni-Mo series of ultra-
high strength stainless steel was studied in this paper. The conclusions are as follows:

(1) The precipitation of the Mo- and Cr-enriched clusters and Laves phase reduces the
corrosion resistance of specimens, while the increased content of reverted austenite
improves the corrosion resistance of the specimens.

(2) The crack initiation of SCC for the specimens in 3.5 wt.% NaCl solution originates
from pitting. The pitting is caused by the precipitation of the Mo- and Cr-enriched
clusters and Laves phase during the ageing process, which results in local Mo- and
Cr-depleted areas. The morphology of intergranular fractures and quasi-cleavage
fractures in SCC is the result of the HE mechanism.

(3) The precipitation and growth of the Mo- and Cr-enriched clusters and Laves phase
lead to a decrease in the corrosion resistance and an increase in the strength of the
underaged and peak-aged specimens, which then show increased SCC sensitivity. As
a stable hydrogen trap in steel, austenite effectively improves the SCC resistance of
the specimens. However, under the action of H and stress, the stacking fault energy
of austenite decreases, martensitic phase transformation occurs, and the weaker
martensitic interface becomes the preferred location for crack initiation and extension.
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