# Numerical Investigation of the Performance of Segmental CFST Piers with External Energy Dissipators under Lateral Cyclic Loadings

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Numerical Simulation and Experimental Verification of Segmental CFST Pier

#### 2.1. Material Constitutive

^{4}N/mm

^{2}. At the same time, we used three groups of concrete test blocks (150 mm cubes) to carry out the split test. We added a strip between the upper and lower bearing surfaces of the test piece and the press plate so that the test piece could form a corresponding strip load up and down, causing the split failure of the test piece along the cube center or cylinder diameter section. The axial tensile strength of the concrete could be obtained by converting the force value during the split, as shown in Table 1.

#### 2.2. Element Type

#### 2.3. Define Contact

#### 2.4. Boundary Condition

#### 2.5. Unbonded Prestressed Reinforcement

#### 2.6. Meshing

#### 2.7. Analysis Step and Loading System

#### 2.8. Solving Method of Nonlinear Equations

#### 2.9. Result Analysis

## 3. Factors Affecting the Seismic Performance of Segmental CFST Piers

#### 3.1. Influence Analysis of Section Ratio

#### 3.2. Influence Analysis of Axial Compression Ratio

#### 3.3. Influence Analysis of Initial Prestress

## 4. Bending Capacity Formula Based on Mechanical Theory Analysis

^{2}.

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Acknowledgments

## Conflicts of Interest

## References

- Jia, J.; Zhang, K.; Saiidi, M.S.; Guo, Y.; Wu, S.; Bi, K.; Du, X. Seismic evaluation of precast bridge columns with built-in elastomeric pads. Soil Dyn. Earthq. Eng.
**2020**, 128, 105868. [Google Scholar] [CrossRef] - Tazarv, M.; Saiidi, M.S. UHPC-filled duct connections for accelerated bridge construction of RC columns in high seismic zones. Eng. Struct.
**2015**, 99, 413–422. [Google Scholar] [CrossRef] - Billington, S.L.; Barnes, R.W.; Breen, J.E. A precast segmental substructure system for standard bridges. PCI J.
**1999**, 44, 56–73. [Google Scholar] [CrossRef] - Ericson, A.C. Emulation design of precast concrete. J. Constr. Specif.
**1994**, 47, 96–103. [Google Scholar] - Ou, Y.C. Precast Segmental Post-Tensioned Concrete Bridge Columns for Seismic Regions; University of California: San Diego, CA, USA, 2002. [Google Scholar]
- Wang, Z.; Qu, H.; Li, T.; Wei, H.; Wang, H.; Duan, H.; Jiang, H. Quasi-static cyclic tests of precast bridge columns with different connection details for high seismic zones. Eng. Struct.
**2018**, 158, 13–27. [Google Scholar] [CrossRef] - Hewes, J.T.; Priestley, M.J.N. Seismic Design and Performance of Fabricated Concrete Segmental Bridge Columns; University of California: San Diego, CA, USA, 2002. [Google Scholar]
- Chou, C.-C.; Chen, Y.-C. Cyclic tests of post-tensioned precast CFT segmental bridge columns with unbonded strands. Earthq. Eng. Struct. Dyn.
**2006**, 35, 159–175. [Google Scholar] [CrossRef] - Guerrini, G. Seismic Behavior of Posttensioned Self-Centering Precast Concrete Dual-Shell Steel Columns. J. Struct. Eng.
**2015**, 141, 04014115. [Google Scholar] [CrossRef] [Green Version] - Han, L.; Yang, Y. Modern Concrete Filled Steel Tubular Technology; China Construction Industry Press: Beijing, China, 2007. [Google Scholar]
- Zhao, M.-Z.; Lehman, D.E.; Roeder, C.W. Modeling recommendations for RC and CFST sections in LS-Dyna including bond slip. J. Eng. Struct.
**2020**, 229, 111612. [Google Scholar] [CrossRef] - Jia, J.; Zhao, J.; Zhang, Q. Seismic performance test of bolted fabricated assembled CFST pier. Chin. J. Highw.
**2017**, 30, 243–248. [Google Scholar] - Elgawady, M.A.; Sha’Lan, A. Seismic behavior of selfcentering fabricated segmental bridge bents. Bridge Eng.
**2010**, 16, 328–339. [Google Scholar] [CrossRef] - Ichikawa, S.; Matsuzaki, H.; Moustafa, A.; El Gawady, M.A.; Kawashima, K. Seismic-Resistant Bridge Columns with Ultrahigh-Performance Concrete Segments. J. Bridge Eng.
**2016**, 21, 04016049. [Google Scholar] [CrossRef] - Mohebbi, A.; Saiidi, M.S.; Itani, A.M. Shake Table studies and analysis of a PT-UHPC bridge column with pocket connection. J. Struct. Eng.
**2018**, 144, 04018021. [Google Scholar] [CrossRef] - Tazarv, M.; Saiidi, M.S. Low-Damage Precast Columns for Accelerated Bridge Construction in High Seismic Zones. J. Bridge Eng.
**2015**, 21, 04015056. [Google Scholar] [CrossRef] - Zhang, Q. Research on the Seismic Performance of Segmental Fabricated Assembled Steel Pipe Concrete Bridge Piers. Bachelor’s Thesis, Beijing University of Technology, Beijing, China, 2016. [Google Scholar]
- Zhang, D.; Li, N.; Li, Z.-X. Seismic Performance of Precast Segmental Concrete-Filled Steel-Tube Bridge Columns with Internal and External Energy Dissipaters. J. Bridge Eng.
**2021**, 26, 04021085. [Google Scholar] [CrossRef] - Wang, C.; Qu, Z.; Shen, Y.; Ping, B.; Xie, J. Cyclic Testing on Seismic Behavior of Segmental Assembled CFST Bridge Pier with External Replaceable Energy Dissipator. Metals
**2022**, 12, 1156. [Google Scholar] [CrossRef] - Nikbakht, E.; Rashid, K.; Hejazi, F.; Osman, S.A. A numerical study on seismic response of self-centring precast segmental columns at different post-tensioning forces. Lat. Am. J. Solids Struct.
**2014**, 11, 864–883. [Google Scholar] [CrossRef] [Green Version] - Wang, C.; Qu, Z. Seismic Performance Analysis of Segmental Assembled Concrete-Filled Steel Tubular Pier with External Re-placeable Energy Dissipation Ring. J. Appl. Sci.
**2022**, 12, 4729. [Google Scholar] [CrossRef] - GB 50010-2010; Code for Design of Concrete Structures. Ministry of Housing and Urban Rural Development of the People’s Republic of China: Beijing, China, 2010. (In Chinese)
- Nie, J.; Wang, Y. Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures. J. Eng. Mech.
**2013**, 30, 59–67. [Google Scholar] - Han, L. Concrete Filled Steel Tube Structure: Theory and Practice; Science Press: Beijing, China, 2004. [Google Scholar]
- Hassanein, M.; Patel, V. Round-ended rectangular concrete-filled steel tubular short columns: FE investigation under axial compression. J. Constr. Steel Res.
**2018**, 140, 222–236. [Google Scholar] [CrossRef] - Yuan, H.; Dang, J.; Aoki, T. Behavior of partially concrete-filled steel tube bridge piers under bi-directional seismic excitations. J. Constr. Steel Res.
**2014**, 93, 44–54. [Google Scholar] [CrossRef] - Ou, Y.C.; Chiewanichakorn, M.; Aref, A.J.; Lee, G.C. Seismic performance of segmental precast unbonded post tensioned concrete bridge columns. J. Struct. Eng.
**2007**, 133, 1636–1647. [Google Scholar] [CrossRef] - Zhang, Y.; Wu, G.; Dias-da-Costa, D. Cyclic loading tests and analyses of posttensioned concrete bridge columns combining cast-in-place and precast segments. J. Bull. Earthq. Eng.
**2019**, 17, 6141–6163. [Google Scholar] [CrossRef] - Lin, Y.; Zong, Z.; Bi, K.; Hao, H.; Lin, J.; Chen, Y. Numerical study of the seismic performance and damage mitigation of steel–concrete composite rigid-frame bridge subjected to across-fault ground motions. Bull. Earthq. Eng.
**2020**, 18, 6687–6714. [Google Scholar] [CrossRef] - Li, Y.; Ma, X.; Zhang, W. Dynamic performance of a concrete-filled steel tube high-pier curved continuous truss girder bridge due to moving vehicles. Adv. Struct. Eng.
**2019**, 22, 1297–1311. [Google Scholar] [CrossRef] - Bu, Z.Y.; Ou, Y.C.; Song, J.W.; Zhang, N.S.; Lee, G.C. Cyclic loading test of unbonded and bonded posttensioned precast segmental bridge columns with circular section. J. Bridge Eng.
**2015**, 21, 04015043. [Google Scholar] [CrossRef] - Buyukozturk, O.; Bakhoum, M.M.; Beattie, S.M. Shear behavior of joints in precast concrete segmental bridges. J. Struct. Eng. ASCE
**1990**, 116, 3380–3401. [Google Scholar] [CrossRef] - AASHTO. Guide Specifications for Design and Construction of Segmental Concrete Bridges; AASHTO: Washington, DC, USA, 1999; pp. 19–20. [Google Scholar]

Specimen | 1 | 2 | 3 | Average |
---|---|---|---|---|

Compressive strength (MPa) | 42.8 | 43.1 | 41.6 | 42.5 |

Tensile strength (MPa) | 2.35 | 2.43 | 2.40 | 2.39 |

$\mathit{\psi}$ | $\mathit{\u03f5}$ | ${\mathit{f}}_{\mathit{b}0}/{\mathit{f}}_{\mathit{c}0}$ | ${\mathit{K}}_{\mathit{c}}$ | $\mathit{\mu}$ |
---|---|---|---|---|

30 | 0.1 | 1.16 | 0.6667 | 0.0005 |

Comparison Item | Horizontal Bearing Capacity/kN Side Shift 6.2% | Residual Displacement/mm Side Shift 6.2% | Equivalent Stiffness/(kN·mm^{−1}) Side Shift 6.2% | Energy Consumption/(kN·mm) Side Shift 6.2% |
---|---|---|---|---|

Experimental result | 74.1 | 5.8 | 1.2 | 3.3 |

Finite element results | 62.6 | 8.2 | 1.0 | 4.0 |

Rate | 0.8 | 1.4 | 0.8 | 1.2 |

Parameter | Value Range | Invariant Parameter |
---|---|---|

$\lambda $ | 2%, 3%, 4% | a = 0.15, p = 80 kN |

a | 0.05, 0.15, 0.30 | $\lambda $ = 2%, p = 80 kN |

p | 40 kN, 80 kN, 120 kN | a$=0.15,\lambda $= 2% |

$\mathit{\lambda}$/% | ${\mathit{P}}_{\mathit{y}}$/kN | ${\mathit{\Delta}}_{\mathit{y}}$/mm | ${\mathit{P}}_{\mathit{m}}$/kN | ${\mathit{\Delta}}_{\mathit{m}}$/mm | ${\mathit{\delta}}_{\mathit{u}}$/% | $\mathit{\alpha}$ |
---|---|---|---|---|---|---|

2 | 59.24 | 8.02 | 63.20 | 26.58 | 3.62 | 3.31 |

3 | 71.12 | 5.78 | 73.37 | 19.75 | 3.66 | 3.42 |

4 | 76.88 | 5.69 | 84.60 | 19.30 | 3.67 | 3.39 |

a | ${\mathit{P}}_{\mathit{y}}$/kN | ${\mathit{\Delta}}_{\mathit{y}}$/mm | ${\mathit{P}}_{\mathit{m}}$/kN | ${\mathit{\Delta}}_{\mathit{m}}$/mm | ${\mathit{\delta}}_{\mathit{u}}$/% | $\mathit{\alpha}$ |
---|---|---|---|---|---|---|

0.05 | 42.68 | 6.09 | 47.58 | 26.69 | 3.65 | 4.38 |

0.15 | 59.24 | 8.02 | 63.20 | 26.58 | 3.62 | 3.31 |

0.30 | 77.84 | 8.96 | 87.93 | 27.03 | 3.67 | 3.02 |

P/kN | ${\mathit{P}}_{\mathit{y}}$/kN | ${\mathit{\Delta}}_{\mathit{y}}$/mm | ${\mathit{P}}_{\mathit{m}}$/kN | ${\mathit{\Delta}}_{\mathit{m}}$/mm | ${\mathit{\delta}}_{\mathit{u}}$/% | $\mathit{\alpha}$ |
---|---|---|---|---|---|---|

40 | 52.15 | 6.49 | 57.83 | 26.67 | 3.65 | 4.11 |

80 | 59.24 | 8.02 | 63.20 | 26.58 | 3.62 | 3.31 |

120 | 60.55 | 8.18 | 68.34 | 26.37 | 3.67 | 3.22 |

Model Number | Section Ratio | Axial Compression Ratio | Initial Prestress (kN) | Analog Value ${\mathit{M}}_{\mathit{u},\mathit{e}}$ (kN·mm) | Calculated Value ${\mathit{M}}_{\mathit{u},\mathit{c}}$ (kN·mm) | ${\mathit{M}}_{\mathit{u},\mathit{e}}/{\mathit{M}}_{\mathit{u},\mathit{c}}$ |
---|---|---|---|---|---|---|

1 | 2% | 0.05 | 80 | 23.8 | 27.1 | 0.878 |

2 | 2% | 0.15 | 80 | 31.6 | 31.1 | 1.016 |

3 | 2% | 0.30 | 80 | 38.9 | 37.1 | 1.048 |

4 | 2% | 0.15 | 40 | 32.9 | 35.4 | 0.929 |

5 | 2% | 0.15 | 120 | 38.2 | 43.4 | 0.880 |

6 | 3% | 0.15 | 80 | 36.7 | 40.1 | 0.915 |

7 | 4% | 0.15 | 80 | 42.3 | 45.9 | 0.921 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, C.; Qu, Z.; Shen, Y.; Jiang, J.; Yin, C.; Zong, Y.
Numerical Investigation of the Performance of Segmental CFST Piers with External Energy Dissipators under Lateral Cyclic Loadings. *Materials* **2022**, *15*, 6993.
https://doi.org/10.3390/ma15196993

**AMA Style**

Wang C, Qu Z, Shen Y, Jiang J, Yin C, Zong Y.
Numerical Investigation of the Performance of Segmental CFST Piers with External Energy Dissipators under Lateral Cyclic Loadings. *Materials*. 2022; 15(19):6993.
https://doi.org/10.3390/ma15196993

**Chicago/Turabian Style**

Wang, Chengquan, Zheng Qu, Yonggang Shen, Jiqing Jiang, Chongli Yin, and Yanwei Zong.
2022. "Numerical Investigation of the Performance of Segmental CFST Piers with External Energy Dissipators under Lateral Cyclic Loadings" *Materials* 15, no. 19: 6993.
https://doi.org/10.3390/ma15196993