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Abstract: The objective of this study is to describe the stress relaxation behavior of an epoxy-based
fiber-reinforced material. An existing incremental formulation of an orthotropic linear viscoelastic
material behavior was adapted to Voigt notation and to the special case of an isotropic material.
Virtual relaxation tests on a representative volume element were performed, and the behavior of
individual components of the relaxation tensor of the transversely isotropic composite material
was determined. The study demonstrated that in the case of only one viscoelastic material, each
component of the relaxation tensor can be described in terms of a scalar form factor and the behavior
of the neat resin. The developed method was implemented in an incremental finite element model
(FEM) analysis to calculate the stress relaxation on the macroscopic ply level. A validation of the
approach has shown a promising agreement up to a limit below the glass transition temperature
of 15 ◦C in longitudinal and 35 ◦C in transverse direction. This study therefore demonstrates a
novel way to incrementally describe the macroscopic viscoelastic behavior of materials with a single
viscoelastic component with good controllability for engineering purposes.

Keywords: composite process simulation; relaxation; homogenization; thermoset; residual stress

1. Introduction

Fiber composite materials are known to have the potential to replace other materials
in areas subjected to high mechanical loads. These materials can be particularly attractive
for saving weight in moving masses. However, their potential can only be exploited
if knowledge gaps in production and use are closed. This was the aim of the project
within which this study was conducted. The research activities were focused on the
influence of residual stresses on the fatigue strength of a composite leaf spring for the
automotive industry.

During the manufacturing process of a thermoset material (e.g., compression resin
transfer molding CRTM), its structure is exposed to chemical shrinkage and thermal con-
traction. Depending on the geometry of the part, especially if free deformation is restricted,
this can lead to the formation of process-induced stresses. Analogous to a mechanical
relaxation test, these stresses will relax with time, especially at higher temperatures and a
low curing degree. In a typical manufacturing process for fiber-reinforced polymers, the
material is in exactly this state at the beginning of the process, which means at comparably
high curing temperatures compared to the actual glass transition temperature. When one
estimates the extent of the residual stresses, the stress relaxation has to be considered in
order not to make an overly high and thus conservative prediction.

For this reason, the introduction of a homogenization model to describe the relaxation
effect of the composite based on the behavior of its individual components is advantageous.
Isolated measurements of the components of the relaxation tensor are difficult to perform
since a unidirectional strain is challenging to produce in a mechanical test. In contrast, an
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isotropic material can be described in terms of only two parameters, so the elimination of the
lateral contraction is not necessary. Therefore, the relaxation behavior can also be measured
in a multiaxial strain state, e.g., uniaxial tension. Furthermore, the introduction of a
homogenization model from an isotropic to an orthotropic material allows the consideration
of different fiber volume contents.

Within the current project, a virtual process simulation was set up based on earlier
models [1,2], in which the modeling of the relaxation effect was the last in a series of
implemented physical effects. It was assumed that for some loads, a lack of knowledge
could lead to significant inaccuracy in the predicted final performance. To remedy this
knowledge gap, the present study was performed, which investigated the magnitude of
relaxation of isolated loads on microscopic unit cells. Its aim was to derive a method that
can adapt to varying properties and contents of the individual components of a composite
and is able to provide input values for the manufacturing process simulation implemented
in an incremental FEM analysis.

1.1. State of the Art

The available approaches used to model process-dependent residual stresses in fiber-
reinforced materials show a trend in which increasing accuracy comes with increased
complexity and computational effort.

The most drastic simplification of the manufacturing process is an elastic model that
considers the total thermal and/or chemical shrinkage together with the stiffness at a
reference temperature, usually room temperature. The amount of thermal shrinkage is
thus calculated as the difference between the reference temperature and a defined stress-
free temperature (usually the curing temperature) multiplied by a coefficient of thermal
expansion [3]. Since the material’s stiffness at the curing temperature is lower than at
room temperature, this approach obviously leads to an overestimation of the stresses that
occur in reality. This has the beneficial effect that an assessment of a manufactured part is
conservative, which is generally required for engineering purposes.

To increase the accuracy, incrementally elastic models, for example, the CHILE (cure
hardening instantaneously linear elastic [4]) model, have been developed. They are es-
pecially popular due to their ability to be easily implemented in an incremental FEM
analysis [5,6]. This approach derives the occurring stress from the integration of the
occurring strain with the actual stiffness over time:

σ(t) =
∫ t

0
E(T,α)

dε

dτ
dτ (1)

A further increase in the accuracy of the predicted stresses can be achieved if the vis-
coelastic effects are considered. It was found in [7] that the elastic approaches overestimate
the occurring stresses up to 20% in some specific cases.

In linear viscoelastic approaches, the elastic modulus is replaced with a time-dependent
modulus so that the formulation becomes:

σ(t) =
∫ t

0
E(t− τ)

∂ε

∂τ
dτ (2)

This integral, known as the convolution integral, takes an easier form if it is trans-
formed into the Laplace domain. An example of viscoelastic approaches that take advantage
of the Laplace transform can be found in [8], where a material model for woven fabrics was
developed. The validation was carried out for the distortion of a plate with an asymmetrical
layout. Other approaches, especially for the case of epoxy resin systems, were developed
in [9,10].

A drawback of the methods involving Laplace transformation is that they are com-
putationally expensive and because, in some cases, no analytical solution for the back-
transformation can be found. To avoid these problems, approaches in the time domain
have also been developed. Zocher et al. [11] developed an incremental formulation for a
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linear viscoelastic material whose stiffness tensor entries can be described in terms of the
rheological model known as the generalized Maxwell model. Since this model is known
to provide a good approximation for the relaxation behavior of a wide range of materials
and at the same time it is possible to be implemented in an incremental FEM analysis,
this approach is very promising. An example of the application of this formulation can
be found in [12], where the material was modeled to relax instantly in the rubbery phase
and show almost elastic behavior in the glassy phase during the curing of an epoxy-based
thermoset composite material.

The presented viscoelastic approach was integrated in a holistic approach of a virtual
manufacturing process [1]. It aims to include all relevant physical aspects leading to process-
induced stresses and consists of a thermochemical and a subsequent mechanical part. As
mentioned earlier, one area of uncertainty is the so-called virtual material characterization
of the relaxation properties of a composite material from the properties of its individual
components. While there are well-established concepts for elastic homogenization, there
are few methods available for viscoelastic homogenization that are user-friendly and allow
a fast assessment of the accuracy. In the following, we first present the available methods
for homogenization of the elastic properties and then those for the viscoelastic properties.

1.1.1. Homogenization of Elastic Properties

In comparison with viscoelastic behavior, there are several widely used homogeniza-
tion concepts for elastic behavior. They can be differentiated into empirical, analytical and
numerical approaches.

A well-known empirical relationship was developed, namely the Halpin–Tsai equa-
tions [13,14]. All the mechanical properties can be described in terms of two equations
as follows:

p
pm

=
1 + ξηv f(
1− ηv f

)Em where η =
p f /pm − 1
p f /pm + ξ ′

(3)

where p is an arbitrary property of the composite, pm and pf denote a property of the matrix
and fiber, respectively, and the parameter ξ ′ is an adjustment parameter that needs to
be determined to fit to the experimental data. In order to correct its accuracy for shear
stiffness, [15] formulated a correction factor for this formulation.

Analytical approaches usually use drastic simplifications of the composite material.
A well-known approach is the rule of mixtures, which calculates the homogenized stiff-
ness from differently arranged springs representing the stiffness of the matrix and the
fiber, respectively. By arranging the springs in parallel, it is possible to describe the fiber-
dominated properties such as the stiffness in the fibers’ direction, and arranging the springs
in series can be used to describe matrix-driven properties such as the transverse stiff-
ness or shear stiffness. A more accurate micromechanical model based on this concept is
known as the rule of mixture developed by Chamis [16], which rose to eminence in the
aerospace industry.

In terms of numerical homogenization, three approaches are commonly used for
simulating composites: a micromechanics-based approach, an equivalent homogeneous
material (EHM) based approach and a combination of the first two methods. Each approach
has advantages and disadvantages described in the literature [17–20]. The micromechan-
ical approach describes the material structure in detail, and it is possible to investigate
local defects [18]. However, the computational effort is very high, because a much better
mesh quality is required in comparison to the EHM model. The EHM method reduces
computational effort by homogenizing the microscopic properties on the macro level, but it
neglects local effects [21,22]. It is possible to combine the two models [18,20,23] to receive
the advantages of both.

Microscale modeling involves consideration of uncertainties in the composite structure,
which requires stochastic models [24]. In microscale models the composite properties are
defined from all constituent materials. Basic approaches include elasticity theories based
on the repetition of a representative unit cell, assuming a perfect bond between fibers and
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matrix. However, an advanced viscoelastic models could be implemented to describe fiber-
media interaction and the fiber packing process [25]. The focus of the micro-scale study is
on the fiber composition, geometry, and orientation. Such micromechanical theories are
usually validated with experiments [24,26,27].

Multiscale techniques solve local problems on the microscale and take this information
to the macro level through homogenization techniques [28]. The material properties of
the macroscale model could be obtained from micromechanical analyses. Mechanical
behaviors of heterogeneous materials are often described with representative volume
elements (RVE) [29]. Hill’s theory assumes that the RVE should contain enough fibers to
provide a statistical representation of the heterogeneous materials. One advantage of the
RVE method is that the composite material replaced by a homogeneous media retains the
anisotropic material properties. The effective properties derived from the RVE represent the
material on the macroscopic scale, which is commonly known as the micro–meso–macro
principle [30].

1.1.2. Homogenization of Viscoelastic Properties

Consideration of the time-dependent behavior of the individual components and
their interaction brings additional complexity into the homogenization of a composite‘s
properties. A common approach uses the principle that if the convolution integral in
Equation (2) is transformed into the Laplace space, it takes the form of basic multiplication.
Afterwards, a micromechanical homogenization approach (as well as classical methods
from elastic homogenization) can be applied for a specified fiber volume content:

Γ̂c(s) = MM
(

Γ̂f (s), Γ̂m(s), v f

)
(4)

Here, MM denotes the micromechanical homogenization model, Γ̂ the viscoelastic
response in Laplace space of the fiber, matrix, and composite respectively and v f the fiber
volume fraction.

Another common approach for the homogenization in Laplace space is known as
the asymptotic homogenization method (AHM). It considers the composite as a periodic
assembly of RVE’s. One of the first applications of this method was carried out by [31].
With a focus on the individual indices of the creep or relaxation tensor, an early evaluation
was presented in [32], where a micromechanical model was also developed directly in the
Laplace domain. A more recent example of this method was given by [33], where a Prony’s
series was used in order to model the individual phases’ relaxation in the time domain.
The results for low fiber volume contents can be found in a later study [34].

As mentioned earlier, the main challenge of the application of Laplace transform is to
obtain analytical formulas for the inverse Laplace transform to generate the viscoelastic
solution back in the time domain. Therefore, a drawback of this method is the mathematical
complexity which limits its wide application by different users.

For this reason, other researchers have applied homogenization in the time domain.
In [35], quasi-elastic solutions were developed for cases of elementary loads summarized in
a k-factor for each of them. While these factors can be used to describe the time-dependent
behavior of the creep tensor indices, they cannot be used for the relaxation tensor indices.
This limitation arises because there are no widely used elementary load cases for producing
a unidirectional strain, since contraction in the lateral direction is hard to restrict in a
mechanical test. However, it is remarkable that some indices increase over time, which
is also shown in the current investigation. A similar approach was recently followed
by [36], who decomposed the strain tensor to represent characteristic load cases. A solution
for determining the stress relaxation of the composite material for these load cases was
developed and validated. Although it is a very promising approach, it is hard to implement
due to the high number of parameters and solution uncertainty for specific load cases.
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1.1.3. Limits of the Linear Viscoelastic Assumption

The assumption that linear viscoelastic material behavior describes the homogenized
composite’s behavior might be inaccurate because local stresses are much higher on the
microlevel compared with the meso-level or ply level. On the microscale, the material
shows greater stress by a factor of 3–12 depending on the stiffness ratio between the
polymer and the fiber. It might exceed linear behavior (an assumption for the application
of linear viscoelasticity) even at low load levels.

This is especially visible in the transverse direction. Brauner et al. [37] simulated
the stress distribution in a unit cell by considering thermal and chemical shrinkage,
temperature-dependent effects, micro-yielding, and degradation and relaxation. An ex-
ample considering just thermal strain is shown in Figure 1. An applied nominal strain of
0.48% can lead to a maximum local strain of 2.93%, which is an amplification of about 6.
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1.2. Approach

In this study, an incremental formulation of the linear viscoelastic response [11], was
used to analyze the response of isolated components of the orthotropic relaxation tensor
with the use of an RVE.

It has been suggested that in the case of only one time-dependent material, the response
can be described as proportional to the response of that material because the decay time
may not change. For this reason, the possibility of expressing the resulting time-dependent
behavior of the individual indices in terms of a scalar form factor, together with the behavior
of the neat resin system, was investigated.

These factors were integrated in [11] in order to provide an incremental description
of the composite material. The presented approach was implemented by using user
subroutines in the commercial finite element program Abaqus (6.13, Maastricht, The
Netherlands). A validation was performed by measuring an epoxy-based glass fiber
reinforced composite material, demonstrating its simplicity and computational advantage.
Even if the linear viscoelastic region might be exceeded at the microscale, the suitability of
the homogenization approach assuming this behavior can be assessed by the validation on
the macroscale.

The present study therefore provides a novel approach for the description of a compos-
ite with only one linear viscoelastic phase, which is applicable to a wide range of materials.
The form of expressing the elements of the relaxation tensor in terms of form factors offers
a good controllability because each factor indicates the deviation of the response of the
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element to which it belongs to the response of the neat resin system. The incremental
form of this description in the time domain also represents an extraordinarily efficient
variant compared to established methods using Laplace transformation, since only six
status variables have to be transmitted for each time step.

2. Materials and Methods

The research flow of the present work was structured according to the proposed
approach: First, the formulation of [11] was adapted for implementation in a commercial
finite element program (Section 2.1). A description for the orthotropic case has been
simplified to the isotropic case, which can represent a viscoelastic resin system (Section 2.2).
The elastic and viscoelastic properties of the resin system were determined in a three-point
bending test so that this data could be used to calibrate the viscoelastic phase of an RVE
(Section 2.4). Next, the response of the elements of the relaxation tensor to isolated load
cases was determined and it was evaluated whether these can be described using a factor
and a master curve (Section 2.3). Since this turned out to be promising, a formulation for
describing the macroscopic behavior from these factors was developed and a validation
was carried out to estimate the accuracy of the approach. For this purpose, a virtual copy of
the 3PB experiment was created (Section 2.5) and compared with experimental data from
the composite (Section 2.4).

2.1. Incremental Orthotropic Linear Viscoelastic Formulation

The general stress–strain relationship for an orthotropic linear viscoelastic material
can be expressed by the constitutive equation:

σij(xk, ξ) =
∫ ξ

0
Cijkl

(
xk, ξ − ξ ′

)∂εkl(xk, ξ ′)

∂ξ ′
dξ ′ (5)

This respects the history of the material by assuming that each response to a loading
event can be superposed on all other responses. A common method for the description of
the relaxation behavior of a linear viscoelastic material is to use a rheological model. One
such model known to be suitable for describing the relaxation behavior of a wide range of
materials is named the generalized Maxwell model, also known as Wiechert model [38].
It consists of a number of so-called branches, each consisting of a spring and a dashpot,
which are connected in parallel (Figure 2).
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The generalized Maxwell model has the beneficial property that the stress it describes
during a relaxation test takes the form of a Prony series. Now, by assuming that the
behavior of the elements of the stiffness tensor in Equation (5) can be represented in terms
of a generalized Maxwell model with M branches, its value at time ξn+1 (following the
notation of [11].) can be expressed as a Prony series as follows:

Cijkl
(

xk, ξn+1 − ξ ′
)
= Cijkl∞ +

Mijkl

∑
m=1

Cijklm e−(ξn+1−ξ ′)/ρijklm (6)

Comparing this description with the rheological model, one can see that spring ele-
ments that are connected to a dashpot contribute the less to the actual stress the longer it
has been that strain was applied. This is commonly known as fading memory behavior.

Equation (6) was inserted in Equation (5) and converted to an incremental form
by [11]. That means that the actual stress is the sum of the stress increment and the stress
of the previous time step:

σij(t+∆t) = σij(t) + ∆σij (7)

It consists of an immediate increment, a stress increment due to thermal strain and
a stress increment (∆σR

ij ) that considers relaxation of the stress. For small time steps,

the immediate increment can be understood as the elastic increment and ∆σR
ij as the

viscoelastic part.
∆σij = C′ijkl∆εkl − β′ij∆Θ + ∆σR

ij (8)

In contrast to [11], here the temperature load considered (∆Θ) was integrated with
the mechanical load, ∆εkl . The simplified incremental description of linear viscoelastic
behavior then takes the form

C′ijkl ≡ Cijkl∞ +
1

∆ξ

Mijkl

∑
m=1

ηijklm

(
1− e−∆ξ/ρijklm

)
(no sum on i, j, k, l) (9)

∆σR
ij = −

3

∑
k=1

3

∑
l=1

Mijkl

∑
m=1

(
1− e−∆ξ/ρijklm

)
Sijklm(ξn) (no sum on i, j, k, l) (10)

Sijklm(xk, ξn) = e−∆ξ/ρijklmSijklm(xk, ξn − ∆ξ) + ηijklm Rε,kl

(
1− e−∆ξ/ρijkm

)
(no sum on i, j, k, l) (11)

where:
Rε,kl ≡ ∆εkl/∆ξ (12)

The variable S represents a state variable that must be stored in the previous time step
and passed to the current step. For the orthotropic case, each branch m of the Maxwell
model requires a state variable for each index of the stress tensor ij. This leads to M × 36
state variables, which is cumbersome for practical use.

For presenting the result of fitting the rheological model to the measurement data, it is
beneficial to introduce a parameter that describes the relationship of one spring element to
the sum of all spring elements:

ϕm =
km

ktot
(13)

2.2. Adaption to Isotropic Material Behavior

The homogenization for modeling a unit cell was carried out by considering the indi-
vidual phases as isotropic and only the matrix’s material properties to be time-dependent.
This was achieved by expressing the stress–strain relation in terms of the bulk and shear
modulus, where only the shear modulus was time-dependent, similar to the approach
of [39]. This means, that we can assume that the viscous part of the deformation is in-
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compressible and thus the volumetric change is purely elastic. Hence, the constitutive
stress–strain relationship is written as:

σij = Kεel,vol I + 2Gεd,ij (14)

Here, the strain in the first term of the right-hand side is the volumetric change,
derived from the trace of the strain tensor as:

εel,vol = trace(εel) (15)

The second is the deviatoric strain, which is defined as:

εd = εel −
1
3

εel,vol I (16)

If we consider the shear modulus to be time-dependent; it can be written in terms of
the linear viscoelastic constitutive equation. The stress–strain relationship for an isotropic
material can be described by:

σij = Kεel,vol I + 2
∫ t

0
G
(
t− t′

)∂εd,ij

∂t′
dt′ (17)

Therefore, the shear modulus is derived from the measurement results by assuming
the bulk modulus to be constant:

G(t) =
3KE(t)

9K− E(t)
(18)

Similar to the elements of the stiffness tensor in Equation (6), it is possible to describe
the relaxation behavior of most polymer materials with the generalized Maxwell model
and thus in terms of a Prony series as follows:

G
(
xk, ξn+1 − ξ ′

)
= G∞ +

M

∑
m=1

Gme−(ξn+1−ξ ′)/ρm (19)

Inserting the constitutive equation of the isotropic material in Equation (17) and the
Prony series in Equation (19) in the procedure of Zocher [11], the general incremental form
(Equations (8)–(11)) can then written in simplified form as:

∆σα = K∆εel,vol IV
α + 2G′R−1

α ∆εd,α + ∆σR
α (20)

where IV
α denotes the identity tensor in Voigt notation (Appendix A). Similarly, R is a

transformation vector from index to Voigt notation. In Equation (2D), it is also known as
the Reuter matrix (Appendix A). The variable G’ is defined as:

G′ ≡ G∞ +
1

∆ξ

M

∑
m=1

ηm

(
1− e−∆ξ/ρm

)
(21)

This term can be linearized while maintaining the conservative character of this
approach. For small time steps applying the rule of de L’Hospital, it takes the form of the
shear modulus:

lim
∆ξ→0

G′ = G∞ +
M

∑
m=1

ηm

ρm
= G0 (22)
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By replacing the stiffness tensor Cijkl with the time-dependent scalar 2G,
Equations (10) and (11) can be written as:

∆σR
α = −

M

∑
m=1

(
1− e−∆ξ/ρm

)
Sαm(ξn) (23)

Sαm(xk, ξn) = e−∆ξ/ρm Sm(xk, ξn − ∆ξ) + ηm2R−1
α Rε,α

(
1− e−∆ξ/ρm

)
(24)

2.3. Adaptation to Homogenized Composite Behavior

A representative volume element (RVE) was set up, which consisted of two isotropic
materials: a linear elastic fiber and a linear viscoelastic matrix. The fiber’s properties were
chosen the same as for physical tests in Section 2, while the matrix was modeled by the
method described in the previous section and the measured parameter values shown in
Section 3. The compression modulus of the neat resin was chosen to be 2.78 GPa, derived
from the elastic modulus and Poisson’s ratio in the elastic state.

The geometries of different textile structures and fiber volume fractions can be created
efficiently by using the available material modelers of commercial FEM software. The
incremental formulation of linear viscoelastic materials was implemented in a user material
subroutine of Abaqus 6.13. It aimed to find a description for each element of the orthotropic
relaxation tensor: 

σ1
σ2
σ3
σ4
σ5
σ6

 =



Ψ11 Ψ21 Ψ21
Ψ12 Ψ22 Ψ23
Ψ12 Ψ23 Ψ22

0
Ψ44

Ψ44
Ψ66





ε1
ε2
ε3
ε4
ε5
ε6


0

(25)

To do this, virtual load cases were set up, that created a unidirectional strain state.
It consisted of 3024 elements of type C3D15, which is a 15-node quadratic triangular
prism element. The fiber-matrix interface was modeled as perfectly bonded. In Figure 3,
one can see the direction of the applied loads and the qualitative behavior of the set-up
micromechanical models. To measure the response one could either evaluate the volume
averaged stress or the reaction force. Here, as an indicator the reaction force was chosen
(Rf). The surface on which it was measured is also indicated in Figure 3. The boundary
conditions are listed in Table A1 in Appendix B.
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The resulting normalized values of the relaxation tensor at a temperature of 110 ◦C
are shown in Figure 4. They can be compared with the normalized relaxation modulus of
the neat resin, which is indicated by a dotted line. As shown by Meder et al. [35], some
components appear to have an increasing value over time.
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All these functions depend on one single time-dependent variable G(t). The decrease
of each value has the same decay time, so all the curves can be expressed in terms of a scalar
form factor and a master curve. Here, the form factor is defined as the ratio of the amount
of normalized relaxation of the actual index and the neat resin reference at a reference time
(Equation (26)). The respective elements of the relaxation tensor can then be described in
terms of the elastic index, the form factor and the normalized relaxation modulus of the
neat resin (Equation (27)):

fαβ

(
tre f

)
=

1−Ψαβ

(
tre f

)
1− G

(
tre f

) (26)

Ψαβ(t) = C(0)αβΨαβ(t) = Cαβ(0)
((

1− fαβ

)
+ fαβG(t)

)
(27)

Inserting this approach in Equation (6) (for the case of a relaxation test
C(t)αβ = Ψαβ(t)), the Prony series description of the stiffness tensor indices becomes:

Cαβ

(
ξn+1 − ξ ′

)
= Cαβ(0)

[(
1− fαβ

)
+ fαβG∞ +

M

∑
m=1

fαβGme−(ξn+1−ξ ′)/ρm

]
(28)

As in the isotropic case, this description of the stiffness tensor is inserted in the
approach of Zocher [11] in Voigt notation. The respective form of Equation (A1) becomes:

∆σα = C′αβ∆εβ + ∆σR
α (29)

Similar to the isotropic case, the first parameter on the right-hand side was approxi-
mated for small time steps without losing conservativity:

lim
∆ξ→0

C′αβ = Cαβ(0) (30)
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Since the decay time ρ does not depend on β, the sums in the adapted form of (1C)
can be interchanged:

∆σR
α = −

6

∑
β=1

M

∑
m=1

(
1− e−

∆ξ
ρm

)
Sαβm(ξn) = −

M

∑
m=1

(
1− e−∆ξ/ρm

) 6

∑
β=1

Sαβm(ξn) (31)

By comparing Equations (6) and (28), one can notice that only the part in the sum
operator is time-dependent. It can be understood that Equation (11) changes to:

Sαβm(ξn) = e−∆ξ/ρm Sαβm(ξn − ∆ξ) + Cαβ(0) fαβηmRε

(
1− e−∆ξ/ρm

)
(32)

With the aim of reducing the number of state variables, an auxiliary state variable S′ is
defined. It consists of the sum over β of the initial state variables:

S′αm :=
6

∑
β=1

Sαβm(ξn) (33)

Equation (31) then takes the following form:

∆σR
α = −

M

∑
m=1

(
1− e−∆ξ/ρm

)
S′αm (34)

By writing Equation (32) in terms of S′, we obtain:

S′αm(ξn) = e−∆ξ/ρm S′αm(ξn − ∆ξ) + ηm

(
1− e−∆ξ/ρm

) 6

∑
β=1

Cαβ(0) fαβRε,β (35)

For small time steps, this can be approximated by:

S′αm(ξn) = e−∆ξ/ρm S′αm(ξn − ∆ξ) +
ηm
ρm

6

∑
β=1

Cαβ(0) fαβRε,β∆ξ (36)

We can then insert the relationship shown in Equation (12):

S′αm(ξn) = e−∆ξ/ρm S′αm(ξn − ∆ξ) +
ηm
ρm

6

∑
β=1

Cαβ(0) fαβ∆εβ (37)

For the expression of the spring element of the normalized shear modulus, it is helpful
to insert the parameter introduced in Equation (13). It represents the normalized amount of
the decay described by one of the branches of the generalized Maxwell element, which was
measured for the neat resin system.

S′αm(ξn) = e−∆ξ/ρm S′αm(ξn − ∆ξ) + ϕm

6

∑
β=1

Cαβ(0) fαβ∆εβ (38)

This method of describing the relaxation tensor indices with form factors allows
reduction of the number of state variables of M × 6.

The concept presented here only works if there is no more than one individual material
of the composite modeled to show the viscoelastic behavior. If there is more than one
viscoelastic material included, the components of the relaxation tensor will have different
decay times and cannot be transformed to a master curve with a form factor.
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2.4. Generation of Experimental Data

The resin system investigated in this study was provided by Huntsman (Basel, Switzer-
land) and has the commercial name XB3585. It is a fast-curing epoxy resin for automotive
applications that can achieve short curing-cycle times. The system has a final glass transition
temperature of 120–130 ◦C and a flexural modulus of 2.8–3.1 GPa.

The glass fiber reinforcement textile was provided by Kümpers Composites (Salzber-
gen, Germany) as a unidirectional non-crimping fabric. The number of layers was chosen
for a targeted fiber volume content of 60%. A summary of the number of layers, their
orientation and the dimensions of the samples are presented in Table 1. Because of the
limited maximum force of the test device (15 N), the specimens for the measurement in
longitudinal dimensions were manufactured with a lower thickness. The textile consisted
of S-glass fibers provided by 3B (Hoeilaart, Belgium). They are listed as SE 2020 2400 dTex
and are expected to provide a tensile modulus of 81 GPa.

Table 1. Information of the samples.

Type Thickness (mm) Number of Layers Width (mm) Length (mm)

Neat resin 4 ± 0.06 -
15 65Longitudinal 1 ± 0.04 2

Transverse 4 ± 0.06 8

The relaxation of the specimens was measured with a 3-point bending test in a dy-
namic mechanical analyzer (DMA, Q800) from TA Instruments (New Castle, DE, USA) at
different temperatures. The fully cured specimens were tested at isothermal temperatures
ranging from 125 ◦C to 50 ◦C in steps of −5 ◦C. For each temperature step, an initial
displacement of 0.1% strain was applied and the stress relaxation was recorded for 60 min.
The relaxation modulus of the measured data according to the software’s internal manual
was calculated as:

E(t) = KS(t)·
L3

6I

[
1 +

6
10
∗ (1 + vP)

( z
L

)2
]

(39)

where Ks is the measured relationship between strain and force, L is the support width, z
is the sample thickness, I is the moment of inertia and vP is Poisson’s ratio. The support
width was chosen to be 50 mm.

2.5. Validation and Application on the Meso-Level/Ply Level

In order to validate the developed model, a virtual copy of the three-point bending
test was built, whose simulation results were compared with the experimental data from
the DMA. It consists of 896 elements of type C3D20R which is a 20-node quadratic brick.
As for the micromechanical models, the incremental formulations of the transversely
isotropic linear viscoelastic material behavior were implemented in a user subroutine. In
Figure 5, the meshing and typical stress distribution during load application are shown. The
derived relaxation stiffness of the virtual test was calculated as for the physical test using
Equation (39) and the displacement and total reaction force. The supports were modeled
by constraining the degree of freedom in a vertical direction. This is sufficient for the
consideration here since the modeling of nonlinear effects of the supports is not intended.
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Figure 5. Geometry and qualitative stress distribution of the implemented validation model. Virtual
copy of mechanical test setup. u denotes the applied deflection and Rf the reaction force in the middle
of the specimen.

3. Results

This section is structured to provide the best possible overview of the workflow carried
out: First, the experimentally generated data of the three-point bending test are presented,
divided into the measurement of the elastic modulus and the relaxation modulus. The data
from the pure resin sample are used to calibrate the RVE model. Because this paper focuses
on viscoelastic homogenization, the measured elastic modulus of the fiber-reinforced
samples is used for the calibration of the validation model, while the measured relaxation
modulus is used as the validation. In Section 3.3 the results of the RVE modeling are shown
and the form factors are derived. This is followed by the validation in Section 3.4.

3.1. Experimentally-Derived Elastic Modulus

In Figure 6 the storage and loss modulus of the dynamic DMA measurements of the
neat resin sample are presented. One can see that after an approximately linear decrease at
lower temperatures, the storage modulus drops dramatically, starting at about 110 ◦C.
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The corresponding result for the composite samples can be seen in Figure 7. While
the storage modulus in the longitudinal direction remains stable until a temperature up
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to 115 ◦C, the modulus in transverse direction shows a similar behavior as the neat resin
system. It is remarkable that the loss modulus of the material in the transverse direction
shows an increase even at lower temperatures.
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Figure 7. Measurement and fit of the storage and loss modulus of the UD-composite: (a) longitudinal;
(b) transverse.

In the rheological model, which was used to describe the relaxation behavior of the
neat resin, the elastic modulus is the sum of all springs of the generalized Maxwell model.
In order to derive an analytical description, a customized expression was fitted to the
measurement data. It consists of a linear part and a step function:

E′ = a + b·x +
c

1 + exp
(

T−d
e

) [MPa] (40)

The parameters obtained after fitting this expression by linear regression to the mea-
surement data are listed in Table 2.

Table 2. Fitting parameters of the composite’s elastic modulus.

Direction a b c d e

Neat 2.846 × 102 −7.105 2.936 × 103 1.301 × 102 6.385
Longitudinal 3.176 × 104 −6.417 9.770 × 103 1.252 × 102 4.027

Transverse 2.595 × 103 −45.14 1.548 × 104 1.217 × 102 8.583

The macroscopic model also requires a continuous description of the modulus of
elasticity. For this purpose, the data of the composite samples was fitted in the same way.
The resulting values are given in Table 2.

3.2. Experimentally-Derived Relaxation Modulus

The relaxation modulus of the neat resin system was measured at different con-
stant temperatures from 50 to 125 ◦C. The isotropic viscoelastic description presented
in Section 2.2 with two branches (M = 2) was fitted to the data using a linear regression
algorithm. The measurement data and the result of the fitting are shown in Figure 8.
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Figure 8. Comparison of the relaxation data and the relaxation model described by the continuous
temperature-dependent parameters.

The fitting of the isotropic viscoelastic description resulted in a set of values for the
parameters of the rheological model. They are shown in Figure 9. With increasing tempera-
tures, the material approaches a rubbery and liquid state, and the decay time, indicated
by the parameter ρi, decreases. Similarly, the amount of total relaxation increases, visible
in the increase of ratio of spring elements connected to a branch with a damper element
(k1/ktot resp. k2/ktot). ktot denotes the sum of all springs in the rheological model, which
was set to the same value as the modeled elastic modulus from the previous measurement.
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Figure 9. Resulting values of the element parameters of the rheological model after fitting to measure-
ment data. It shows the decay time ρi (a): branch 1, (c): branch 2 and the spring constant ki compared
to the sum of all spring constants ktot (b): branch 1, (d): branch 2.
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To validate the macroscopic model later, the relaxation behavior of the composite
material was measured. The result is shown in Figure 10. It can be seen that the relaxation
modulus in the fiber direction shows hardly any relaxation up to about 100 ◦C. At higher
temperatures, the relaxation modulus drops and reaches a level about 40% lower than
the elastic value at room temperature. The relaxation modulus in the transverse direction
shows a decrease at room temperature and continuously decreases at higher temperatures
up to a reduction greater than 95% at 125 ◦C.
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3.3. Results of RVE Homogenization

The normalized elements of the relaxation tensor Ψαβ obtained from the microme-
chanical model were compared with the behavior of the neat resin with Equation (26). The
resulting form factors at a reference temperature of 110 ◦C are shown in Table 3.

Table 3. Results for the form factor f (110 ◦C).

Index fαβ(tref)

Ψ11 2.307 × 10−2

Ψ22 3.592 × 10−1

Ψ44 9.161 × 10−1

Ψ66 6.250 × 10−1

Ψ12 6.453 × 10−3

Ψ23 1.342 × 10−1

In order to demonstrate the validity of the assumption that all elements Ψαβ can be
expressed in terms of G and a scalar value fαβ, the normalized relaxation tensor indices
were transformed with Equation (41) and plotted together with the neat resin reference in
Figure 11.

→
Ψαβ(t) :=

Ψαβ(t)− 1
fαβ

+ 1 (41)
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The largest relative deviation can be found for index
→
Ψ44 with 20% followed by index

→
Ψ66 with 10%. For all other indices, the maximum relative deviations are less than 2%.

3.4. Validation of Macroscopic Model

For an assessment of the quality of the relaxation model, the measured modulus and
the modeled relaxation modulus derived from a three-point bending test were compared.
The result is shown in Figures 12 and 13 in normalized form. The comparison in normalized
form was chosen in order to assess the quality of the relaxation model independent of the
quality of the elastic modeling.

Data for temperatures above 115 ◦C were excluded, since the normalized measurement
data do not show a trend towards increasing relaxation anymore. This can be explained by
the measurement setup, for which the fixed sampling rate was not fast enough to capture
the decay at the beginning of the measurement. This is indicated by the decrease in k2/ktot
in Figure 9.

The modeling in the longitudinal direction is in a good agreement with the measure-
ment data, while the modeling in the transverse direction can be seen to underestimate the
amount of relaxation.
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Figure 13. Comparison of the modeled and measured normalized relaxation modulus of the compos-
ite in the transverse direction.

4. Discussion

Although the approach of describing the response of the individual elements of the
stiffness tensor in terms of the behavior of the pure resin system and a scalar factor leads to
an error of less than 2% for most elements, a larger deviation of up to 20% can be seen for

the index
→
Ψ44 and

→
Ψ66. As a consequence, the model currently creates a maximum error for

shear deformation of about the same order of magnitude. The deviation could be caused
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by the setup of the boundary conditions for this load case which is visible in the uneven
surfaces of the 2–3 plane. This could be increased by the introduction of periodic boundary
conditions as described by [25] in detail, where also a user-defined material subroutine in
Abaqus was used.

The presented incremental method for the macroscopic time-dependent description of
fiber composite materials represents an efficient alternative to established methods for FEM
simulations. By introducing scalar form factors for the indices of the relaxation tensor, it
allows the use of Mx6 state variables instead of M × 36 to describe an orthotropic material.
This reduces the computational effort.

An increase of the accuracy of the model could be achieved by the introduction
of temperature-dependent form factors. Furthermore, in order to derive a continuous
description of the temperature dependency of the relaxation, the presented homogenization
is able to introduce the time-temperature superposition principle with the use of the reduced
time variable ξ. The time shift factors can be found by creating a master curve using the
experimental data in Figure 8.

Linear viscoelastic material behavior is only an appropriate assumption for some
polymers in the solid state at relatively low load levels. The higher the temperature, the
more the state of the polymer changes from the glassy to the rubbery state. In measurements
of the elastic modulus, an indicator of this change is the increase of the loss modulus. In
the measurements taken here, this was the case for the neat resin at about 115 ◦C (Figure 6),
for the composite in the longitudinal direction about the same (Figure 7), but in transverse
direction it can be seen that there is an increase of the loss modulus already at lower
temperatures which is an indicator for increased nonlinear behavior. This can be explained
by the strain amplification effect on the microlevel, which reaches of the elastic limit of
the material in some places at lower nominal load levels. One can assume that the strain
amplification effect is more pronounced in the transverse direction, since there are stiffness
jumps in the loading direction.

The strain amplification also changes the time-dependent behavior of the composite
from linear viscoelastic to non-linear viscoplastic behavior. This was especially pronounced
in the matrix-dominated directions (transverse), where the amount of relaxation in the
measurement—especially at higher temperatures—exceeds the model’s prediction which
assumes linear viscoelastic behavior. This means that the model provides a conservative
assessment of the residual stresses, which is generally required for engineering purposes.

5. Conclusions

An incremental form to describe the linear viscoelastic response of isotropic and
orthotropic materials was derived. Both forms were successfully implemented in an
incremental FEM analysis.

With the use of a representative volume element it was shown that in the case of
only one viscoelastic phase, the response of an element of the relaxation tensor can be
expressed in terms of a scalar factor and the response of the viscoelastic phase. In this
case, six form factors for a transversely isotropic material were derived. By inserting these
factors into the incremental form for an orthotropic material, the macroscopic description
of transversely isotropic material was converted to an extraordinarily easy form shown in
Equations (29), (30), (34) and (38). Since the form factors describe the deviation of an index
of the relaxation tensor of the composite in comparison with the neat resin, the impact of
the virtual parameter derivation can be assessed easily, which is beneficial for engineering
purposes. The result is a linear viscoelastic model with good handling and efficiency.

The model was validated through simulation of a three-point bending test and com-
paring the simulated results with the measurements in the longitudinal and transverse
directions of a unidirectional fiber-reinforced material. A promising agreement was shown
for up to 15 ◦C below the glass transition temperature. Since at these temperatures it was
seen that most of the stress relaxes and the decay times are small, the present model was
assessed to sufficiently describe the induced stresses of a typical manufacturing process of
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a thermoset material. Towards higher temperatures and, thus, increasing deviation of the
model from the measured relaxation modulus, the model assessment still stays conservative
due to the linear viscoelastic assumption, which is beneficial for component design.
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Nomenclature
α Degree of cure
β′ij Second-order tensor of relaxation moduli relating stress to thermal strain
Cijkl Fourth-order tensor of orthotropic relaxation moduli relating stress to mechanical strain
Cijkl∞ Response of stiffness tensor element after infinite time
Cijklm Value of mth Prony series element of stiffness tensor
E′ Storage modulus
E(t) Time dependent tensile modulus
E⊥ Tensile modulus in transverse direction
E‖ Tensile modulus in longitudinal direction
εd Deviatoric strain
εkl Cauchy strain
εvol Volumetric strain
fαβ Form factor, the normalized amount of relaxation compared to the neat resin
G(t) Time dependent shear modulus isotropic material
I Identity tensor
K Bulk modulus
k Maxwell model spring Parameter constant
KS Measured force divided by measured displacement
M Number of Branches of Maxwell Model
n Number of time step
ϕ Relation of spring element of rheological model to the sum of all spring elements
Ψkl Relaxation tensor element, special case of Cijkl for the case of a constant strain load
Ψαβ, G Normalized relaxation function (value at t = 0 is 1)
R Reuter matrix, transformation from index to Voigt notation
Rε Strain increment per reduced time
R f Reaction force
ρijklm Decay time of branch m, ratio of viscosity η and spring stiffness k
Sijklm State variable of branch m
σij Cauchy stress tensor
∆σR

ij Stress increment considering the change of stress due to linear viscoelastic behavior
T Temperature
∆Θ Temperature strain
xk Spatial position
ξn+1 Reduced time
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Appendix A

R is called the Reuter matrix:

R =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

2 0 0
sym 2 0

2

 (A1)

Furthermore, the identity matrix in Voigt notation becomes:

IV
α =



1
1
1
0
0
0

 (A2)

Appendix B

Table A1. Boundary conditions.

Ψ11 Ψ22 Ψ12 Ψ23 Ψ44 Ψ55

Xfront Ux = 0 Ux = 0 Ux = 0
Xback Ux = 0 Ux = 0 Ux = 0 Ux = 0 Ux = 0
Yfront Uy = 0 Uy = 0 Uy, Uz = 0 Ux,uy = 0
Yback Uy = 0 Uy = 0 Uy = 0 Uy = 0 Encastre Encastre
Zfront Uz = 0 Uz = 0 Uz = 0 Uz = 0 Uz = 0
Zback Uz = 0 Uz = 0 Uz = 0 Uz = 0 Uz = 0

Displacement Plane Xfront Yfront Xfront Yfront Yfront Yfront
Loading Direction X Y X Y X Y

Reaction Plane Xfront Yfront Yfront Zfront Yfront Yfront
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