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Abstract: Metaheuristic optimization techniques are widely applied in the optimal design of structural
members. This paper presents the application of the harmony search algorithm to the optimal
dimensioning of reinforced concrete circular columns. For the objective of optimization, the total cost
of steel and concrete associated with the construction process were selected. The selected variables of
optimization include the diameter of the column, the total cross-sectional area of steel, the unit costs
of steel and concrete used in the construction, the total length of the column, and applied axial force
and the bending moment acting on the column. By using the minimum allowable dimensions as the
constraints of optimization, 3125 different data samples were generated where each data sample is an
optimal design configuration. Based on the generated dataset, the SHapley Additive exPlanations
(SHAP) algorithm was applied in combination with ensemble learning predictive models to determine
the impact of each design variable on the model predictions. The relationships between the design
variables and the objective function were visualized using the design of experiments methodology.
Applying state-of-the-art statistical accuracy measures such as the coefficient of determination, the
predictive models were demonstrated to be highly accurate. The current study demonstrates a
novel technique for generating large datasets for the development of data-driven machine learning
models. This new methodology can enhance the availability of large datasets, thereby facilitating the
application of high-performance machine learning predictive models for optimal structural design.

Keywords: predictive modeling; optimization; structural design

1. Introduction

Structural optimization aims at designing structures with the best possible dimensions
that minimize cost without any impact on structural performance. In recent years meta-
heuristic optimization techniques have been increasingly applied to the optimization of
different structures such as cylindrical reinforced concrete walls [1,2], retaining walls [3–5],
plate girders [6], laminated composite plates [7–9], concrete-filled steel tubes [10,11], truss
systems [12], timber structures [13], and liquid mass dampers [14–16]. These algorithms
can be divided into evolutionary, physics-based, swarm-based, and population-based algo-
rithms [17–19]. A detailed classification of the state-of-the-art metaheuristic optimization
techniques can be found in Figure 1 [20–35]. Among the metaheuristic optimization al-
gorithms applied to structural optimization, the harmony search algorithm stands out as
one of the most widely used techniques. Besides structural optimization, the harmony
search technique has been applied to various areas of science and engineering such as trans-
portation engineering [36–39], environmental engineering [40,41], healthcare systems [42],
bioinformatics [43–45], and cloud computing [46].

Reinforced concrete (RC) circular columns have been used in broad applications in
structural engineering. The total amount of longitudinal reinforcement determines their
load-carrying capacity of them. Therefore, the accurate determination of the right amount
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of reinforcement in these structural members under axial forces and bending moments
bears the utmost importance. Figure 2 shows a general description of an RC circular column
where the lateral and longitudinal reinforcements can be seen. The outer diameter D and
the total length L describe the geometry of the column in addition to the longitudinal
reinforcement area As.
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Figure 2. Cross-section and longitudinal section of a circular RC column.

This paper presents a novel data-driven technique for the prediction of the area of
the longitudinal reinforcement (As) in RC circular columns. To this end, four different
ensemble learning algorithms have been utilized to obtain predictive models. The perfor-
mances of these algorithms in terms of predicting As accurately have been compared using
the coefficient of determination (R2), mean absolute error (MAE), and root mean square
error (RMSE) as the metrics of accuracy. The datasets needed to train these predictive
models have been generated using the harmony search algorithm such that each data
sample corresponds to an optimal design configuration that satisfies certain load-carrying
requirements defined by the design codes. A combination of axial force and the bending
moment was applied in each data sample. A dataset of 3125 samples was generated where
each sample consists of six input variables and the corresponding output variable. The
input variables in this dataset consist of the outer diameter of the column (D), the unit
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cost of concrete used in the construction (Cc ), the unit cost of steel (Cs), the total length
of the column (L), the bending moment acting on the column (M), and the axial force
acting on the column (N). The corresponding output variable is the optimal longitudinal
reinforcement area (As). These input variables were selected in order to have a description
of the geometry, material properties, and external loading for each data sample. In this
regard, the unit costs of concrete and steel quantify the material properties whereas the
column length and outer diameter describe the geometry corresponding to a data sam-
ple. To clarify the impact of each input variable on the output of the predictive models
and to show the dependencies between different variables, the SHAP algorithm has been
utilized. Furthermore, a four-level factorial analysis has been carried out to visualize the
variation of the output variable for the different levels of each input variable [47]. Based on
the dependencies of the input variables, a predictive equation has been proposed for the
reinforcement area. The equation has been developed using the harmony search algorithm
to minimize the difference between the predicted and true optimal reinforcement areas. An
R2 score of 0.998 could be achieved by the developed equation.

The current paper investigates the optimal design of circular RC columns under
combined loading, which is an area of structural engineering that has not been investigated
using data-driven machine learning techniques to the best of the authors’ knowledge. The
work related to failure mode classification and capacity prediction of RC columns using
an ensemble machine learning algorithm AdaBoost by Feng et al. [48] can be counted
among the recent machine learning-related research works in the field of conventional RC
columns. The ensemble learning algorithm was developed based on a data set consisting
of 254 data samples collected from cyclic loading tests. Also, Dogan et al. [49] investigated
the damage levels of RC columns under cyclic lateral loading conditions using machine
learning methods for classification such as support vector machines, K-nearest neighbors
and discriminant analysis. The machine learning models were trained on a set of 390
damage images. However, the research activity in the area of RC columns using machine
learning methods has been limited compared to other areas such as concrete columns
with fiber-reinforced polymer wrappings [50,51], or crack propagation and corrosion in
RC structures [52–54]. Nasrollahzadeh and Nouhi [50] proposed fuzzy inference system
models to predict the strength and strain capacity of square concrete columns wrapped with
fiber-reinforced polymer. Experimental data sets consisting of 261 and 112 test samples
were used for the prediction of compressive strength and ultimate strain respectively.
Naderpour et al. [51] utilized artificial neural network and gene expression programming
techniques to predict the compressive strength of columns confined with fiber reinforced
polymers based on a data set consisting of 95 data samples. However, despite the benefits
of using composite materials as reinforcement or confinement for columns reported in the
literature, the overwhelming majority of new constructions and existing infrastructure rely
on conventional reinforced concrete.

One of the reasons for the lack of machine learning related research in the field of RC
columns is the difficulty of obtaining large datasets. Machine learning-based predictive
models need to be trained using large and comprehensive data sets in order to be relevant
in general-purpose structural design. On the other hand, experimental research in the
field of RC members is generally costly and experimental programs usually deliver a
limited number of data points. Therefore, alternative techniques need to be devised for the
training of machine learning models in order to use these powerful techniques in the field
of RC design.

An important current issue in previous literature pertaining to machine learning
applications in structural engineering is the size of the data sets used during the model
training process. Evidently, most studies in this field depend on data sets with less than
a thousand data samples. However, the reliability of a machine learning model heavily
depends on the size and quality of the data used in its training. The aim of the current
study is to present a methodology for the generation of large datasets related to the optimal
design of RC columns. The novelty of this current work shows the applicability of newly
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developed techniques of artificial intelligence to the design process of RC columns. The
availability of quality data is a major requirement in this process. However, large datasets
are needed for the development of accurate predictive machine learning models, which
is one of the limiting factors in the process of machine learning model development.
The current paper proposes a novel technique for the generation of large datasets. This
technique is highly valuable since it can remove one of the major bottleneck points in the
application of machine learning techniques to structural design.

2. Dataset Generation and Analysis

A large dataset consisting of 3125 unique configurations has been generated with
the help of the harmony search optimization algorithm. Each sample in this dataset
corresponds to a design configuration that minimizes the total cost associated with the
construction process while keeping the load-carrying capacity above a certain level. To this
end, the axial load and moment capacities were kept above the applied load which can be
described in Equation (1):

φPn ≥ Pu, φMn ≥ Mu (1)

In Equation (1), Pu and Mu are the applied loads, Pn and Mn are the nominal strengths
of the column cross-section, and φ is the strength reduction factor. This process starts
with the generation of a randomly populated harmony memory matrix (HM) as shown in
Equation (2) where f denotes the cost function, HMS is the size of the solution candidate
population, Vc and Ws are the total volume of concrete and the total weight of steel
respectively and xi is a solution candidate vector containing the variables Di, Ci

c, Ci
s, Li, Mi,

Ni, Ai
s. The cost function f determines the performance of each population member and

the solution candidates can be ranked accordingly.
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(
xi) = (Cc)
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iWs

(2)

In Equation (2), Ci
c, Ci

s, Li, Mi, Ni, and Ai
s stand for the concrete cost per unit volume,

steel cost per unit weight, length of the column, bending moment, axial force and the
total area of the longitudinal reinforcement in the i-th solution candidate respectively.
The harmony search technique obtains an optimum solution that minimizes the total cost
by an evolutionary process in which the solution candidates improve incrementally and
eventually converge to an optimum solution. The evolutionary process of incremental
improvement of the harmony memory matrix can be described in Equations (3)–(6).

k = int(rand ·HMS), rand ∈ (0, 1) (3)

xi,new = xi, min + rand · (xi, max − xi, min), if HMCR + rand (4)

xi,new = xi,k + rand · PAR · (xi, max − xi, min), if HMCR + rand (5)

HMCR = 0.5
(

1− i
max(i)

)
, PAR = 0.05

(
1− i

max(i)

)
(6)

In Equations (3)–(6), HMCR, PAR, xi, min and xi, max stand for the harmony memory
consideration rate, the pitch adjustment rate, the minimum and the maximum values of the
i-th input variable in the population respectively. After each harmony search iteration, the
updated solution candidates replace the old ones if they have superior performance and
satisfy the structural design code requirements. For a more detailed review of the harmony
search technique, the reader is referred to [55].

The variable ranges of the dataset generated using the harmony search algorithm can
be seen in Figure 3 and Table 1. In Figure 3, the variable ranges have been divided into
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four partitions and the ranges of these partitions have been shown on the horizontal bars
whereas the number of samples in each partition is shown inside the horizontal bars. The
length of each partition in Figure 3 is in proportion to the number of samples belonging to
that partition. Figure 3 shows that the largest partition for the outer diameter D consists
of 1213 samples ranging between 0.574 m and 0.661 m. The second largest partition for
this variable with 1000 samples ranges between 0.661 m and 0.747 m. The remaining two
partitions ranging between the lower bound of the outer diameter of 0.4 m and 0.574 m
constitute 29% of the entire dataset. The partitions for the variables Cc, Cs, L, M, and
N are evenly distributed. The largest partition for the column length L consists of 1250
samples ranging between 3 m and 4 m, which is 40% of the entire dataset. The horizontal
bars for Cc and Cs in Figure 3 show the unit prices of concrete and steel in USD/m3 and
USD/ton respectively.
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Table 1. Variable ranges and statistical properties.

Variable
Min Max Average Standard Deviation Variance

Actual Normalized Actual Normalized Actual Normalized Actual Normalized Actual Normalized

D [m] 0.4 0.647 0.747 1.209 0.618 1 0.087 0.141 0.0076 0.02
Cc

[USD/m3] 50 0.5 150 1.5 100 1 35.4 0.354 1250 0.125

Cs
[USD/ton] 750 0.6 1750 1.4 1250 1 354 0.283 125,000 0.08

L [m] 3 0.6 7 1.4 5 1 1.41 0.283 2 0.08
M [kNm] 100 0.333 500 1.667 300 1 141 0.471 20,000 0.222
N [kN] 1000 0.333 5000 1.667 3000 1 1414 0.471 2,000,000 0.222

As [mm2] 1385 0.447 4524 1.459 3101 1 799 0.258 639,080 0.067

Table 1 includes the upper and lower bounds as well as statistical properties of the
design variables represented in the dataset. These statistical properties are the average
value, standard deviation, and variance of each variable inside the dataset. Furthermore,
for each variable, the corresponding boundaries and statistical properties have been listed
after normalizing the variables by their average values. These normalized values are used
at a later stage for the development of a predictive equation. Also, the partitions presented
in Figure 3 are used as the basis of a four-level factorial analysis to determine the variation
of As for each design variable. In addition to the partition plot in Figure 3, also a correlation
plot has been generated for the dataset (Figure 4). For each input variable and the output
variable As, Figure 4 shows the Pearson correlation coefficient between any two of these
variables in the upper right portion of the diagram. Pearson correlation values close to
1 indicate a high correlation between two variables. The highest correlation coefficient
in Figure 4 can be observed between As and D which indicates that the outer diameter
has a significant impact on the reinforcement area. The second highest correlation can be
observed between As and N with a Pearson correlation value of 0.79. Another relatively
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high correlation is observed between D and N with a correlation value of 0.77. Finally, the
column length L is correlated to As and D with correlation coefficients of 0.53 and 0.54
respectively. Greater correlation between variables is represented by larger font size and
stars inside the tiles of the matrix. In Figure 4, each variable occupies one of the diagonal
tiles and the scale of this variable is shown in one of the horizontal axes and one of the
vertical axes. Furthermore, each diagonal tile contains a histogram showing the distribution
of the variable in it. The lower left portion of the correlation matrix contains bivariate scatter
plots with regression lines. The equation for the computation of the Pearson correlation
coefficient as well as the other metrics of accuracy used in this paper can be found in
Appendix A.
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Using the dataset whose properties have been shown in Figure 3, Table 1, and Figure 4,
four different data-driven predictive models have been trained using the ensemble learning
algorithms XGBoost, LightGBM, Random Forest, and CatBoost. The results of them and
their interpretations using the SHapley Additive exPlanations (SHAP) technique have
been presented in the next section. The theoretical background of ensemble learning and
SHAP algorithms can be found in [3,56–62]. In addition to the SHAP analysis also, a
four-level factorial analysis has been carried out to further investigate the sensitivity of
As to the variations in different design variables. Afterward, a closed-form equation has
been proposed for the prediction of As as a function of the six design variables shown in
Figures 3 and 4. The overall process of dataset generation, training of the machine learning
models, and the development of a predictive closed-form equation have been summarized
in a flow chart in Figure 5.
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3. Results

This section presented the comparison of the optimal reinforcement areas predicted
by the ensemble learning algorithms with the true optimal values obtained through the
harmony search algorithm. The performances of each predictive model have been measured
by the metrics of the coefficient of determination, mean absolute error and root mean
squared error. The outcome of the ensemble learning models has been analyzed with
the SHAP algorithm to determine the variables with the highest impact on the model
predictions. Furthermore, a four-level factorial analysis has been performed to visualize
the variation of the optimal reinforcement cross-section for each input variable. Based
on the outcome of the SHAP and factorial analyses, a predictive equation format has
been proposed. This predictive equation has been developed using the harmony search
algorithm, and the accuracy of the obtained equation has been demonstrated by the same
accuracy metrics applied to the ensemble learning models.

3.1. Ensemble Learning Model Predictions

The ensemble learning models have been trained by splitting the entire dataset into
a training set and a test set in 70% to 30% proportions. This division was made based on
past machine learning studies in the area of structural engineering. Particularly, the study
of Nguyen et al. [63] demonstrated that among the 10/90, 20/80, 30/70, 40/60, 50/50,
60/40, 70/30, 80/20, and 90/10 training set to test set ratios, the 70/30 ratio delivered
the best performance. The models have been trained on the training set using ten-fold
cross-validation. After the completion of the model training, the test set was used to
measure the model performances. The performances of the ensemble learning models
have been visualized by plotting the true optimal As values of the test set against the
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As values predicted by the ensemble learning models. Figure 6 shows the comparison
of the predicted and actual optimal As values for each of the four predictive models. In
Figure 6, the diagonal solid lines represent the case when the actual and predicted values are
equal, whereas the dotted lines represent ± 10% deviation from a perfect prediction. The
performances of these predictive models are compared to each other in Table 2. According
to Table 2, the Random Forest algorithm demonstrated the best performance in terms of
both prediction accuracy on the test set and the speed of execution (3.71 s).
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Table 2. Prediction accuracy of the machine learning models.

Algorithm Variable
R2 MAE RMSE

Duration [s]
Train Test Train Test Train Test

XGBoost As 0.9999 0.9995 1.998 7.523 3.839 17.072 5.14
Random Forest As 0.9999 0.9996 2.593 7.111 6.095 15.929 3.71

LightGBM As 0.9994 0.9988 9.962 12.767 19.673 27.157 6.07
CatBoost As 0.9998 0.9994 7.579 10.788 12.440 18.940 28.23

3.2. SHAP Analysis

The SHAP analysis visually describes the contribution of each design variable to the
prediction of a machine learning model. The SHAP summary plot and feature dependence
plots in this section are based on the Random Forest algorithm selected due to its superior
performance on this dataset. The SHAP summary plot in Figure 7 ranks the six input
variables according to their impact on the predictive model output. In Figure 7, each data
sample is represented by a dot and positive SHAP values indicate an increasing effect of a
variable on the model output whereas negative SHAP values indicate a decreasing effect on
the model output. The impact of a variable on model output for a particular data sample
is a function of the position of a dot along the horizontal axis. On the other hand, the
numerical values of the input parameters are represented with color so that high parameter
values are shown with shades of red and the low parameter values are shown with shades
of blue. According to Figure 7, the outer diameter D has the greatest impact on the model
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output. It can be deduced that an increase in the value of D also leads to an increase in the
model prediction. Conversely, decreasing the D value leads to lower model predictions.
On the other hand, the impacts of the remaining parameters on the model output are an
order of magnitude smaller than the impact of D according to Figure 7.
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The feature dependence plots in Figure 8 can help better understand the interdepen-
dencies between different variables and their effects on the model output. Figure 8a clearly
shows that as the D value increases, so does the SHAP value for this variable. This confirms
the inference from Figure 7 that increased D values lead to increased reinforcement area.
The colors of the dots in Figure 8a indicate the numerical values of Cc which is the variable
most dependent on D. On the other hand, the feature dependence plots of Cc, Cs and L
show that the SHAP values of these variables have a horizontal trend as the variable values
increase. For these three variables, most of the SHAP values stay in the range of −5 to 5 for
the entire dataset. For a significant portion of the dataset, the SHAP values are clustered
around zero. Also, for all three of these variables, N is the variable most dependent on them.
The feature dependence plots of M and N exhibit certain patterns for different levels of these
variables. Figure 8e,f show that the feature dependence plots for M and N are fragmented
and can be investigated separately for different levels of these variables. For each value
of M and N, the SHAP values of these variables are concentrated around different levels
depending on the value of D which is the parameter most dependent on M and N. It can
be observed that M has the greatest impact on the model output when M = 3× 108Nmm
and D have large values shown in red and the least impthe act when M = 108Nmm and D
have small values shown in blue. Similarly, N has the greatest impact when N = 106N and
D have small values shown in blue and the least impact when N = 3× 106N and D have
large values shown in red.
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3.3. Four-Level Factorial Analysis

The factorial analysis technique is widely used for gaining insights into the response
and sensitivity of a system that depends on multiple variables to the variations in a single
variable. The factorial analysis technique is particularly useful when the variables of
a system can be broken down into different levels. In this paper, the cross-section of
reinforcement is predicted as a function of six variables. Each of these variables has been
broken down into four levels as shown in Figure 3. The four-level factorial analysis enables
the visualization of the nonlinear variations in the target variables or curvatures in the
system response [64]. Afterward, for each level of each variable, the average value of the
area of reinforcement has been calculated. These average values are plotted for different
levels of each variable in Figure 9. A significant variation of As in Figure 9 with respect
to changes in a certain variable indicates the high sensitivity of As to the changes in this
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variable. According to Figure 9, the greatest change in the value of As is observed when D
increases from its lowest level (level 0) to its highest level (level 3). A total increase from
1641 mm2 to 3993 mm2 can be observed which corresponds to a 143% increase. The second
largest increase in the average value of As can be observed when N increases from its lowest
level to its highest level. In this case, the increase of the area from 2459 mm2 to 4119 mm2

can be observed which corresponds to a 68% increase. The third largest percentage-wise
increase in the average As value can be observed when M increases from its lowest level
to its highest level. An increase from an average area of 2661 mm2 to an average area of
3750 mm2 can be observed which corresponds to a 41% increase. For the remaining three
variables Cc, Cs and L, the changes in the average value of As was negligible in comparison
to D, N, and M.
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3.4. Development of an Equation for the Prediction of the Optimum Reinforcement Area

In light of the results presented in the previous sections, the formula in Equation (7)
has been proposed for the prediction of the reinforcement area in an optimal design. In
Equation (7) the variables Âs, Ĉc, M̂, N̂, D̂, L̂, Ĉs are normalized by the average value of each
variable in the dataset consisting of 3125 samples.

Âs = a0 + a1

(
Ĉa2

c + M̂a3 + N̂a4
)
· D̂a5 + a6

(
L̂a7 + Ĉa8

s

)
· N̂a9 (7)

The coefficients a0 to a9 in Equation (7) have been adjusted using harmony search
iterations. This process necessitates the declaration of a new harmony memory matrix that
contains the coefficients of Equation (7) as shown in Equation (8) where the population
consists of 30 different solution candidates.

HM =
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0
a2

0
...

a30
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...

a30
3
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4
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a30
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a2
5
...

a30
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...

a30
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7
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7
...

a30
7

a1
8
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8
...

a30
8

a1
9

a2
9

...
a30

9

 (8)

After every harmony search iteration, the performances of the solution candidates
are measured by comparing their predictions of Âs with the actual Âs values for the entire
dataset. The prediction error is represented by the Euclidean norm of the vector containing
the differences between the actual and predicted optimal Âs values. The development of
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these vector norms for the best- and worst-performing members of the harmony memory
population is presented in Figure 10.
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Figure 10. Equation performance throughout the harmony search iterations.

A total of 5000 harmony search iterations was carried out to obtain the best possible
equation coefficients with the smallest possible error norm. Figure 10 shows the develop-
ment of the best and worst solution candidates in the initial 200 iterations. It should be
noted that the largest improvements in the solution candidates take place during the initial
phases of the harmony search iterations. Figure 11 shows the process of obtaining the
coefficients a0 to a9 that minimize the difference between the optimal Âs values predicted
by Equation (7) and the actual optimal Âs values.
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Figure 11. Development of the equation coefficients in Equation (7).

Figure 11 shows the values of the coefficients a0 to a9 in the first 500 harmony search
iterations. The coefficient values corresponding to the best- and worst-performing members
of the harmony memory population are shown in blue and red respectively. It can be
observed that after the initial fluctuations, these coefficients tend to converge to their
optimal limit values. Inserting these limit values of the coefficients a0 to a9 in Equation
(7), we obtain Equation (9) for the prediction of the normalized reinforcement area Âs
from which the actual reinforcement area As can be obtained after multiplication with the
average value of As from Table 1.

Âs = −0.013 + 0.3
(

Ĉ0.00218
c + M̂0.00968

+ N̂0.02997
)
· D̂2.1398

+ 0.04424
(

L̂0.0072
+ Ĉ−0.0048

s

)
· N̂−0.1228 (9)

A coefficient of determination of 0.9985, mean absolute error of 0.0076, and root mean
square error of 0.0099 could be achieved using Equation (9). The Âs values predicted by
Equation (9) are plotted against the actual Âs values in Figure 12 where the dotted lines
indicate the ±10% deviation from a perfect match between the predicted and actual values.
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4. Discussion

Circular RC columns are ubiquitous in the structural design of buildings, bridges,
and ports. Therefore, the optimal design of these structural members can have enormous
economic and environmental benefits. This paper demonstrates the applicability of machine
learning models to the structural optimization of RC circular columns. The total cross-
sectional area of the longitudinal reinforcement was selected as the decisive parameter in
the design of these structures. A novel technique has been applied in the training phase
of these machine learning models. The harmony search algorithm was used to generate
a large dataset consisting of 3125 samples where each sample represents an optimum
configuration of column geometry and external loading. XGBoost, LightGBM, Random
Forest, and CatBoost algorithms are used to generate four different ensemble learning
predictive models. The performances of these models have been compared using the
coefficient of determination (R2), mean absolute error (MAE) and root mean squared
error (RMSE) as the metrics of accuracy. It was found that the Random Forest algorithm
performed better than the other three ensemble learning algorithms in terms of both the
accuracy of predicted optimal cross-sectional areas and the computational speed. However,
it should be noted that all ensemble learning algorithms demonstrated high accuracy with
an R2 score greater than 0.99. On the other hand, the execution speed of the CatBoost
algorithm was significantly slower than the remaining three algorithms. The output of
the Random Forest algorithm has been further analyzed using the SHAP algorithm to
better understand the impact of each input variable on the model prediction and the
interdependencies between the input variables. Furthermore, a four-level factorial analysis
has been carried out to visualize the sensitivity of the reinforcement cross-sectional area
(As) to various input parameters.

The results of the four-level factorial analysis showed that the column diameter and
applied external loads largely determine the cross-sectional area of steel reinforcement
necessary for a safe design. The outer diameter of the column was also singled out by the
SHAP summary plot as the most impactful design variable that determines the output of
the random forest model. The outcome of the SHAP analysis and the factorial analysis can
be interpreted as the external loading and column size being an order of magnitude more
significant than the unit costs of steel and concrete in terms of their effect on the necessary
amount of reinforcement.

In the design of a predictive equation, both the factorial analysis and the SHAP feature
dependence plots have been decisive. In addition to a bias term, the predictive equation
consists of two other terms. The first term after the bias term is chosen to be a product of the
normalized diameter with the sum of the three parameters most dependent on D according
to the feature dependence plots. The second term is chosen to be a product of the axial load
with the sum of the normalized values of the two design variables most dependent on the
axial load. In order to capture the nonlinear variations in the optimum reinforcement area,
each term in the equation was raised to a power and multiplied by a coefficient. Afterward,
the optimal coefficient values were determined through harmony search optimization. A
coefficient of determination greater than 0.99 could be obtained by the predictive equation
thus developed. However, it should be noted that more comprehensive studies including
a larger number of design variables and greater ranges for the variable values should be
performed to enhance the reliability of the developed equation.

Since machine learning techniques are data-driven, the applicability of these tech-
niques to structural design depends on the availability of quality datasets. Furthermore,
the accuracy of the obtained predictive models depends largely on the size of the dataset.
However, most of the recent machine learning related research in the field of structural
engineering is based on data sets not large enough to be statistically significant. This issue
is being addressed in this study by proposing a harmony search-based novel technique
for generating large data sets. The application of the harmony search methodology to the
problem of data generation can solve the problem of limited data availability in structural
engineering. Using optimization techniques such as harmony search, large datasets can
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be generated where the structural performances of the generated optimal samples are
controlled according to the requirements in the existing design codes.

5. Conclusions

The performance of any predictive model depends mostly on the size and quality
of the dataset used in its training. The current paper demonstrated a novel technique
for the generation of large datasets using the harmony search optimization methodology.
The generated dataset was used in the prediction of the optimal amount of longitudinal
reinforcement for circular RC columns. Four different ensemble learning models were
demonstrated to perform well in the prediction process. Furthermore, a closed-form equa-
tion was proposed that predicts the optimal amount of reinforcement that minimizes the
cost associated with the construction process without violating the design code require-
ments. The most important results of this research work can be listed as follows:

• Four different machine learning models were developed using the XGBoost, Light-
GBM, Random Forest, and CatBoost algorithms. All of these algorithms performed
well on the dataset with an R2 score greater than 0.99. Among these models, the Ran-
dom Forest algorithm performed best in terms of both accuracy and computational
speed whereas the CatBoost algorithm was nearly an order of magnitude slower than
the rest of the algorithms.

• The results of the SHAP analysis showed that the outer diameter of the circular column
has the greatest impact on the machine learning model predictions. The impacts of the
applied axial loading (N) and bending moment (M) were found to be dependent on
the value of D. At smaller values of D, N was shown to have a larger impact on the
model output.

• After dividing the dataset into four segments for each variable the four-level factorial
analysis showed that a 59% increase in the outer diameter can lead to a 143% increase
in the optimal value of As. As was also found to be highly sensitive to variations in
N and M. Doubling the magnitude of N was observed to cause a 68% increase in the
optimal value of As whereas doubling the magnitude of M led to a 41% increase in the
optimal value of As.

• A closed-form equation with an R2 score of 0.9985 was proposed which predicts the
optimal value for As as a function of column outer diameter, axial loading, bending
moment, column length, and the unit prices of concrete and steel.

The availability of closed-form equations that deliver optimal dimensions for structural
design can greatly facilitate and accelerate the design process for practicing engineers. With
the help of these equations, the most favorable design combinations can be obtained
without the need for complex optimization methodologies. However, it should be noted
that the proposed equation and machine learning models in this paper are limited by the
range of variables that constitute the dataset. Therefore, further research needs to be carried
out for the development of more comprehensive predictive models. Furthermore, the scope
of the variables included in the dataset could be enhanced to include variables such as
the number and diameter of longitudinal reinforcing bars. In its current form, the output
of the predictive equation could be evenly distributed to determine the area and a total
number of the longitudinal reinforcing bars. Also, the spacing and dimensions of the lateral
reinforcements can be included in the database. Future research towards the design of RC
columns using machine learning methodologies can include composite materials such as
carbon fiber or glass fiber reinforced polymers as the material of reinforcement.
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Appendix A

In Table A1, xi and yi denote the values of two different data series,
~
yi denotes the

predicted values of the data series yi, and n is the total number of data points in the series.

Table A1. Metrics of Model Accuracy.

Root mean square error (RMSE) RMSE =

√
∑n

i=1(yi−
~
yi)

2

n

Coefficient of determination (R2):

R2 =
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n ∑n
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~
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i=1 yi ∑n
i=1
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Mean absolute error (MAE): MAE =
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Pearson correlation coefficient:
rxy =
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2
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