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Abstract: The present work is focused on developing Ti-xTa porous alloys processed by the space
holder method and solid-state sintering. The volume fraction of Ta ranged between 20 and 30 wt.%.
The sintering kinetics was evaluated by dilatometry tests. Sintered materials were characterized by
SEM, XRD and computed tomography. Porosity features and permeability were determined from
3D images, and their mechanical properties were evaluated from microhardness and compression
tests. The sintering behavior and the final microstructure are driven by the Ta diffusion into the
Ti, slowing down the densification and modifying the transition temperature of α-to-β. Due to
β-stabilization, martensite α′ was obtained after sintering. Mechanical properties are reduced because
of the β-stabilization and pore addition, being predominantly the pore effect. Permeability depended
on the pore characteristics, finding values close to the human bones. It was concluded that powder
metallurgy generates highly TixTa alloys with a combination of α, β and α′ Ti phases as well as
remaining Ta particles that are beneficial to improve the biocompatibility and osseointegration of
such materials. Being the Ti25Ta40salt alloy the most suitable for orthopedic implants because of its
characteristics and properties.

Keywords: sintering; microstructure; Ti-based composites; porous; microtomography

1. Introduction

Titanium (Ti) is a material with excellent mechanical and structural characteristics, such
as high specific resistance and fracture toughness, fatigue, and crack propagation, as well
as good corrosion resistance. Due to its relatively low density compared to other structural
materials, titanium can be classified as a lightweight material. These properties, along with
its good biocompatibility, make titanium a great choice for biomedical applications [1,2].
Nowadays, a lot of Ti alloys can be found, among them, the most used for orthopedic
applications is the Ti-6Al-4V alloy, due to its low density, resistance to corrosion and
relatively low stiffness [3]. There are different techniques to fabricate Ti alloys with complex
geometries at low costs, such as Hot Pressing [3], Spark Plasma Sintering [4,5] selective laser
melting [6], among others [7], leaving aside the conventional casting process. However,
these techniques present an incomplete diffusion of alloying elements, namely Ta, Zr, Nb,
Sn, Fe, Mo, Ni among others [8,9]. On the contrary, the conventional powder metallurgy
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(PM) technique is a process that helps to prevent this problem while allowing, to obtain
complex parts at low costs, and with the possibility to control the mechanical properties
through the sintering parameters [10,11]. In order to improve the titanium properties, the
fabrication of titanium matrix composites (TMCs) has been largely developed as reported
by JeJe et al. [12]. Most of the TMCs are developed to improve the mechanical properties,
however, for biomedical applications this is not desirable. On the other hand, TMCs
reinforced with hydroxyapatite were studied to successfully improve the osseointegration
properties of the titanium and its alloys [13]. Notwithstanding the benefits of TMCs, their
mechanical properties remain high in comparison to those of human bones.

The optimization of properties of Ti and its alloys depends on the control of the
final microstructure and therefore, the stabilization of its phases such as α-Ti, α + β and
β-Ti [5,9]. The mechanical properties of these alloys depend on the presence of several
phases, which can be controlled by material processing and optimized alloy design [14]. It
was reported a large strength improvement for bimodal grain size microstructure. Such
characteristics can be obtained via powder metallurgy by mixing the initial particle sizes.
This strengthening in pure Ti and Ti6Al4V alloy was due to a uniform distribution of the
deformation between the fine and coarse grains, resulting in higher strength with a small
decrement in the ductility [15,16]. The selection of Ti for implants application is determined
by the combination of more favorable characteristics including corrosion resistance, low
elastic modulus and superior biocompatibility. The lower elastic modulus in β-Ti alloys
compared to stainless steel is a positive factor in reducing bone resorption [17]. β-Ti alloys
have lower elastic modulus and present better formability and corrosion resistance than the
α-Ti and α + β alloys [13,18,19]. Another advantage of β-Ti alloys is the possibility of the
martensitic type transformations β→ α′ or β→ α” between their metastable phases [13,20].
These alloys show low elastic modulus, shape memory behavior and super elasticity, which
favors their applications in the biomedical field [9]. Due to that, research has been carried
out on new β-Ti alloys whose microstructure can be tuned by the addition of different
β-stabilizers elements [20,21].

Currently, one of the most suitable β-Ti forming materials for biomedical applications
is Tantalum (Ta) since it has been shown to improve the biocompatibility and cytocompati-
bility of the Ti [22–24]. Furthermore, it was found that human stem cells can grow faster
on a Ta surface than on a Ti surface, which is important for the patient recovery [25–27].
Ti-xTa alloys fabricated by several means including casting, selective laser melting and
conventional sintering have been the target of some investigations due to their combination
of properties such as high corrosion resistance and low elastics modulus [23,24]. It has
been reported that the addition of Ta up to 30 wt.% generates a decrease in the elastic
modulus, however, adding more Ta may cause the opposite effect [24]. The effect of Ta
addition into a Ti matrix by the laser fusion technique has been investigated, it was found
that the difference between the melting points of Ti and Ta, besides the relatively low
diffusion coefficient of Ta, represent a difficulty when trying to completely combine both
elements since Ta tends to segregate during solidification [24–26]. However, the study of
the solid-state diffusion phenomena of Ti-Ta alloys by powder metallurgy has received
less attention. The conventional PM method involving powder pressing and solid-state
sintering remains one of the best techniques for producing complex parts with controlled
mechanical properties [10,28]. In the PM technique, the possibility of using mixtures of
elemental powders has great advantages in comparison with pre-alloyed powders, such
as low costs, possibility of manufacturing in required complex shapes, and feasibility
to combine the composition. Besides that, by means of PM, it is possible to control the
elemental diffusion during sintering [29]. However, sintering conditions must be carefully
controlled to avoid heterogeneous composition in the final parts.

In spite that Ta addition in Ti alloys significantly reduces the elastic modulus, it is
still high in comparison to that of human bones, which generates the effect known as
“stress-shielding”. To avoid these phenomena that leads to the failure of bone implants,
highly porous materials called scaffolds have been developed [3,11,27,30]. A porous bone
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implant can appropriate consider some characteristics of biocompatibility, surface suitable
to facilitate the adhesion of bone cells, an interconnected porosity for cell growth and
transport of nutrients and finally the mechanical properties to meet the requirements of
anatomical load avoiding the effect of stress-shielding [7]. Although additive manufactur-
ing (AM) provides an excellent processing route to fabricate scaffolds, it is very expensive,
and fabrication of Ti-Ta alloys is complicated because it implies the local fusion of particles.
Thus, the space holder technique offers a less expensive route to obtain highly porous
materials of Ti-Ta alloys, as it was shown by Garnica et al. that fabricated highly porous
Ti6Al4V/xTa materials [31].

The aim of this work is to evaluate the addition of Ta particles into a pure Ti matrix and
then, add different volume fractions of salt particles as space holders to create large pores.
The sintering kinetics is determined by dilatometry tests and the resulting microstructure
is observed by scanning electron microscopy (SEM) and X-ray diffraction. The distribution
of the Ta and pores in the alloys is observed in 3D by X-ray microtomography. The
mechanical properties of the different materials fabricated are evaluated by microhardness
and compression tests.

2. Materials and Methods
2.1. Sample Preparation

Spherical Ti powders (Figure 1a) with particle size distribution less than 20 µm pro-
duced by Raymor, Quebec, Canada, were mixed with Ta powders (Figure 1b) of irregular
shape and similar particle size distribution furnished by Sigma-Aldrich Co. (St. Louis,
MO, USA), which were used as reinforcement. Irregularly shaped particles of ammonium
bicarbonate ((NH4) HCO3) with a particle size distribution ranged 300–500 µm, furnished
by Alfa Aesar, Tewksbury, MA, USA, were used as space holders to create large pores
(Figure 1c).
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Figure 1. Micrographs of the used powders; (a) Ti; (b) Ta; and (c) ((NH4) HCO3).

Fabrication of samples consisted of two methodologies to generate parts with and
without additional porosity. First, Ti powder was mixed in a turbula for 30 min in dry
conditions with 20, 25 and 30 wt.% of Ta, respectively. Next, 1 wt.% of polyvinyl alcohol
(PVA) was added as a binding for increasing the green compact resistance. After, the
mixture was poured into an 8 mm diameter stainless steel die and pressed with a pressure
of 500 MPa using an Instron 1150 universal machine to obtain cylindrical parts with
approximately 12 mm height.

Likewise, in fabrication of samples with large pores, 30 and 40 vol.% of ammonium
bicarbonate particles were added to the Ti-xTa mixtures and then, they were mixed in the
turbula at the same conditions. After that, it was also added 1 wt.% of the PVA. Next, the
same pressing procedure above described is followed. In order to eliminate the ammonium
bicarbonate particles, the green compacts are introduced into a horizontal furnace at 180◦

during 4 h under Ar atmosphere before sintering.
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Finally, all samples with or without additional porosity were sintered in a vertical
dilatometer Lienseis L75V at 1260 ◦C with an isothermal time of 1 h maintaining a high
purity argon atmosphere.

2.2. Microstructural Characterization

The sintered samples were cut and metallographically prepared by grinding and
polishing with SiC paper and alumina suspension to achieve a mirror-like surface finish.
The polished surfaces were subjected to X-ray diffraction tests (XRD) by using a PANalytical,
Almelo, The Netherlands empirical diffractometer for the evaluation of the crystal structure
obtained after sintering. The XRD standards were obtained using copper K alpha radiation
with an energy of 30 kV and 30 mA, with a step of 0.2 and a time of 1 s per step in the
range of 30–80◦. Next, the polished surfaces were observed under a Tescan MIRA 3 LMU
scanning electron microscope, SEM.

To evaluate the samples containing large pores, 3D images were acquired by com-
puted microtomography (CMT) with a Zeiss Xradia 510 Versa 3D X-ray microscope. The
beam intensity was 120 kV, which was enough to pass through Ti-xTa samples of 8 mm
diameter. 1600 projections were recorded around 360◦ of the sample with a CCD camera
of 1024 × 1024 pixels. The resulting voxel size was around 12 µm, which is enough to
observe the whole sample. This resolution allows us to perform an analysis of the large
pores created with the ammonium bicarbonate particles. Quantitative data of 3D images
are obtained, after the initial gray level; images were transformed into binary ones by
using manual thresholds constrained with the global relative density that was previously
measured from mass and volume. In the obtained binary images, the solid phase repre-
sented by a voxel intensity of 255 and the pore phase by a voxel intensity of 0. This was
achieved straightforwardly thanks to the strong contrast between both phases. Quantitative
data of the porosity such as pore volume fraction, pore size distribution and channel size
distribution were obtained following the image analysis explained elsewhere [32].

2.3. Permeability Evaluation

The flow properties of porous samples were determined by numerical simulations
of permeability performed by using Avizo® software version 2021 on the 3D binary im-
ages of samples with large pores. Before running the numerical simulations, the mini-
mum representative volume (MRV) was defined by cropping the image in small cubes
(20 × 20 × 20 voxels) at the center of the image and then, the relative density for that
volume was calculated. These operations were repeated by increasing the size of the
cube by 20 voxels per side until an almost constant relative density was reached, as
proposed by Okuma et al. [33]. The minimal volume is useful to save time and computa-
tional requirements for the numerical simulations. It is found that the volume at which
relative density reached almost a constant value is around, 2503 voxels3. A volume of
400 × 400 × 400 voxels, represents 110 mm3, was used for running the numerical simula-
tions that were performed in the 3 main directions of the cube, were “x” and “y”, represents
the radial plane and “z” the vertical axis of the cylinder.

Simulations on Avizo® are based on the Darcy law by solving Navier Stokes equations
with a finite volume method. The simulation considered a single-phase incompressible
Newtonian fluid with a steady state laminar flow and a viscosity of 0.045 Pa, which
represents the viscosity of the blood. The boundaries conditions used were the inlet and
outlet pressure, with values of 130 and 100 kPa, respectively. The absolute permeability is
computed with a single-phase flow. The module takes a labeled image as input, but each
label of the image has to be part either of the solid or of the fluid phase: only one solid and
one fluid phase are considered for this calculation. The solid phase is impermeable: there is
no flow in it.
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2.4. Mechanical Properties Evaluation

To evaluate the mechanical strength, compression tests were performed on the sintered
samples according to ASTM D695–02 with an Instron 1150 universal testing machine with
a head speed of 0.5 mm/min [10]. The elastic modulus (E) and the elastic limit (σy) were
estimated from the elastic stage of the stress-strain curves, after correction with respect to
the displacement of the equipment.

3. Results and Discussion
3.1. Sintering Kinetics Analysis

The axial strain as a function of the time and temperature during sintering of Ti and
Ti-xTa compacts with and without large pores was plotted in Figure 2. All samples show
an initial expansion due to the thermal expansion of the material. Next, there is a change in
the slope of the strain becoming negative, which indicates the start of sintering at 613 ◦C.
Next, there is an abrupt increase in the strain as the temperature increases until reaching
the isothermal temperature, where an asymptotic behavior is observed during the sintering
plateau. The maximum shrinkage reached for the Ti sample agrees with those reported by
Panigrahi et al. for similar sintering conditions [34]. The addition of Ta in the Ti matrix
generates a small increment in the shrinkage of 2.5% in comparison to that of Ti, Figure 2a.
The addition of large pores enhanced the shrinkage obtained because the large pores are
shrinking during sintering. It can be noticed that larger shrinkage is obtained as the volume
fraction increased, Figure 2b,c. This because of the deformation of large pores induces an
additional shrinkage due to densification stresses generated by sintering, as it was also
reported for porous Ti6Al4V by Cabezas et al. [11]. Another point of view could suggest
that greater contraction could be obtained because the presence of large pores improves the
particle rearrangement generated by free movement of particles in the sintering process
towards the periphery of these large pores as it was pointed out elsewhere [35].

Figure 3a shows the densification rate as a function of temperature during heating
stage for Ti-xTa samples. A first increment in the densification rate is found at 613, 531
and 510 ◦C for Ti, Ti-20Ta and Ti-30Ta, respectively. This is associated with the sintering
activation. The difference in temperatures for the samples is because the Ta diffusion into
the α-Ti matrix starts around 520 ◦C according to previous reports [35,36]. After that, a
continuous increment in the densification rate is observed and during the heating stage
can be detected two main changes in the trend of the densification rate. The first one is
associated to the absorption of oxygen into the Ti atomic network at around 720 ◦C, as
it was found elsewhere [37,38]. It is observed that Ta addition reduces the temperature
at which the oxygen absorption is activated, 670 and 660 ◦C for 20 and 30 vol.% of Ta,
respectively. It is also noticed a smaller increment in the densification rate, which suggest
that lower quantity of oxygen can be absorbed because the Ta atoms are already in the Ti
crystalline net. The second change in the trend of densification rate corresponds to the
beginning of the phase transition α→ α + β at 846 ◦C, which leads a complete transition
to β-Ti phase at 1000 ◦C. Those temperatures agree with those reported for the transition
phase of Ti solid [39,40]. The addition of Ta reduces the temperature of the transition
phase α→ α + β by up to 21 ◦C. Another effect generated by the addition of Ta is that
the transition temperature in where both phases α and β coexist has an increment from
154 ◦C up to 275 ◦C by the time β is reached. This indicates that the addition of Ta
causes a slow development of the transformation of α → β since the solubility of Ta in
Ti starts to deteriorate from 3.6% of Ta at 550 ◦C for the solid state [39]. Figure 3b shows
that the changes associated with the start of the phase transformation are not significant,
which indicates that the content of pores in the matrix does not affect the phase change
temperatures in the Ti matrix.

The density of all samples was calculated by weighing them and measuring their
volume. The values of the green and sintered density for the different samples are listed
in Table 1. It is observed that the presence of Ta as a high-density element (16.65 gr/cm3)
generates an increment in the density values, as expected. The addition of 30 wt.% of
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Ta induces an increment of 22.7% with respect to the sample without Ta. The densities
of samples containing 30 and 40 vol.% of pore formers are highly reduced, around 60%
with respect to the same Ti-xTa sample without large pores. This is beneficial for bone
implants applications since the density reported for trabecular bones ranged between 0.8
and 1 g/cm3 and compact bones ranges between 1.2 and 2 g/cm3 [41,42]. This means that
samples with 40 vol.% of pores are in the range, which are also in the range of the optimal
density value 1.8 g/cm3 suggested by Adamovic et al. for bone implants [43].
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3.2. Microstructural Analysis

Figure 4 shows the X-ray diffraction patterns of Ti-xTa samples with 0, 20, 25 and
30 wt.% of Ta. The sample without Ta, only the characteristic peaks of the α-Ti phase
are found as expected. The addition of Ta generates a change in the microstructure, first
addition of 20 wt.% Ta promotes a small quantity of β-Ti phase since it can be detected in
the main peak at 39.17◦. It was also determined that additions of 20 and 25 wt.% Ta shows
a slight displacement of the α-Ti peaks that suggest the formation of the martensite α′-Ti
phase, which is also confirmed by the presence of a high peak at 72◦. These characteristics
were reported as an indicative of the presence of the martensite phase of titanium for other
authors [23,44–46]. The addition of 30 wt.% of Ta generates a high increment in the intensity
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of the β-Ti phase characteristic peaks, being the predominant phase of the Ti30Ta alloy after
sintering [47].
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Table 1. Green and sintered densities of samples with different quantities of Ta with and without
additional porosity.

Vol.% Pore Formers

0% 30% 40%

%Ta Green
(g/cm3)

Sintered
(g/cm3)

Green
(g/cm3)

Sintered
(g/cm3)

Green
(g/cm3)

Sintered
(g/cm3)

0 3.43 4.27 1.56 2.06 1.39 1.54
20 3.53 4.30 1.75 2.23 1.49 1.93
25 3.94 4.64 1.94 2.50 1.50 1.99
30 4.30 5.24 2.03 2.63 1.51 2.00

SEM micrographs of samples with 0, 20, 20, 25, 30 wt.% of Ta are shown in Figure 5.
It is observed that the sample without Ta shows some isolated spherical pores without
the β-Ti lamellae (Figure 5a), which confirms the X-ray patterns discussed in Figure 4.
As the Ta content in the matrix increases, it is easy to distinct zones of the β-Ti phase
(Figure 5b) and lamellae of the α-Ti phase present. In addition, around the Ta particle a
rich zone of β-Ti phase is present, indicating that this phase is more stable near Ta [24]. It
is also observed that α-Ti phase is segregated at the grain boundaries of the Ti particles
(Figure 5c). Furthermore, it is also appreciated that the α-Ti lamellae are thinner and with
a more symmetrical orientation as the Ta content increases that is more obvious for the
sample with 30 wt.% of Ta (Figure 5d). Similar microstructure was reported for Ti-Ta alloys
fabricated by casting [46].

Figure 6a shows the sample with 30 wt.% of Ta and 30 vol.% of pore formers in which
it is possible to observe a random distribution of large pores, which is similar for the sample
containing 40 vol.% of pore formers, Figure 6b. It is noticed that the porosity does not
have a significant change in the microstructure of the Ti-xTa alloys. Although some white
dots close the pore boundaries indicates that Ta particles cannot completely diffuse into
the Ti-net because they are not surrounded by Ti particles. In addition, it is noticed a
homogeneously distributed of the remaining Ta particles in the Ti matrix, indicating that
the fabrication methodology helps such distribution of Ta and pores. Figure 6c confirms
that similar microstructure is developed in porous samples in comparison to the one found
in samples without large pores, Figure 5d. Furthermore, the presence of small needles
such as microstructure inside the β-Ti lamellae is detected (Figure 6d), which confirms
the formation of the α′-Ti phase as it was discussed above by XRD analysis [45,46]. The
martensite phase has a greater presence in the matrix for the highest Ta content, this phase
has been obtained in Ti-Ta alloys produced by casting after quenching [45,48]. This could
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suggest that fully martensite could be obtained by quenching the sintered samples because
the β-Ti is predominant in the microstructure. Moreover, it is found the presence of isolated
spherical pores distributed in the matrix, indicating that the last stage of sintering was
reached.
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In order to have a tridimensional analysis of the added porosity, 3D images with a
voxel resolution of 12 µm were acquired. 2D virtual slices of Ti20Ta-30salt and Ti20Ta-40salt
samples are shown in Figure 7a,b, respectively. It is observed that large pores created by
salt elimination are randomly distributed in the whole sample, sample with 40 vol.% of salt
particles shows some agglomeration of pores that leads to the formation of larger pores,
which is expected since the coordination between salt particles increases as the volume
fraction does it. A 3D rendering of the complete cylinder of Ti20Ta-30salt and Ti20Ta-40salt
samples is shown in Figure 7c,d, respectively. Qualitatively two main features can be
distinguished in both kind of samples, the first one is that wall thicknesses between large
pores is reduced as the volume fraction of salt particles increases. The second one is that
Ta particles can be identified, white spots in Figure 7a,b, and they are well dispersed in
the matrix, suggesting a good distribution of Ta particles. Quantitative data about the
porosity, Ta particles and wall thicknesses were calculated from 3D images. For that, 3D
images follow different mathematical operation to convert the initial grey levels images
into the binary ones. The segmentation process is detailed elsewhere [31]. The remaining Ta
particles after sintering in the samples with 20, 25 and 30 wt.% of Ta are shown in Figure 8.
It is observed that the quantity of Ta particles increases as the Ta wt.% increases too, which
suggest less diffusion of Ta into the matrix achieved during sintering. This could be because
the contacts between Ti and Ta particles is reduced by the increment in Ta-Ta contacts, thus,
diffusion of Ta into the matrix slowed down since it is driven in solid state. The volume
fractions of remaining particles are 0.43, 0.85 and 1.55%, for the Ti20Ta, Ti25Ta and Ti30Ta
samples, respectively. This indicates that most of Ta particles can diffuse into the Ti matrix.
This could be due to the good distribution of Ta particles that do not show segregation
neither agglomeration despite its density which is around 4 times with respect to Ti.
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Figure 7. 2D virtual slices and 3D rendering of: (a,c) Ti00020Ta 30 vol.% salt; and (b,d) Ti20Ta
40 vol.% salt.
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Figure 8. 3D rendering of the remaining Ta particles after sintering for samples containing 30 vol.%
of salt particles, (a) Ti20Ta; (b) Ti25Ta; and (c) Ti30Ta.

The pore size distribution for samples with 30 and 40 vol.% of salt particles goes
from pores of 40 µm to the largest ones around 650 µm, Figure 9a. It is found that pore
sizes increase as the quantity of salt particles does it. This suggests that some particles
can be grouped to form larger pores. This small increment generates that the median
pore size increased from 195 to 224 µm, see Table 2. It is also noticed that pores up to
650 µm can be formed for 40 vol.% of salt particles, meanwhile the largest pore for the
samples with 30 vol.% is 500 µm. This distribution is mainly due to the interparticle pores
left after sintering and by the artificial porosity created by the salt elimination, which is
good for the bone implant applications since the optimal pore size for bone ingrowth have
been demonstrated for pores smaller than 10 µm [49], or pores larger than 900 µm [50].
Furthermore, Itälä et al. [51] considered that the optimal pore size range was 100–400 µm.
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Figure 9. Pore size distribution (a) and wall thicknesses distribution; (b) for porous samples fabricated
with 30 and 40 vol.% of salt particles.

Table 2. Porosity and solid features of samples fabricated with different vol.% of salt particles.

Sample Pore Volume
Fraction (%)

Median Pore
Size (µm)

Median Wall
Size (µm)

Permeability
Axial

(10−10 m2)

Permeability
Radial

(10−10 m2)
Tortuosity

Ti/xTa30Salt 42.1 195 175 0.18 0.17 1.56
Ti/xTa40Salt 58.3 224 150 1.15 1.12 1.34

Another effect of the addition of pores is the wall thickness of the solid structure
because there is more void space generated due to the salt elimination. The wall thicknesses
distribution is obtained by the technique of granulometry in the same way that the pore
size distribution and depicted in Figure 9b. It is found that the addition from 30 to 40 vol.%
of salt particles reduced the median wall thickness around of 15%, from 175 to 150 µm,
see Table 2. It is also observed that the quantity of wall thicknesses lower than 100 µm
increases for the sample with 40 vol.% with respect to the 30 vol.% of salt particles added.

3.3. Permeability Analysis

In order to estimate the permeability of porous samples, numerical simulations
on the 3D images obtained by tomography were performed by using the Avizo soft-
ware. The numerical simulations of permeability were carried out in sub-volumes of
400 × 400 × 400 voxels, and 4 sub-volumes were extracted from different zones of samples.
The average permeability value for samples with 30 and 40 vol.% of salt particles is listed
in Table 2. It is found that permeability increases 10 times for the samples fabricated with
40 vol.% of salt particles with respect to the ones with 30 vol.%. This increment is due to
different features of the porosity, first the volume fraction of pores increases from 42 to 58%.
This is mainly because small agglomerates of salt particles appear, creating larger pores
in comparison to 30 vol.% of salt particles used. In addition, the pore size increases 13%
from 195 to 224 µm, which increases the permeability. Furthermore, as the pore volume
increases, the pore connectivity does it. The connectivity can be qualitatively observed
from 3D images of the labeled pores, Figure 10a,d. In such figures, the same color indicates
that pores are connected, and a different color shows isolated pores. As it was expected, the
sample with 30 vol.% of salt particles shows more isolated pores than the one with 40 vol.%
that is almost fully connected. This can also be confirmed in the flow lines obtained from
the numerical simulations that show more flow paths throughout the sample with 40 vol.%,
Figure 10e,f, with respect to the sample with 30 vol.% of salt particles Figure 10b,c. The last
feature that affects the permeability is the tortuosity, which is reduced 16% from 1.54 to
1.34 for the sample with 40 vol.% of salts, see Table 2. The flow streamlines indicate the
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velocity of fluid throughout the pore media in a color code, in which the blue means slow
and red fast. This is a qualitatively indicative of the ability to let the fluid pass throughout
the porous media, thus, the sample with 40 vol.% of salts shows faster velocity of the
fluid than the sample with 30 vol.% of salts. The higher permeability value calculated of
1.15 × 10−10 m2 is close to the range reported for human bones, 3 × 10−11 to 5 × 10−10 m2

for human proximal femur and 10−8 to 10−9 m2 for human vertebral body [52].
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The stress-strain curves of Ti-xTa alloys with and without additional porosity sintered
at 1260 ◦C are shown in Figure 11. It is observed that the addition of Ta into the Ti
increases the yield strength from 450 MPa for Ti to 580 MPa for the alloy with 30 wt.% of
Ta, Figure 11a. Comparing the behavior of the curves, it is noticed that the stress in the
Ti sample increases during the plastic deformation, which indicates a plastic hardening.
On the contrary, samples with Ta addition shows a maximum value of the stress during
the plastic deformation and then a plateau, which indicates a more ductility in the plastic
region. The mechanical properties are due to the diffusion of Ta within the Ti matrix and the
stabilization of the β-Ti phase [53]. Although, the strength of α and β phases has been also
studied, and it is reported that the β-Ti phase has a lower elastic modulus than α [54–57].
The small increment found in this work could be due to the Ta particles cannot be fully
diffused into the matrix, therefore, strengthening mechanisms of the matrix could increase
the mechanical strength.

The compressive behavior of Ti-xTa alloys with 30 and 40 vol.% of additional porosity
added is shown in Figure 11b,c, respectively. A sharp reduction in the mechanical strength
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is obtained by the addition of pores for all samples. The reduction in the yield stress for all
samples is around 8 and 14 times for samples with 30 and 40 vol.% of salts, respectively.
The behavior during the plastic deformation for all samples is similar with a maximum
value of the stress and with a long plateau, which indicates a more ductility due to the
addition of large pores that increases the deformation of the samples.
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Figure 11. Stress-strain curves of samples sintered at 1260 ◦C, (a) Ti-xTa; (b) Ti-xTa with 30 vol.% of
salt particles; and (c) Ti-xTa with 40 vol.% of salt particles.

The elastic modulus is estimated from the elastic behavior of all samples shown in
Figure 11. It is found that the Young modulus is reduced with the Ta addition, although
the value with the different quantities of Ta addition is around 30–35 GPa, see Figure 12.
This value remains higher than the one required for bone applications (<18 GPa) [7]. This
reduction is mainly due to two phenomena. The first one is due to the different Ti phases
composing the TixTa alloys. As it was above discussed, the β-Ti became predominantly
as the Ta addition increased up to 30 wt.%. The values of Eα and Eβ 105 and 70 GPa were
reported [58,59], thus, lower Young modulus is expected to obtain by the β-Ti stabilization.
The second phenomenon is related to the residual porosity, which also increased as the
Ta wt.% increased. The residual porosity in samples without pore formers was roughly
estimated from SEM images as follow: 3%, 6%, 8% and 10% for samples with 0, 20, 25 and
30 wt.% of Ta, respectively. Therefore, the resulting reduction of the elastic modulus is a
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combination of both, in where the Ti30Ta sample shows the lower E because present larger
porosity and β-Ti phase. Nonetheless, the reduction of the elastic modulus is not enough to
be in the good range for bone applications.
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Figure 12. Young’s modulus as a function of the weight% of Ta for samples with and without
additional porosity added.

On the contrary, the elastic modulus is highly reduced by the addition of pores, the
sample without Ta shows a reduction of around 7 times from 34 to 4.5 GPa when 30 vol.%
of salt particles are used. This reduction increases 11 times from 34 to 3 GPa for 40 vol.% of
salt. The elastic modulus of composites with 30 vol.% of salt particles increased around
twice to the one obtained for the porous Ti samples. However, similar values obtained for
samples with different quantities of Ta. The addition of 40 vol.% of salt particles generates
similar values of elastic modulus for composites and Ti samples. This suggests that the
mechanical behavior driven by the porosity, with a minor effect of the Ta addition.

The elastic modulus of the β-Ti-Ta alloys manufacturing by casting reported in different
works ranged from 65–100 GPa [23,46,54] being lower than the value reported for pure Ti
(104 GPa). Nevertheless, these materials still represent high values of mechanical properties
compared to the human bone ones who’s ranging from 0–18 GPa [7,58] depending on the
type of bone, its function and porosity. Table 3 summarizes the Young Modulus reported for
Ti-Ta alloys and bones. This demonstrates that stabilization of the β-Ti phase can reduce the
elastic modulus but is not enough for the range needed in bone implants applications [59].
Therefore, the addition of pores is needed to obtain materials with elastic modulus values
close to those required for use as a medical implant (0–18 GPa) [7]. For such effect, the
Ti-xTa alloys with 30 and 40 vol.% of salt particles fabricated in this work shows good
properties for both, compact and trabecular bones. The large pores add a great advantage
for trabecular bones since the permeability plays a major role in allow passing the body
fluids with the nutrients that promotes the bone growth through the metallic implant. For
such case, the elastic modulus of 3 GPa is around 10 times larger than the one of such
bones. Nonetheless, it is much lower to the one of fully dense alloys, which will improve
the adaptability of the metallic implant.
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Table 3. Mechanical properties of Ti-Ta alloys and human bones reported in the literature.

Alloys Young’s Modulus (GPa)

Cp-Ti [53,60] 103–105
Ti-20Ta [46,53,60] 83–84
Ti-30Ta [46,53,60] 69
Ti-50Ta [46,53,54] 77–93

Bone [7]

Compact Transverse 17.9 ± 3.9
Longitudinal 10.1 ± 2.4

Trabecular Vertebra 0.067 ± 0.045
Tibia 0.445 ± 0.257

Femur 0.441 ± 0.271

4. Conclusions

Ti-xTa alloys with controlled porosity were successfully fabricated by solid state
sintering. The diffusion kinetics of Ta into the Ti matrix was determined by dilatometry
concluding the Ta diffuses in solid state during sintering which affects the transition
phase from α to β by reducing the transition temperature. It was also concluded that the
addition of large pores does not modify the diffusion kinetics, although the densification is
increased by the pore deformation during sintering. The resulting microstructure shows
β-Ti stabilization with the formation of α′ martensite phase that is formed during cooling
after sintering due to the cooling rate and the Ta diffusion into the Ti matrix. It is found
that additional pores are needed for reducing the elastic modulus close to the values of the
human bones, since the β-Ti stabilization is not enough. In addition, large pores as the one
generated by the salt particles provide permeability values close to that of human bones,
which will favor the body fluid to pass throughout the implant, thus improving the bone
growth. It is concluded that the addition of 25 wt.% of Ta with 40 vol.% of salt particles
generates the best materials for trabecular bone implants.

Author Contributions: Conceptualization, methodology, R.M.; project administration, P.G.-G.; su-
pervision, P.G.-G. and F.A.-H.; writing—original draft, formal analysis, L.O.; writing—review and
editing, O.J.; validation, J.C., O.V. and F.A.-H.; visualization, O.V.; image processing, D.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by [the National Council for Science and Technology CONA-
CYT via PhD Scholarship of R. Macias], grant number [CVU 789772] and by [the National Laboratory
SEDEAM-CONACYT, and CONACYT], grant number [CB-2017-2018-11813].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw/processed data required to reproduce these findings cannot
be shared at this time as the data also forms part of an ongoing study.

Acknowledgments: The authors want to thank the CIC of the UMSNH. We also want to thank
to the Laboratory “LUMIR” Geosciences of the UNAM, Juriquilla, for the 3D image acquisition
and processing.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bozic, D.; Cvijovic, I.; Vilotijevic, M.; Jovanovic, M. The influence of microstructural characteristics on the mechanical properties

of Ti6Al4V alloy produced by the powder metallurgy technique. J. Serbian Chem. Soc. 2006, 71, 985–992. [CrossRef]
2. Upadhyaya, G.S. Powder Metallurgy Technology; Cambridge International Science Publishing: Cambridge, UK, 2002.
3. Zhang, W.; Liu, Y.; Li, H.; Li, Z.; Wang, H.; Liu, B. Constitutive modeling and processing map for elevated temperature flow

behaviors of a powder metallurgy titanium aluminide alloy. J. Mater. Process. Technol. 2009, 209, 5363–5370. [CrossRef]

http://doi.org/10.2298/JSC0609985B
http://doi.org/10.1016/j.jmatprotec.2009.04.006


Materials 2022, 15, 6548 16 of 17

4. Long, Y.; Wang, T.; Zhang, H.; Huang, X. Enhanced ductility in a bimodal ultrafine-grained Ti–6Al–4V alloy fabricated by high
energy ball milling and spark plasma sintering. Mater. Sci. Eng. A 2014, 608, 82–89. [CrossRef]

5. Sim, K.; Wang, G.; Ju, J.; Yang, J.; Li, X. Microstructure and mechanical properties of a Ti−22Al−25Nb alloy fabricated from
elemental powders by mechanical alloying and spark plasma sintering. J. Alloys Compd. 2017, 704, 425–433. [CrossRef]
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