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Abstract: In order to forecast the axial load-carrying capacity of concrete-filled steel tubular (CFST)
columns using principal component analysis (PCA), this work compares hybrid models of artificial
neural networks (ANNs) and meta-heuristic optimization algorithms (MOAs). In order to create
hybrid ANN models, a dataset of 149 experimental tests was initially gathered from the accessible
literature. Eight PCA-based hybrid ANNs were created using eight MOAs, including artificial bee
colony, ant lion optimization, biogeography-based optimization, differential evolution, genetic algo-
rithm, grey wolf optimizer, moth flame optimization and particle swarm optimization. The created
ANNs’ performance was then assessed. With R2 ranges between 0.7094 and 0.9667 in the training
phase and between 0.6883 and 0.9634 in the testing phase, we discovered that the accuracy of the
built hybrid models was good. Based on the outcomes of the experiments, the generated ANN-GWO
(hybrid model of ANN and grey wolf optimizer) produced the most accurate predictions in the
training and testing phases, respectively, with R2 = 0.9667 and 0.9634. The created ANN-GWO
may be utilised as a substitute tool to estimate the load-carrying capacity of CFST columns in civil
engineering projects according to the experimental findings.

Keywords: structural analysis; thin-walled structure; artificial neural network; principal component
analysis; dimension reduction; accuracy matrix

1. Introduction

In recent times, high-rise and large-scale building structures have become more popu-
lar in demand, and the use of concrete-filled steel tube (CFST) columns in those structures
has increased due to the ductility and energy absorption capacity, which is significantly
more compared to the conventional reinforced concrete (RCC) members. CFST is a com-
posite member, made up of steel with concrete.

Hence, the main advantage of CFST is to make use of both type of materials, which not
only enhances the toughness and plasticity of concrete but also delays the local buckling of
tabular steel. Due to the exceptional static and dynamic (earthquake-resistant) characteris-
tics of CFST columns, they are also used in earthquake-resistant structures, bridge piers
(which are subjected to traffic), in railway decks and as pile in high-rise buildings [1].

In CFST columns, the main structural advantage is due to the confinement effect of
the steel, which surrounds the concrete, and also due to the contribution of steel to the load-
carrying capacity. However, the time consumed for construction is also reduced because of
the elimination of a permanent formwork. The delay in the local buckling of steel due the
concrete core is also one of the major benefits of using CFST columns [2,3]. Hence, from past
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studies [2–8], it can be concluded that the use of CFST columns increases the load-carrying
capacity, ductility and stiffness and is economical and less time consuming in construction,
which makes CFST columns an attractive solution in the field of civil engineering [9,10].

Tests for CFST filled with high strength concrete and of different cross-sections (i.e., circular,
rectangular, square and elliptical) have been reported [1,11–21]. Giakoumelis et al. [22] per-
formed a study to examine the effect of several factors on CFSTs with different concrete
strengths under the axial load. In another study, Evirgen et al. [23] studied 48 CFSTs
under axial compression and explored the effects of the geometrical shape of specimens,
concrete strength and width/thickness ratio on ultimate loads. The behaviour of CFST
columns was analysed through experimental studies on twenty-six samples subjected to
axial compressive loading, with different strengths of concrete, by Jamaluddin et al. [24].

These studies have shown that global and local buckling characterizes the failure of
stub and slender CFST. It was also observed in the study that the high strength concrete
improves the ductility of CFST over normal concrete. In addition, the axial performance
also relies on the slenderness of the steel tube, which was checked by Lam et al. [25] who
found that the load-bearing capacity of the CFST columns reduces by increasing the tube
thickness. Numerical approaches, such as the finite element method, have been used to
research the structural efficiency of compressive CFST members to decrease the expense of
experimentation.

Lui et al. [26] proposed a numerical simulation technique to predict the ultimate load,
which was found to be efficient and less time consuming. In other studies, both Hans et al.
and Tao et al. developed a finite element model by considering interaction and nonlinearity
between the steel and concrete and validated the model satisfactorily with previous works.
Whereas, an ABAQUS simulation was performed by Lyu et al. [27] to analyse the failure
mode and ultimate bearing capacity of square CFST columns with reinforcement stiffener
at different temperatures. The ultimate axial capacity is an important index to assess the
applicability of CFST columns under axial compression in both numerical simulation and
laboratory experiments [13,28–33].

Several codified formulations have been implemented at the same time to estimate the
potential of CFST columns in compression, including the Standards American Institute of
Steel Construction [34], Standards Association of Australia [35], Architectural Institute of
Japan [36], Chinese code DL/T [25] and European Committee for Standardization Eurocode
4 [37]. Many empirical formulas have also been proposed in previous studies, including
Sakino et al. [38], Han and Yao [39], Lu and Zhao [2] and Hatzigeorgiou [40].

The results found using the CISC formula are extremely underestimated with the
experimental results, along with the other codes, such as AS4100, AS3600, AIJ-1997 and ACI-
318R, whereas the models proposed by Lam, Hatzigeorgiou [22,40] and Lu and Zhao [2]
underestimated the maximum results. In brief, the laboratory tests of these compression
tests are laborious and time consuming and the numerical simulation is also difficult due
to the material properties and complicated conditions. Hence, the researchers adopted
alternative soft computing techniques to conveniently evaluate the accurate axial ultimate
compression values [41–53].

Artificial intelligence (AI) approaches have been successfully employed in diverse
areas in the last few decades [54–61]. Many experiments concerning artificial intelligence
have been performed in terms of CFST columns in order to study their behaviour under
different forms of loading. For example, the output of circular CFST subjected to axial
compressive load was investigated in Kheyroddin et al. [62] and Guneyisi et al. [14] using
ANN and gene expression programming, respectively. Apart from this, the ANN technique
was also implemented in rectangular CFST columns to find the bearing capacity of the
same by Du et al. [63] and Sarir et al. [64].

To predict the CFST load-carrying potential in the prediction and optimization stages,
several advanced techniques were developed. As seen in the literature, the results ob-
tained indicate that AI techniques give promising prospects for predicting the mechanical
behaviour of structural components. While different AI strategies have been used to pre-
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dict CFST’s mechanical responses, other interesting methods may be used improve the
prediction efficiency—for example, the hybrid ANN models [65–68]. Few studies have
explored the feasibility of using hybrid models of ANN in terms of forecasting CFST’s
load-carrying capacity.

2. Research Significance

Currently, the behaviour of CFST columns under axial load is an important aspect
of study due to its high efficiency than normal concrete columns. As the CFST members
are a complex system, their strength properties depend on the material constituents and
the involved construction techniques and parameters. Though there have been numerous
studies regarding the prediction of the axial load on CFST members, it still remains an issue
with substantial attention in structural engineering, and is also mentioned in ACI-318R [69],
AS4100 [70], AIJ-1997 [36], AISC [34], Eurocode 4 [71], Giakoumelis and Lam [22] and
Hatzigeorgiou [40].

This is driven by the fact that, under axial compression, the mechanical behaviour
of CFST exhibits a strong nonlinear nature extracted from the mechanical and geometric
factors involved in their behaviour. In this research, hybrid ANN-based models with and
without principal component analysis (PCA) were used to predict the load-carrying capacity
of CFST under uniaxial compression as they are effective in exploring the complicated and
nonlinear relationship of the data. This study is aimed to develop the models, which will
be more effective in overcoming expensive and time-consuming experiments.

The following points constitute the contributions of the present work: (a) the devel-
opment of eight hybrid ANN-based algorithms with the dimension reduction technique
(i.e., principal component analysis (PCA) and employed meta-heuristic algorithms—namely,
artificial bee colony (ABC), ant lion optimization (ALO), biogeography-based optimization
(BBO), differential evolution (DE), genetic algorithm (GA), grey wolf optimizer (GWO),
moth flame optimization (MFO) and particle swarm optimization (PSO)) for forecasting
the CFST’s load-carrying capacity under uniaxial compression; (b) the optimization pro-
cedure of models ANN-ABC, ANN-ALO, ANN-BBO, ANN-DE, ANN-GA, ANN-GWO,
ANN-MFO and ANN-PSO are used along with the verification process to confirm that no
overestimation occurrs; (c) within a convergent, probabilistic context, uncertainty analysis
and robustness over 149 sample results in total are performed; and (d) from a physical point
of view, the effect of input variables on the prediction of column load-carrying capacity is
investigated.

3. Methodology
3.1. Principal Component Analysis

PCA is a reputed and prominent method of data reduction and feature extraction. The
fundamental property of PCA is to find a smaller set of uncorrelated components from
a significantly bigger predictor variable (high dimensional inputs) by computing Eigen
vectors from covariance matrix. For the mathematical formulation, a set of m predictor
variables can be denoted by:

ui = (ui(1), ui(2), . . . , ui(p))T ; i = 1, 2, ..., q. (1)

The sample covariance matrix is given by:

M =
1
q

q

∑
i=1

ui.ui
T (2)

In PCA, predictor variables are transformed to new variables as:

vi = UTui, (3)
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where U is p× p orthogonal matrix. The jth Eigen vector of the sample covariance matrix
corresponds to the the jth column (Cj) of the U matrix. The following expression is used to
solve it.

λjrj = Mrj, j = 1, 2, . . . , p (4)

where λj and rj represent the Eigen value and corresponding Eigen vector of M, respectively.
Upon transformation of ui, the orthogonal portion of predictor variable vi is calculated
using Equation (1). The resulting component is recognized as the principal component.
The predictor variable is reduced to principal components whose selection is the function
of Eigen values post arranging Eigen vectors in descending order. Thus, the dimension of
predictor variables is reduced to principal components in PCA. They are uncorrelated and
have maximum variances sequentially.

3.2. Artificial Neural Network

ANN is an artificial computational system made up of artificial neurons that mimic
the parallel processes of a biological brain in order to find the answer. It is made up of
artificial neurons that play the role of fundamental units and mimic the organisational
principles of the human nervous system. Due to its capacity to learn automatically from
provided training patterns, ANN addresses the mapping problem by identifying the closest
association between the input and output parameter [72,73]. In more technical terms, the
network’s architecture and connection weights change repeatedly until the error at each
output layer node is minimised. E, a squared error function, calculates the output error
as follows:

E =
1
2

P

∑
i=1

(
t(i) − y(i)

)2
(5)

where t is the target value, y is the actual value and P stands for the number of training
patterns. Back-propagation (BP) learning is a gradient-based learning process that is
commonly employed for network learning tasks [65,74]. Any training session in the BP
learning algorithm is a twofold approach that comprises both forward and backward stages.
In the forward stage, input signals go through the network, and each output layer node
emits an error signal. Then, in the next phase [75], the rates of the resultant error traverse
backward along the network, correcting the network’s weights and biases.

The multilayer perceptron (MLP) neural network is one of the most used approaches
for developing an ANN model, since it can handle complicated mathematical problems that
involve nonlinear equations by establishing correct weights. At least three layers contribute
to a typical MLP. The first layer is referred to as the input layer, the last layer is referred to
as the output layer, and the levels in between are referred to as hidden layers. A typical
illustration of an ANN architecture is shown in Figure 1.
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3.3. Overview of Employed MOAs

Meta-heuristic approaches are explored in this section. In general, the usage of meta-
heuristics optimization algorithms (MOAs) in the field of engineering to solve various
problems has increased significantly. These are free gradient methods that may tackle
extremely difficult optimization problems with better outcomes compared with standard
approaches [76]. Furthermore, they are easier to build and faster than traditional opti-
mization approaches [77]. There are several sources of inspiration for MOAs, which may
be categorised into distinct groups based on these sources of inspiration. Evolutionary
algorithms (EAs), swarm intelligence (SI) methods, natural phenomena approaches and
human-inspiration algorithms are among these categories.

Figure 2 displays these groupings. The motivation for the algorithms in the first
category, known as EAs, comes from simulating natural genetic processes, such as crossover,
mutation and selection. Evolutionary programming, evolutionary strategy (ES), GA, DE
and genetic programming (GP) are some of the MOAs that fall within this category. The
second group, called SI, replicates swarm behaviours in nature when looking for food.
The PSO, ABC, GWO, ACO, salp swarm algorithm (SSA), marine predators’ algorithm
(MPA) and whale optimization algorithm (WOA) are the most prominent members of
this category.
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The third group attempts to imitate natural phenomena, such as rain, spirals, wind and
light. The water cycle algorithm (WCA), spiral optimization (SO), intelligent water drops
(IWD), electromagnetism algorithm and field of force (FF) all members of this category.
Furthermore, additional procedures fall under this category but are based on physical
rules—for instance, electromagnetism algorithm, field of force (FOF), charged system search
(CSS), simulated annealing, gravitational search algorithm (GSA), aquila optimizer (AO),
flow regime algorithm (FRA), electromagnetism-like mechanism, charged system search
(CSS), chemical-reaction-inspired meta-heuristic and optics-inspired optimization (OIO).

In addition, the fourth category is influenced by human activities: volleyball pre-
mier league algorithm (VPL), teaching learning-based optimization (TLBO), soccer league
competition (SLC), league championship algorithm (LCA), seeker optimization algorithm
(SOA) and socio evolution and learning optimisation (SELO) are examples of algorithms in
this category.

3.4. Construction Procedure of Hybrid ANNs

MOAs are used to improve the performance of conventional machine learning (CML)
approaches by optimising their learning parameters (such as the weights and biases). By re-
fining the learning parameters of CML approaches, the integration of CML and MOA aids in
the search for the precise global minimum, resulting in more accurate outcomes [66,78–83].
To maximise the learning parameters of ANN, advanced MOAs (ABC, ALO, BBO, DE, GA,
GWO, MFO and PSO) were employed to develop hybrid ANN models in this work. Input
weights, hidden biases, output weights and output biases are the learning parameters of
an ANN.
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The methodological evolution of ANN-based hybrid models may be summarised as
follows: In the first step, hyper-parameters (such as Nhn and the activation function) are
chosen, and weights and biases are generated at random followed by the development of
optimum learning parameter values using MOAs in the second stage. Finally, utilising
the adjusted weights and biases, the developed hybrid ANN models are used for the new
dataset to validate the results. While the methodology for creating hybrid models is the
same for every MOA, the developed optimum learning parameters are not the same.

In addition to the ANN’s learning parameters, deterministic parameters, such as the
population size (Np), generation probability (GP), maximum number of iterations (itr),
inertia weights (wmax and wmin), random parameters (r1, r2), acceleration coefficients of PSO
(c1 and c2), lower bound (lb), upper bound (ub) and other MOA parameters, are important
and, therefore, should be tuned appropriately during hybrid modelling.

4. Data Processing and Analysis
4.1. Descriptive Statistics and Statistical Analysis

As mentioned above, a sum of 149 experimental results for stub/short CFSTCs were
collected from 22 different sources mentioned in the paper of Cigdem Avci-Karatas [12] and
will be used to develop a hybridised ANN model with the dimension reduction technique
(i.e., PCA) and a Convolutional Neural Network (CNN).

The input parameters for the study are the wall thickness of the steel tube (t), outer
diameter of the steel tube (D), unconfined concrete strength (f c), yield strength of the steel
(f y), Young’s modulus of concrete (Ec), Young’s modulus of the steel (Es) confinement factor
(ξ) and length of CFSTC (L), whereas the effects of d/t and l/d were also considered on the
CFST’s load-carrying capacity under uniaxial compression.

Table 1 shows the descriptive statistic of the input and output parameters where it
can be seen that the D varies from 60 to 450, t varies from 0.86 to 10.36, f c and f y vary from
18.03 to 853, Ec and Es vary from 17,810 to 213,000 and the output value Pu varies from 312 to
13,776 indicating the wide variety of experimental data. Statistical analysis was undertaken
in order to measure the degree of correlation (DOC) between the above parameters after
the descriptive analysis described above revealed that the collected database had a wide
range of experimental data.

Table 1. Descriptive statistics of the employed dataset.

Particulars D t fc Ec fy Es L ξ Pu

Min. 60.00 0.86 18.03 17,810 186.00 177,000 180.00 0.05 312.00
Mean 164.38 3.71 65.60 34,907 339.85 201,767 485.07 0.86 2328
Max. 450.00 10.36 193.30 66,000 853.00 213,000 1760 3.22 13,776

Stnd. Error 5.17 0.17 3.82 1056 8.16 575.81 18.08 0.06 179.57
Stnd. Dev 63.09 2.08 46.58 12,890 99.57 7029 220.73 0.73 2192
Variance 3980 4.34 2170 166,153,299 9914 49,401,978 48,721 1 4,804,727
Kurtosis 5.18 1.90 0.80 −0.18 11.50 2.21 9.12 0.94 6.10

Skewness 1.79 1.40 1.24 0.83 2.75 −1.01 2.32 1.19 2.31

When all parameters are evaluated, the DOC between Pu and other parameters (ex-
cluding D, L, t and fc) is smaller, according to the information provided by the Pearson
correlation in Figure 3. The DOC between Pu with D, L, t and fc on the other hand, was
shown to be significantly higher. However, a closer look indicates that the experimental
dataset had a large number of uncorrelated data points. The collected dataset is also dis-
played in Figure 4 as a scatterplot with 2-D density estimation between inputs and output
variables. This helps to visualise the nature of the input characteristics.
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4.2. Data Processing Using PCA

The DOC between the attributes (CFST parameters) was detected on the higher side in
certain cases in the experimental database, while it was observed on the lower side in many
situations, indicating multicollinearity among the variables. Furthermore, the experimental
database had eight attributes and 150 observations, resulting in a high-dimensional dataset.
As a result, PCA was used in this study to eliminate the multicollinearity and dimensionality
effects. The number of input variables was then chosen based on the entropy idea, which
explains the greatest amount of variance in the dataset.

All of the new variables are orthogonal to one another, which solves the multicollinear-
ity and dimensionality difficulties. PCA produces an equal number of PCs in most cases;
however, the ideal number may be determined using the cumulative percentage of variance
(CPOV). In Table 2, the PCA realisations, including the proportion of variance (POV),
standard deviation (SD) and CPOV of PCs, are presented.

The rotations of PCs are presented in Table 3. The percentage of explained variance
and scree plot are presented Figures 5 and 6, respectively. From the information presented
in Table 2, it can be seen that PC1 to PC8 cover 100% of total variance. This suggests that
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all of the elements have a role and are likely to be significant. The PC chosen is based on
the researcher’s preferences and the type of problem. However, the pair plots of PCs are
presented in Figure 6.

Table 2. Realizations of PCA.

Particulars PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

SDEV 1.5687 1.4209 1.3079 0.9342 0.8373 0.3400 0.2754 0.2105
POV 0.3076 0.2524 0.2138 0.1091 0.0876 0.0145 0.0095 0.0055

CPOV 0.3076 0.5600 0.7738 0.8829 0.9705 0.9850 0.9945 1.0000

Table 3. Rotations of PCs.

Parameters PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

D 0.0946 −0.6619 0.1731 0.0354 −0.0425 0.1215 0.7077 −0.0662
t 0.0462 −0.0442 0.6078 −0.5152 −0.3882 0.3771 −0.2604 −0.0190
f c 0.5987 0.1220 0.0210 −0.2380 0.0770 −0.3433 0.0421 −0.6663
EC 0.5993 0.1595 0.0687 −0.1635 0.0879 −0.1514 0.1597 0.7265
fy 0.0578 0.1034 0.5478 0.3167 0.7183 0.2447 −0.0665 −0.0723
ES 0.2425 0.1529 0.2783 0.7238 −0.5576 −0.0613 −0.0202 −0.0380
L 0.0929 −0.6706 0.0867 0.0939 0.0802 −0.4127 −0.5790 0.1152
ξ −0.4478 0.1894 0.4587 −0.1303 −0.0211 −0.6843 0.2530 0.0594

Materials 2022, 15, x FOR PEER REVIEW 9 of 21 
 

 

(a) (b) 

  

Figure 5. (a) Plot of SD, POV and CPOV of PCA and (b) scree plot. 

 

Figure 6. Pair plot of PCs. 

4.3. AI-Based Analysis 
Data normalisation is a pre-processing task in the field of machine learning that is 

usually performed to eliminate multi-dimensional effects. As a result, the number of input 
variables was chosen based on the cumulative variance of shortly after PCA was imple-
mented to deal with multicollinearity issues. Using the normalisation procedure, the new 
dataset with eight inputs and 149 observations was normalised between 0 and 1. Follow-
ing that, the normalised dataset was split into two parts: training and testing.  

The training dataset was chosen at random from the main dataset, and the testing 
dataset was chosen from the remaining dataset. The researchers must assess the predic-
tion models’ performance because there are no criteria for splitting the dataset into train-
ing and testing groups. A tiny number of testing datasets for assessing the prediction 
models’ performance, on the other hand, cannot be regarded as important. Figure 7 de-
picts the full hybridization process, including the procedures for building the ANN-based 
hybrid models ANN-ABC, ANN-ALO, ANN-BBO, ANN-DE, ANN-GA, ANN-GWO, 
ANN-MFO and ANN-PSO. 

0.00

0.50

1.00

1.50

2.00

1 2 3 4 5 6 7 8

Va
lu

es

PCs

SDEV POV CPOV

0.00

9.00

18.00

27.00

36.00

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

%
 v

ar
ia

nc
e

PCs

Figure 5. (a) Plot of SD, POV and CPOV of PCA and (b) scree plot.

Materials 2022, 15, x FOR PEER REVIEW 9 of 21 
 

 

(a) (b) 

  

Figure 5. (a) Plot of SD, POV and CPOV of PCA and (b) scree plot. 

 

Figure 6. Pair plot of PCs. 

4.3. AI-Based Analysis 
Data normalisation is a pre-processing task in the field of machine learning that is 

usually performed to eliminate multi-dimensional effects. As a result, the number of input 
variables was chosen based on the cumulative variance of shortly after PCA was imple-
mented to deal with multicollinearity issues. Using the normalisation procedure, the new 
dataset with eight inputs and 149 observations was normalised between 0 and 1. Follow-
ing that, the normalised dataset was split into two parts: training and testing.  

The training dataset was chosen at random from the main dataset, and the testing 
dataset was chosen from the remaining dataset. The researchers must assess the predic-
tion models’ performance because there are no criteria for splitting the dataset into train-
ing and testing groups. A tiny number of testing datasets for assessing the prediction 
models’ performance, on the other hand, cannot be regarded as important. Figure 7 de-
picts the full hybridization process, including the procedures for building the ANN-based 
hybrid models ANN-ABC, ANN-ALO, ANN-BBO, ANN-DE, ANN-GA, ANN-GWO, 
ANN-MFO and ANN-PSO. 

0.00

0.50

1.00

1.50

2.00

1 2 3 4 5 6 7 8

Va
lu

es

PCs

SDEV POV CPOV

0.00

9.00

18.00

27.00

36.00

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

%
 v

ar
ia

nc
e

PCs

Figure 6. Pair plot of PCs.



Materials 2022, 15, 6477 9 of 20

4.3. AI-Based Analysis

Data normalisation is a pre-processing task in the field of machine learning that is
usually performed to eliminate multi-dimensional effects. As a result, the number of
input variables was chosen based on the cumulative variance of shortly after PCA was
implemented to deal with multicollinearity issues. Using the normalisation procedure,
the new dataset with eight inputs and 149 observations was normalised between 0 and 1.
Following that, the normalised dataset was split into two parts: training and testing.

The training dataset was chosen at random from the main dataset, and the testing
dataset was chosen from the remaining dataset. The researchers must assess the prediction
models’ performance because there are no criteria for splitting the dataset into training
and testing groups. A tiny number of testing datasets for assessing the prediction models’
performance, on the other hand, cannot be regarded as important. Figure 7 depicts the
full hybridization process, including the procedures for building the ANN-based hybrid
models ANN-ABC, ANN-ALO, ANN-BBO, ANN-DE, ANN-GA, ANN-GWO, ANN-MFO
and ANN-PSO.
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To evaluate the performance of the developed models, eight different performance
indices, such as the determination coefficient (R2), Willmott’s index of agreement (WI), the
Nash–Sutcliffe efficiency (NSE), performance index (PI), root mean square error (RMSE),
mean absolute error (MAE), mean absolute percentage error (MAPE) and weighted mean
absolute percentage error (WMAPE), were determined [66,67,84–106]. Note that, for a
perfect predictive model, the values of these indices should be equal to their ideal value
given in Table 4. It may also be noted that these parameters are usually determined to
assess the generalization capability of any predictive models from different aspects, such
as the degree of correlation, associated error and amount variances.

R2 =
∑n

i=1 (yi − ymean)
2 −∑n

i=1 (yi − ŷi)
2

∑n
i=1 (yi − ymean)

2 (6)

WI = 1−
[

∑n
i=1 (yi − ŷi)

2

∑n
i=1{|ŷi − ymean|+ |yi − ymean| }2

]
(7)

NSE = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − ymean)

2 (8)

PI = adj.R2 + 0.01VAF− RMSE (9)
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RMSE =

√√√√√ 1
n

n

∑
i=1

(yi − ŷi)
2 (10)

MAE =
1
n

n

∑
i=1

|(ŷi − yi)| (11)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (12)

WMAPE =
∑n

i=1

∣∣∣ yi−ŷi
yi

∣∣∣× yi

∑n
i=1 yi

(13)

where yi and ŷi are the actual and estimated ith value; n and P are the number of samples
and number of input parameters in a dataset under consideration; and ymean is the average
of the actual values.

Table 4. The ideal values of different performance parameters.

Indices R2 WI NSE PI RMSE MAE MAPE WMAPE

Ideal Value 1 1 1 2 0 0 0 0

5. Results and Discussion
5.1. Parametric Configuration

In the below sub section, the results of the hybrid ANN using PCA for estimating the
ultimate load-carrying capacity of CFST are presented. As discussed above, eight PCs (PC1
to PC8) were selected based on PCA to predict the ultimate load-carrying capacity. The
dataset was divided into training and testing sets where the model was developed with
the help of the training dataset, while the testing dataset was used to validate the model.
Hence, the performance of developed model was evaluated using various indices for both
training and testing.

However, before analysing the results, it is important to discuss the configuration of
different hyper and deterministic parameters as presented in Table 5. It is evident that the
deterministic parameters play an important role to develop a model. Hence, the hyper-
parameters of ANN, such as Nhn. and the activation functions, were tuned properly. In
order to find the optimum value of Nhn, the parameter was tuned in the range of 5 to 25,
and we found that the optimum value of Nhn was 10. In this study, the sigmoid function
was used as the activation function.

Table 5. Model configuration.

Parameters ANN-ABC ANN-ALO ANN-BBO ANN-DE ANN-GA ANN-GWO ANN-MFO ANN-PSO

Nhn 10 10 10 10 10 10 10 10
Nhl 1 1 1 1 1 1 1 1
Np 50 50 50 50 50 50 50 50
itr 500 500 500 500 500 500 500 500
wmax 0.9 - - - - - - -
wmin 0.4 - - - - - -
c1, c2 1, 2 - - - - -
r1, r2 0–1 - - - - - - -
ub, lb ±1 ±1 ±1 ±1 ±1 ±1 ±1 ±1
Nlp 101 101 101 101 101 101 101 101
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The deterministic parameters of metaheuristic optimization algorithms (MOA), such
as Np, wmax, wmin, itr, c1 and c2, were also tuned during the simulation. The optimum
values of the effective parameters influencing the developed models are shown in Table 5. It
can be seen from Table 5 that, for fair comparison, the values of Nhn, Nhl and Np were kept
constant for all the hybrid ANN models. Therefore, the total number of optimized learning
parameters

(
Nlp

)
of the ANN-based model was 101 (Nhn × number of input neurons+

number of hidden biases + hidden to output weight + output bias, i.e., 8 × 10 + 10 + 10 + 1).
In the case of ANN-based modelling, the ANN model was initialized first, and after

that, the MOAs (ABC, ALO, BBO, DE, GA, GWO, MFO and PSO) was applied with PCA to
optimize the learning parameters of ANN through the cost function, RMSE. In order to find
the optimum value of learning parameter, 500 iterations were performed with varying the
Nhn = 5 to 25 and Np = 50. The MOAs were tuned using trial and error process to obtain
the best possible values of the output. Those values were used to optimize the weights
and biases of the hybrid ANN models. Further, it should be noted that the convergence
behaviours during the iterative process of MOAs is one of the major factors to access the
performance of models. The convergence behaviour illustrates the capability of MOAs to
ignore the local minima.

The convergence behaviour of hybrid ANN with PCA is shown in Figure 8. From
the figure, it is evident that ANN-GWO achieved the best convergence followed by
ANN-PSO, ANN-BBO and ANN-GA, whereas the ANN-DE and ANN-ABC had the
worst convergence.
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5.2. Model Performance

The prediction capability of the proposed hybrid ANN models with PCA were in-
vestigated to predict the load-carrying capacity of CFST columns. In this section, the
comparative analysis of statistical parameters for quality assessment for both training and
testing parameters is presented in Tables 6 and 7, respectively. The summary of score
analysis is highlighted in Table 8. For the purpose of characterizing the robustness of the
AI models, the R2, RMSE, WI, NSE, PI. NS, RSR, MAE and WMAPE were calculated and
are presented in the tables. The main objective of the study was to perform a comparative
analysis of the hybrid ANN models.

The performance indices and score analysis for the training and testing phase of the
hybrid ANN models are tabulated in Tables 6 and 7. For the training phase, the ANN-GWO
yielded the highest value with the score of 64 and R2 = 0.9667, whereas the ANN-ABC
and ANN-DE underperformed among all the models with the overall scores of 8 and 16,
respectively. However, the results of ANN-ALO, ANN-GA and ANN-BBO were good in
the training phase with R2 values of 0.9527, 0.9463 and 0.9460, respectively.
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Table 6. Model performance in the training phase.

Indices Param. ANN-ABC ANN-ALO ANN-BBO ANN-DE ANN-GA ANN-GWO ANN-MFO ANN-PSO

R2 Value 0.7094 0.9527 0.9460 0.7761 0.9463 0.9667 0.9096 0.9095
Score 1 7 5 2 6 8 4 3

WI Value 0.9108 0.9876 0.9849 0.9300 0.9862 0.9915 0.9751 0.9759
Score 1 7 5 2 6 8 3 4

NSE Value 0.6830 0.9526 0.9434 0.7102 0.9453 0.9667 0.9090 0.9088
Score 1 7 5 2 6 8 4 3

PI Value 1.2959 1.8672 1.8497 1.4115 1.8504 1.9020 1.7641 1.7642
Score 1 7 5 2 6 8 3 4

RMSE Value 0.0898 0.0347 0.0380 0.0858 0.0373 0.0291 0.0481 0.0482
Score 1 7 5 2 6 8 4 3

MAE Value 0.0687 0.0252 0.0256 0.0610 0.0278 0.0191 0.0355 0.0359
Score 1 7 6 2 5 8 4 3

RSR Value 0.5630 0.2177 0.2380 0.5383 0.2339 0.1824 0.3016 0.3020
Score 1 7 5 2 6 8 4 3

WMAPE Value 0.4678 0.1685 0.1742 0.4151 0.1891 0.1292 0.2397 0.2451
Score 1 7 6 2 5 8 4 3

Total score 8 56 42 16 46 64 30 26

Table 7. Model performance in the testing phase.

Indices Param. ANN-ABC ANN-ALO ANN-BBO ANN-DE ANN-GA ANN-GWO ANN-MFO ANN-PSO

R2 Value 0.6954 0.9126 0.9289 0.6883 0.8419 0.9634 0.8869 0.9274
Score 2 5 7 1 3 8 4 6

WI Value 0.9051 0.9770 0.9792 0.8896 0.9535 0.9900 0.9647 0.9717
Score 2 6 7 1 3 8 4 5

NSE Value 0.6075 0.9086 0.9217 0.4790 0.7984 0.9599 0.8793 0.8935
Score 2 6 7 1 3 8 4 5

PI Value 1.0930 1.7364 1.7823 0.9505 1.5032 1.8777 1.6657 1.7708
Score 2 5 7 1 3 8 4 6

RMSE Value 0.1078 0.0520 0.0482 0.1243 0.0773 0.0345 0.0598 0.0562
Score 2 6 7 1 3 8 4 5

MAE Value 0.0773 0.0368 0.0348 0.0734 0.0463 0.0230 0.0401 0.0450
Score 1 6 7 2 3 8 5 4

RSR Value 0.6265 0.3023 0.2799 0.7218 0.4489 0.2003 0.3474 0.3264
Score 2 6 7 1 3 8 4 5

WMAPE Value 0.4706 0.2242 0.2120 0.4468 0.2815 0.1399 0.2438 0.2736
Score 1 6 7 2 3 8 5 4

Total score 14 46 56 10 24 64 34 40

Table 8. Model performance in the training phase.

Phase ANN-ABC ANN-ALO ANN-BBO ANN-DE ANN-GA ANN-GWO ANN-MFO ANN-PSO

Training 8 56 42 16 46 64 30 26
Testing 14 46 56 10 24 64 34 40

Training + Testing 22 102 98 26 70 128 64 66

Figure 9a–c represents the scatter plots between the actual and predicted values for
the best three models (i.e., ANN-GWO, ANN-ALO and ANN-GA) in the training phase
based on the score analysis. In addition, Figure 9d–f illustrates the prediction performance
for ANN-GWO, ANN-ALO and ANN-GA for the validation dataset (a portion of the
training dataset). As can be seen, the developed ANN-GWO attained the most desired
accuracy with R2 = 0.9720 and RMSE = 0.0230, followed by ANN-ALO (R2 = 0.9714 and
RMSE = 0.0281) and ANN-GA (R2 = 0.9369 and RMSE = 0.0413).

From the analysis of the above hybrid models with the dimensionality-reduction
method named PCA, we concluded that the ANN-GWO model again performed the best
among all the models for the testing phase with the values of R2 = 0.9634 and MAE of
0.0230. The ANN-BBO, ANN-PSO and ANN ALO models provided satisfying results in
terms of the statistical parameters. The RSME and WMAPE values for the above three
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models were near 0. The score analysis indicates that the ANN-DE and ANN-ABC models
were again the underachieving models for testing.
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Figure 9. Scatter plots between the actual and predicted values for the best three models:
(a–c) training and (d–f) validation datasets.

The performance of ANN-PSO significantly improved in the testing phase compared
to the training phase with the value of R2 = 0.9274. In the training and testing phases,
the RMSE values of the created models varied from 0.0291 to 0.0898 and 0.0345 to 0.1243,
respectively. These results suggest that the generated models had a smaller error range,
thereby, indicating a better level of accuracy. Figure 10 represents the scatter plots between
the actual and predicted values for best three models (ANN-GWO, ANN-BBO and ANN-
ALO) in the training phase.
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Figure 10. Scatter plots (a–c) between the actual and predicted values (for best
three models—testing phase).

In Table 8, the overall score analysis indicates that the most effective hybrid ANN
model was ANN-GWO with the score of 128, followed by ANN-ALO, ANN-BBO and
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ANN GA with scores of 102, 98 and 70, respectively. ANN-ABC and ANN-DE gave the
lowest overall scores of 22 and 26, respectively.

The visualisation of any results or dataset plays an important role in computational
analysis. It helps to detect noise, pattern outliers and trends of the data, which make it
easier to comprehend by the human brain. The graphical interpretations make it easy to
identify the trends of the outcomes without going through the intimate details. By taking
these things into the consideration, the following section presents the ‘accuracy matrix’ and
‘Taylor diagram’ to visualise the performance visualisation.

For the accuracy matrix, a heat map is proposed to demonstrate the value of perfor-
mance indices to visualise the model efficacy. In Figure 11, the accuracy matrix displays
several statistical parameters to measure the performance of the prediction for the testing
dataset of the model with PCA. The matrix provides the accuracy of models by comparison
with the ideal values. For example, the ideal value of R2 is 1, and the value of R2 in testing
phase for the ANN-GWO is 0.9667 in Table 6. Thus, it can be estimated that the models
attained accuracy of 97% ((0.9667/1) × 100%) in terms of R2.
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Figure 11. Accuracy matrices for the: (a) training phase and (b) testing phase.

On the other hand, the ideal value of MAE is 0, and the ANN-GWO has a value of MAE
is 0.0191, which shows that the ANN-GWO attained 98% ((1−0.0191) × 100%) accuracy in
terms of MAE. Hence, in the above manner, other parameters have been calculated as well.
Through the study, it can be concluded that the ANN-GWO model outperformed the other
models in both training and testing.

For the Taylor diagram, on the other hand, a 2D mathematical diagram is provided
to represent the relation between the actual and predicted variables in terms of the RMSE,
standard deviation and correlation coefficient. The status of all the models can be easily
determined by the images provided in Figure 12. As can be observed, the Taylor diagram
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also provides the same result as seen in the accuracy matrix where ANN-GWO proved its
supremacy over the other models in both phases.
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5.3. Discussion of the Results

The section provides a summarised discussion of the proposed models for the predic-
tion of ultimate bearing capacity of CFST columns. Based on the collected experimental
results, it is clear that the proposed model defines the relationship between the input
and output parameter accurately. The maximum prediction accuracy was achieved for
ANN-GWO for the training stage with R2 = 0.9667, while the ANN-ABC underperformed
among all the models in the training stage with R2 = 0.7094.

The overall best-performing model was ANN-GWO followed by ANN-ALO with
the value of R2 equal to 0.9527 in training and ANN-BBO with the value of R2 equal to
0.9289 in testing. Similar conclusions can be achieved from the rank table. Considering
all the statistical parameters, the best-performing model was ANN-GWO with the rank
of 128 followed by ANN-ALO, ANN-BBO and ANN GA with scores of 102, 98 and 70,
respectively. The ANN-ABC model was found to be the most underperforming model
among all the developed hybrid models. Similar performances were observed using the
accuracy matrix and Taylor diagram.

6. Summary and Conclusions

It is pertinent to mention that an accurate and trustworthy prediction of the ultimate
load-bearing capacity of CFST can save time and will make the process more economical.
Based on the study, the following conclusions are made:
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(a) In the current study, 149 experimental data of CFSTs under uniaxial load with eight
input parameters were obtained from the literature survey. Some recently developed
MOAs were employed with ANN.

(b) Among the models, ANN-GWO was the best-performing model in both phases fol-
lowed by ANN-ALO (R2 = 0.9527, RSME = 0.0347, RSR = 0.2177) in the training stage
and ANN-BBO (R2 = 0.9289, RSME = 0.0482, RSR = 0.2799) in testing. The ANN-ABC
was the most underperforming model in the testing phase.

(c) A dimensionality-reduction method, PCA, was employed to increase the performance
of the models. The experimental validation of the ANN-GWO using PCA demon-
strated that it had higher prediction accuracy in both the training and testing stages.
These results were significantly better than those obtained from the hybrid ANNs
(ANN-ABC, ANN-ALO, ANN-BBO, ANN-DE, ANN-GA, ANN-GWO, ANN-MFO
and ANN-PSO).

(d) Based on the experimental outcomes, the proposed ANN-GWO with PCA has the
potential to assists structural engineers in estimating the Pu of CFSTs during the design
phase of civil engineering projects. The proposed ANN-GWO can also be considered
as a promising technique to handle real-life engineering problems, including the
prediction of Pu of CFSTs. Some hybrid ANNs (i.e., ANN-ALO, ANN-BBO and ANN-
GA) can be a good alternative to predict the Pu of CFSTs as they performed well for
both phases.
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