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Abstract: Isothermal-compression tests of B4Cp/6063Al composites containing 20 vol.% B4C were
performed using a Gleeble-3500 device, at strain rates ranging from 0.001 s−1 to 1 s−1 and deformation
temperatures ranging from 723 K to 823 K. The results showed that the high-temperature flow stress
of B4Cp/6063Al composites increases with the decrease in deformation temperature or the increase
in the strain rate. After friction correction, the friction corrected stress was less than the original
experimental stress. At the initial stage of deformation, the difference between the rheological stress
after friction correction and the measured rheological stress is small, but with the continuous increase
in the strain, the difference between the rheological stress after friction correction and the measured
rheological stress is grows. Under the same strain, the difference between the rheological stress
before and after friction correction becomes more significant with the decrease in the deformation
temperature and the increase in the strain rate. Next, the material constants (i.e., α, β, Q, A, n)
of B4Cp/6063Al composites were calibrated based on the experimental data, and a constitutive
equation was established based on Arrhenius theory. The experimental values and predicted values
of the stress–strain curves are in good agreement with the stress–strain curves of the finite element
simulation, and the validity of the constitutive equation was verified.

Keywords: isothermal compression; B4Cp/6063Al composites; flow stress; constitutive equation

1. Introduction

Metal matrix composites are extensively used in engineering materials due to their
superior mechanical properties over traditional metals. A variety of metal matrix composite
materials, because of their low density and high strength, have attracted attention. The
wear resistance, stiffness, hardness, and other properties of aluminum alloy are significantly
enhanced by adding hard, reinforced particles [1,2]. Generally, the hard composites added
in the aluminum alloy matrix include SiC, Al2O3, TiC, and B4C, etc. Among these, B4C
has low density (2.51 g/cm3), high hardness and high strength, a small thermal expansion
coefficient, and good chemical stability. In addition, B4C-particle-reinforced aluminum
matrix composites have good neutron-absorption properties and can be used to make
neutron-absorber plates.

The research on B4Cp/Al composites mainly includes the preparation process [3],
strengthening mechanism [4], and mechanical properties [1,5–7] of B4Cp/Al composites.
Liu et al. discussed the effect of B4Cp content on the high-temperature oxidation resistance
of the composite. The results showed that the more B4Cp content in the material, the better
the high-temperature oxidation resistance [8]. Guo et al. discussed the influencing factors
on the interfacial bonding strength between B4C particles and Al during the preparation of
B4C/Al and studied the strengthening and toughening mechanism of the composite [9].

Materials 2022, 15, 6438. https://doi.org/10.3390/ma15186438 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15186438
https://doi.org/10.3390/ma15186438
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-4516-559X
https://orcid.org/0000-0003-2572-7938
https://doi.org/10.3390/ma15186438
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15186438?type=check_update&version=1


Materials 2022, 15, 6438 2 of 12

However, there are few studies on the thermoplastic properties and flow field properties
of B4Cp/Al composites. The existence of B4C particles greatly reduces the ductility of the
composite material; its thermoplasticity is quite different from that of the matrix; and its
thermal-deformation properties are quite different from that of the matrix [6–10]. Studying
the hot-deformation characteristics of boron-carbide-particle-reinforced aluminum matrix
composites can help improve understanding of its rheology and plastic deformation, which
has great practical significance for the processing of B4C-particle-reinforced aluminum
matrix composites. Gao et al. studied the effect of hot pressing temperature on the
microstructure and mechanical properties of B4Cp/6061Al composites and obtained the
effect of temperature on the hardness and conductivity of the material [11]. Wu et al. studied
the effect of extrusion at different temperatures on the microstructure and mechanical
properties of B4C-particle-reinforced aluminum composite. The results showed that hot
extrusion had a significant positive effect on the improvement of the mechanical properties
of the composite [12].

Generally, the deformation process can be described by the constitutive relationship
of the material; that is, the relationship between temperature, strain rate, and strain in the
deformation process is established from the experimental data. At present, formulas such
as the Arrhenius, Zerrilli–Armstrong, and Rusinek–Klepaczko formulas are widely used
to study the flow stress of materials [10]. Most commonly, the constitutive model of alloy
materials including aluminum, titanium, magnesium, nickel, and niobium is based on
the Arrhenius equation [13–20]. The model was proposed by Rokni and Zarei-Hanzaki to
describe the flow stress of materials using the Arrhenius equation, which is suitable for a
wide range of stresses.

Prior to this, S. Gangolu et al. [21] researched the flow characteristics of Al-5 wt.% B4C
composites through compression tests performed within a specific temperature range (i.e.,
from 200 ◦C to 500 ◦C) and strain rate range (i.e., from 10−4 s−1 to 100 s−1). The optimum
processing conditions for the Al-5 wt.% B4C composites were as follows: the strain rate
was 10−4 s−1, the temperature range was from 425 ◦C to 475 ◦C, and the constitutive equa-
tion of Sellars-McG Tegart based on strain compensation was established [21]. Following
this, compression experiments were carried out on Al-6.65Si-0.44Mg (A356) alloys and
A356 + 5 wt.% B4C, and numerical simulations were carried out. Stability and instability
changes were made to the process diagrams of A356 alloy and A356 + 5 wt.% B4C [22].
Liu et al. studied the high-temperature flow properties of 25 vol.% B4Cp/2009 Al com-
posites by isothermal-compression experiments, and a constitutive model based on the
Arrhenius scheme was proposed and verified [6]. Zhou et al. considered the high strain
rate correction to its constitutive equation, corrected the experimental flow stress by using
the Arrhenius factor related to temperature, and verified the accuracy of the constitutive
model by using the simulation results [23].

In this study, the flow stress of B4Cp/6063 Al composites was investigated by uni-
axial isothermal-compression experiments. The friction correction equation proposed by
R.EbrahimiA and Najafizadeh corrects the flow stress and considers the effect of friction at
different stages on the flow stress of the B4Cp/6063 Al composite. Through the test results,
the material constants of B4Cp/6063 Al composites were obtained, the constitutive relation
was deduced based on Arrhenius, and the parameters of the constitutive equation were
calibrated. Using the established constitutive model equation to establish the finite element
model to analyze the plastic deformation characteristics of a B4Cp/6063 Al composite, the
simulation results are in good agreement with the experimental results, which proves the
accuracy of the constitutive model equation.

2. Experiments: A Theoretical Basis Is Provided for the Plastic Deformation
Characteristics of B4Cp/6063 Al Composites
2.1. Materials

The B4Cp/6063Al composites containing 20 vol.% B4C particles were produced by the
powder metallurgy method in the present investigation. The cylindrical specimen used in
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the isothermal-compression test was 10 mm in diameter and 15 mm in height, as shown
in Figure 1, and graphite lubricant was used during the experiment to reduce the friction
between the dies and the specimen end faces. The original morphology of the sample was
observed using a metallographic microscope as shown in Figure 2. The B4C particles were
evenly dispersed throughout the aluminum alloy matrix. The chemical composition of
6063 aluminum alloy in mass fraction is shown in Table 1.
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Table 1. Chemical compositions of 6063 aluminum alloy (mass fraction, %).

Si Mg Fe Cu Mn Zr Cr Al

0.2–0.6 0.45–0.9 <0.35 <0.1 <0.1 <0.1 <0.1 Bal.

2.2. Methods

The true stress–strain curves of the sample were discovered by a Gleeble-3500 gadget.
The gadget is composed of a heating system, mechanical system, and digital control system.
The maximum heating rate can reach 10,000 ◦C/s, the temperature control accuracy can
reach ±1 ◦C, the maximum cooling rate can reach 10,000 ◦C/s on the sample surface,
the maximum tensile and compressive static loads are 100 KN, the maximum axial dis-
placement rate is 1000 mm/s, the minimum axial controllable rate is 0.01 mm/s, and the
displacement measurement accuracy is 0.002 mm. Isothermal compression was tested at
strain rates of 0.001 s−1, 0.01 s−1, 0.1 s−1, and 1 s−1, as well as temperatures of 723 K, 748 K,
773 K, 798 K, and 823 K. The sample’s height was reduced to 60%. During the experiment,
the specified temperature was reached at a heating rate of 278 K/s. The deformation
temperature of the sample was measured by a platinum–rhodium thermocouple that was
welded to the center region of the sample surface. A heating rate that is too fast will
cause deformation and warping of the sample, so the sample was heated to the required
temperature and maintained there for 3 min before isothermal compression. At the end
of the test, the sample was quenched in water. The experimental steps of the thermal
compression test were shown in Figure 3. The axial surface of the sample was selected



Materials 2022, 15, 6438 4 of 12

to observe the microstructure properties. The metallographic sample was prepared by
chemical etching and mechanical polishing. The chemical etchant consisted of 95 vol.%
H2O, 2.5 vol.% HNO3, 1.5 vol.% HCl, and 1 vol.% HF. The microstructure of the sample
was observed by Leitz3DMIXT optical microscope.

Materials 2022, 15, x FOR PEER REVIEW 4 of 13 
 

 

welded to the center region of the sample surface. A heating rate that is too fast will cause 
deformation and warping of the sample, so the sample was heated to the required tem-
perature and maintained there for 3 min before isothermal compression. At the end of the 
test, the sample was quenched in water. The experimental steps of the thermal compres-
sion test were shown in Figure 3. The axial surface of the sample was selected to observe 
the microstructure properties. The metallographic sample was prepared by chemical etch-
ing and mechanical polishing. The chemical etchant consisted of 95vol%H2O, 
2.5vol%HNO3, 1.5vol%HCl, and 1vol%HF. The microstructure of the sample was ob-
served by Leitz3DMIXT optical microscope. 

 
Figure 3. Solution process curve for hot-compression tests. 

3. Results and Discussion 
3.1. Friction Correction 

During the isothermal-compression tests, the lubricant was able to reduce the friction 
between the dies and specimens, but the friction became increasingly evident due to the 
area of interface increasing. The experimental results are influenced by the friction and 
the thermal effect of deformation, which will cause an increase in the size of the stress 
error, meaning that the flow stress curve cannot accurately reflect the plastic deformation 
of the material. Especially for the constitutive equation calibration, the accuracy of exper-
imental results is a prerequisite. Therefore, a friction correction of the flow stress was per-
formed to reduce the experimental stress error. The friction correction equation was pro-
posed by Ebrahimi and Najafizadeh [24], and the measured flow stress was corrected by 
the following Equation (1). The shape of the sample before and after compression is shown 
in Figure 4. 

 
Figure 4. Diagrams of the sample before and after compression: (a) before compression; (b) after 
compression. 

Figure 3. Solution process curve for hot-compression tests.

3. Results and Discussion
3.1. Friction Correction

During the isothermal-compression tests, the lubricant was able to reduce the friction
between the dies and specimens, but the friction became increasingly evident due to the area
of interface increasing. The experimental results are influenced by the friction and the thermal
effect of deformation, which will cause an increase in the size of the stress error, meaning
that the flow stress curve cannot accurately reflect the plastic deformation of the material.
Especially for the constitutive equation calibration, the accuracy of experimental results is a
prerequisite. Therefore, a friction correction of the flow stress was performed to reduce the
experimental stress error. The friction correction equation was proposed by Ebrahimi and
Najafizadeh [24], and the measured flow stress was corrected by the following Equation (1).
The shape of the sample before and after compression is shown in Figure 4.
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σ =
P
(

2mR
H

)2

2
[
exp

(
2mR

H

)
− 2mR

H − 1
] (1)

Here, P is the true stress before correction; σ is the corrected flow stress; R and H
are the instantaneous values of the radius and height of samples, which can be calculated
according to Equations (2) and (3), respectively; and m is the friction factor calculated
according to Equation (4).

R = R0 exp(ε/2) (2)

H = H0 exp(−ε) (3)
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m =

(
R f /H1

)
b(

4/
√

3
)
−
(

2b/3
√

3
) (4)

b = 4
∆R
R f
· H1

∆H
(5)

Here, R0 is the initial radius of samples, ε is the strain, Rf is the average radius of
specimens after compression, b is the barrel parameter, ∆R is the difference between the
maximum radius and the top radius of deformed samples, and ∆H is the final height
change of the samples after compression.

R f = R0
√

H0/H1 (6)

∆R = RM − RT (7)

RT =

√
3

H0

H1
R02 − 2R2

M (8)

Here, RM is the maximum radius of deformed samples, RT is the top radius of de-
formed samples, H0 is the initial height of samples, and H1 is the final height of samples.

3.2. Flow Stress Behavior

The solid lines in Figure 5 show the true stress–strain curves of B4Cp/6063Al com-
posites under different deformation temperatures. It can be seen from Figure 5 that the
deformation behavior of B4Cp/6063Al composites can be roughly divided into two stages.
In the initial stage, the flow stress increases rapidly to the peak as the strain increases.
The main reason is that the dislocation density increases sharply, and dislocation motion
accelerates during the deformation process of the material. Additionally, dislocation motion
limited to a certain range cannot easily overcome the obstacles, dislocation tangles, pinning,
and B4C particles, which results in work hardening.
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Subsequently, after the flow stress reaches the peak value, the flow stress decreases
with the increase in strain. The primary explanation is that work hardening can be partially
or completely compensated for by dynamic softening processes, such as dynamic recovery
(DRV) or dynamic recrystallization (DRX), which results in a reduction in flow stress. As
can be considered from Figure 5, the flow characteristics of B4Cp/6063Al composites are
sensitive to temperature and strain rate. Moreover, the flow stress gradually decreases with
the increase in the deformation temperature, while the flow stress will increase swiftly with
the increase in the stress rate at the identical deformation temperature. With the increase
in deformation temperature, the kinetic energy of metal is increased, which makes the
dynamic recrystallization or dynamic recovery fully occur, thereby enhancing the softening
effect of the material. As a result, the flow stress is reduced. The work-hardening rate
increases with the increase in the strain rate at the same deformation temperature. At the
same time, the increase in the strain rate shortens the time of DRV or DRX, so that the
softening cannot be fully carried out. As a result, the flow stress is increased.

3.3. Constitutive Equation of B4Cp/6063Al Composite

The constitutive equation of B4Cp/6063Al composite was developed to describe the
deformation behavior of samples under different temperatures and different strain rates as
well as the effects of deformation conditions on flow stress. Under different stress levels,
the flow stress and strain rate of materials conform to the following relations [25,26].

.
ε = A1σn1 (for low stress level) (9)

.
ε = A2 exp(βσ) (for high stress level) (10)

Here, A1, A2, and β are material constants, n1 is the stress exponent,
.
ε is the strain rate

(s−1), and σ is flow stress (MPa). The two formulas can be unified into the hyperbolic sine
formula, as follows:

.
ε = A[sinh(ασ)]n exp(−Q/RT) (for all σ) (11)

Here, α is the material constant, Q is the effective activation energy for deformation
(J. Mol−1), R is the universal gas constant, 8.314 J. Mol−1 K−1, and T is the absolute
temperature (K). β and α exist in the relationship of α = β/n1.

The friction-corrected true stress–strain curves were used to calculate the material
parameters of the B4Cp/6063Al composite constitutive equation. The natural logarithm of
Equations (9) and (10) were taken, respectively, as shown in Equations (12) and (13):

ln
.
ε = ln A1 + n ln σ (12)

ln
.
ε = ln A2 + βσ (13)

According to the changes in the peak flow stress, the figures of ln
.
ε− ln σ and ln

.
ε− σ

can be plotted for different temperatures. As shown in Figure 6, the natural logarithm
of the strain rate shows a significant linear correlation with the natural logarithm of the
peak stress; similarly, the natural logarithm of the strain rate also has a significant linear
correlation with the peak stress. According to Equations (12) and (13), the slopes of the
lines in Figure 6 gives an approximate value for n and β. The linear regression effects show
that the stress exponent n and the material consistent β are about 11.397 and 0.123. This
gives a material constant α of about 0.011.
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Equation (14) can be obtained through the logarithm of Equation (11).

ln
.
ε = ln A + n ln sinh(ασ)−Q/RT (14)

When the material constant (A, Q, α, n) is obtained, the variation law of the flow
stress of the alloy under high-temperature plastic deformation can be obtained. When
the stress level is unchanged, there is a linear relationship between ln

.
εs and 1/T. Here,

.
εs is the strain ratio. According to the experimental results of deformation at different
temperatures and strain rates, n = n1, α = β/n can be obtained. When aluminum and
aluminum alloy composite materials are used, the value and applied stress are very small
and can be ignored. Equation (15) can be obtained.

.
ε = Aσn exp(Q/RT) (15)

Partial differentiation of Equation (15) leads to Equation (16):

Q = R
[

∂ ln
.
ε

∂ ln σ

]
T

[
∂ ln σ

∂1/T

]
.
ε

(16)

Here,
[

∂ ln
.
ε

∂ ln σ

]
T

= n, and n is the stress exponent. For composite materials, σ can be

substituted by sinh(ασ) in Equation (15), and Equation (17) can be obtained.

Q = R
∂ ln

.
ε

∂ ln[sinh(ασ)]

∣∣∣∣
T

∂[ln sinh(ασ)]

∂(1/T)

∣∣∣∣ .
ε

(17)

It can be seen from Equation (17) that the values of ∂ ln
.

ε/∂ ln[sin h(ασ)] and
∂[ln sin h(ασ)]/∂(1/T) can be evaluated by plotting ln

.
ε − ln[sin h(ασ) and ln sin(ασ) −

1/T [27]. As shown in Figure 7, the graphs of ln
.
ε− ln[sin h(ασ) and ln sin(ασ)− 1/T have

a significant linear correlation. The slopes of the lines in Figure 7 indicate the values for
∂ ln

.
ε/∂ ln[sin h(ασ)] and ln sin(ασ)− 1/T, following Equation (17). There are roughly 8.483

and 442.5865 slopes on average, respectively. Equation (17) was modified to include the value
of R and the two slope values, which resulted in a calculation showing that the average Q-value
of B4Cp/6063Al composites is approximately 312.146 KJ/mol.
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When considering hot compression of composites, the Zener–Hollomon parameter 
can be expressed as Equation (18). 
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When considering hot compression of composites, the Zener–Hollomon parameter
can be expressed as Equation (18).

Z =
.
ε exp(Q/RT) = A[sinh(ασ)]n (18)

The natural logarithm of Equation (18) is given as:

ln Z = ln
.
ε + Q/RT = ln A + n ln[sinh(ασ)] (19)

The value for α and n were introduced into Equation (18) to calculate the values of Z
and ln Z, and to plot ln Z− ln sin h(ασ). As shown in Figure 8, it can be seen that ln Z has
a highly linear correlation with ln sin h(ασ). According to Equation (19), the exact n-values
are derived from the slope of ln Z− ln sin h(ασ), and ln A is obtained from the intercept of
ln Z− ln sin h(ασ). Figure 8 shows the plot of ln Z− ln sin h(ασ) with slope and intercept
at about 8.394 and 43.333, respectively. Therefore, the values of the material constant A and
the stress exponent n are 6.596 × 1018 and 8.394, respectively.
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Finally, introducing the calculated material parameters into Equation (11), the consti-
tutive equation of the B4Cp/6063Al composite is extracted as follows:

.
ε = 6.596× 1018[sinh(0.011σ)]8.394 exp

(
−312.146

RT

)
(20)
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3.4. Verification of the Constitutive Equation

The rationality of constitutive equations directly affects the accuracy of the prediction
of the rheological properties of materials. In this study, the validity of constitutive equations
for B4Cp/6063Al composites was verified from the comparison of flow stress peaks and
finite element simulation [28–30].

(1) Comparison of flow stress peaks of B4Cp/6063Al composites
Equation (21) is obtained by the transformation of Equation (18). Using a hyperbolic

sine function conversion for Equations (21) and (22), flow stress on Z parameters can
be obtained. Substituting the material parameters of the B4Cp/6063Al composite into
Equation (22) yields Equation (23), then the flow stress in different states can be calculated
for corresponding deformation conditions. The predicted values of peak flow stress are
obtained by substituting the strain rate and strain temperature into Equation (23) and the
predicted and friction corrected values from the experiment are compared. As shown in
Figure 9, there is little difference between the predicted value and the corrected value, and
the maximum error of peak stress is 5.6%. Therefore, it can be proved that the constitutive
equation of the B4Cp/6063Al composites is valid.

sinh(ασ) = (Z/A)1/n (21)

σ =
1
α

ln
{
(Z/A)1/n +

[
(Z/A)2/n + 1

]1/2
}

(22) σ = 1
0.011 ln

{(
Z/6.596× 1018)1/8.394

+
[(

Z/6.596× 1018)2/8.394
+ 1
]1/2

}
Z =

.
ε exp[312.146/(8.314× T)]
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(2) Finite element simulation of Gleeble upsetting tests
The isothermal-compression process of B4Cp/6063Al composites was simulated. The

conditions of the numerical simulation are similar to those of the isothermal-compression
test. The extrusion speed is determined by the strain rate. According to Equation (24), the
flow stress of material during the simulation can be calculated [31]. σ =

F
(

H0−
∫ t

0 v0 exp(
.
ε·t)dt

)
H0·S0

ε = ln Hn/H0

(24)

Here, F is the instantaneous axial load of the die in the simulation process; H0 is the
initial height of the blank; v0 is the initial velocity of the top die; v0 = H0·

.
ε, S0 is the initial

stress area of the blank;
.
ε is the strain rate; t is the runtime of the top die;

.
ε is the true strain;

and Hn is the instantaneous height of the blank.
The constitutive equation of B4Cp/6063Al composite was introduced into the material

library of numerical simulation software, and the compression test was simulated in the
temperature range from 723 K to 823 K at the strain rate of 1 s−1.

Figure 10 illustrates the agreement between simulated and experimental data, indicat-
ing the validity of the constitutive equation for the B4Cp/6063Al composite. The higher the
temperature and strain, the higher the agreement between the simulation results and the
experimental results, which is almost consistent with the true stress–strain law obtained
in the literature at a specific temperature. At a certain deformation temperature, when
the strain rate is high, the time required for the specimen to reach a certain amount of
deformation is shortened, the dislocation proliferation rate is increased during the defor-
mation process, and the dislocations are interlaced and entangled with each other, resulting
in an increase in the critical stress required for deformation, and then higher flow stress.
With the increase in strain, various softening mechanisms gradually weaken the hardening
effect, and an obvious rheological softening phenomenon appears. When the strain rate
is constant, with the increase in deformation temperature, the flow stress decreases and
the degree of rheological softening weakens. As shown in Figure 10, since the strain is
loaded from 0 in the simulation process, the actual stress yield point in the simulation
results appears earlier than the experimental results, but the overall trend is consistent,
which proves that the constitutive equation can be used for finite element simulations and
is helpful to further study of the plastic forming properties of materials.
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4. Conclusions

(1) For the thermal deformation of 20 vol.% B4Cp6061al composite at a range of tem-
peratures and a strain rate of 0.6 s−1, the flow stress decreases with the increase
in temperature or strain rate, and it is proposed that this can be expressed by the
Arrhenius constitutive equation.
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(2) As the influence of friction on flow stress becomes increasingly obvious with the
increase in compression during the experiment, the influence of friction on flow
stress should be corrected according to the experimental results. The Arrhenius
constitutive constant of the 20 vol.% B4Cp/6061Al composite was obtained according
to the experimental data and the corrected data.

(3) The reliability of the constitutive equation is verified by comparing the experimental
values and predicted values of the peak flow stress of the B4Cp/6063Al composite and
the finite element simulation. Moreover, the constitutive equation can be used for finite
element simulation, which is helpful for studying the plastic-forming performance of
materials further.
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