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Abstract: Although resistance spot welding (RSW) was invented at the beginning of the last century,
the online-monitoring and control of RSW is still a technological challenge and of economic and
ecological importance. Process, material and geometry parameters of RSW are stored in the database
of the process control system. Prospectively, these accumulated data could serve as the base for
data-driven and physics-based models to monitor the spot weld process in real-time. The objective
of this paper is to present a finite-difference based parallel solver algorithm to simulate RSW time-
efficiently. The Peaceman–Rachford scheme was combined with the Thomas algorithm to compute the
electrical–thermal interdependencies of the resistance spot welding process within seconds. Finally,
the electric–thermal model is verified by a convergence analysis and parameter study.

Keywords: resistance spot welding; finite difference method; real-time simulation; digital twin

1. Introduction

Between 7000 and 12,000 spot welds hold a car body together depending on its size [1]
and 91.7 million cars were produced in the automotive industry worldwide [2]. One major
technological and economical advantage of resistance spot welding over other joining
technologies is the ease of integration in automated production lines. Furthermore, it
is a lucrative process in technological and organizational terms. The process setup is
simple, and the process cycle is, in the order of milliseconds, very short. After stacking
one metal sheet on the top of another, pneumatic driven cylinders move electrode caps
to clamp the metal sheet stack. Subsequently, the metal sheets are pressed together and
a load of up to several hundred MPa is applied (squeeze time). Then, the electrodes are
connected to a voltage, and thus an electric current crosses the metal sheets, in which
Joule heat initiates weld nugget growth and sheet metal fusion (welding time). At the
end, the electrodes rest briefly upon the metal sheets (hold time) before they are moved
to the next weld spot (off time) and the process cycle restarts. The most important quality
criterion for spot welds is its tensile strength. It can be determined by destructive test
methods such as chisel or tensile test. However, after the test the weld is destroyed, and
further deployment is impossible. Alternatively, non-destructive test methods can evaluate
the weld quality and warrant further use of the assembly after testing. A widespread
non-destructive method is ultrasonic testing which aims at detecting the effective contact
area size of the weld joint. If this area exceeds a minimal threshold, the joint weld is
accepted and dismissed otherwise. The equipment is expensive, requires qualified staff,
and ultrasonic testing results scatter broadly. It tends to underestimate the welding spot
diameter by approximately up to 2.5 mm [3]. Other non-destructive methods are numerical
methods that simulate nugget growth and geometric parameters, such as nugget diameter
and penetration depth, which—due to their correlation with weld strength—allow an
indirect assessment of the weld joint quality. However, current RSW models are too slow
for integration into real-time monitoring and control systems, as discussed in the state-
of-the-art section. An online monitoring system for RSW bears the potential of adjusting
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welding process parameters from one manufactured spot weld to the next in the assembly
line, and, as a consequence, reducing the number of NOK welds and save time, costs,
and energy. In the early stages, refs [4,5] applied the finite-difference method (FDM)
to electro-thermal models of RSW. With the assumption of a constant electric current,
ref [4] proposed a model to predict the temperature distribution as a function of time and
space, allowing for variations in the mechanical properties of the sheet metal. Ref [5]
presents the temperature-dependent electrical potential distribution in the base metal and
the interfaces for various electrical currents. In both studies, the nugget diameter and
penetration depth derived from the computed temperature field showed good agreement
with experimental data. Ref [6] used a control volume formulation and central differences
to model the dimensionless temperature field, the nugget growth for different welding
currents, electrode tip shapes and thickness ratios of work pieces. The enthalpy-temperature
relation was capitalized to account for the phase change. The simulation results in terms of
weld nugget growth, nugget thickness and shape were consistent with experimental results.
In [7] the finite volume method (FVM) was adopted to build a complex RSW simulation
model, which considered—among other aspects—the electric current density, the magnetic
field intensity, the temperature, and the velocity field for work pieces with flat faced or
truncated electrodes. The effects of the electrode face radius and cone angle on transport
mechanism, for example, mass transfer, and various other non-linear phenomena were
clearly demonstrated; simulation results agreed well with experimental data. In [8], the
mass, momentum, heat and species transport, as well as the magnetic field intensity, were
discretized by a control-volume formulation to compute the dynamic electrical resistance
during RSW. The simulation result suggest that the dynamic resistance of AISI 1008 steel can
be divided into four distinct stages, in which the contact resistance and the bulk resistance
contributions vary over time. Several years later, ref [9] developed a control volume based
finite difference code for the electrical and thermal field and combined it with a commercial
code that provided the mechanical model. Based on this hybrid-approach, the computed
nugget size deviated from the experimental data by merely three percent. Many simulations
of RSW are based on the finite-element method (FEM), which derives model equations from
integration over the finite-element domain. For example, the general-purpose simulation
program ABAQUS© (Version 5.7) was used to conduct a parametric study on different
electrode shapes, welding currents, and electrode forces for Al-alloys in [1]. Ref [10]
analyzes the influence of electrode-water cooling on welding of aluminum alloys AA5182. It
utilizes LS-DYNA© (R11.0) to build a thermal-electrical-mechanical model. The simulation
results indicated that water cooling affects the temperature distribution in the sheets only
slightly, and thus, does not influence nugget growth at all. However, it has a significant
effect on the electrode cooling during hold-time. Another study on aluminum alloys for
RSW processes was conducted in [11], where a calibrated contact resistance model for
AA5182 was presented. The underlying electric–thermal–mechanical FE model could
reproduce weld nugget diameters deviating from real experiments by four percent. FEM-
based, SORPAS© 3D is a special purpose simulation program with a multi-physics model
for RSW [12]. It was applied to investigate short-pulse welding on aluminum alloy AA6016-
T4 to reduce the required energy for producing sound welds in thin sheets [13]. The nugget
formation was found to happen in two distinct phases: the nucleation, in which 60–80%
of the final diameter evolves due to high contact resistance, and the growth stage, when
further nugget growth is induced by heat conduction. Savings of approximately 50%
regarding energy and time were achieved. SORPAS©.2D provides simulation results with
high accuracy, but it requires approximately an hour to run an RSW-simulation with a
resolution of 1000 finite elements on a conventional desktop computer [14].

In view of the development labor in past decades, it becomes clear that in the frame-
work of appropriately set model assumptions and on the fundament of suitable material
and process data, the nugget growth of RSW can be simulated with sufficient accuracy.
Hitherto, numerical analyses of RSW in academia and commercial special purpose pro-
grams paid attention to simulation accuracy rather than computational speed; none of
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the previously cited research papers indicated information on the simulation run-time.
In terms of a model-based real-time monitoring and quality assessment system, two es-
sential requirements can be formulated: it should be capable of differentiating between
OK and NOK spot welds (sufficient model accuracy) and the time window for the quality
assessment is to be shorter than the time between two consecutive spot welds (compu-
tation speed). In numerical simulation, these requirements contradict each other, that is,
increased simulation accuracy comes along with increased computational time. In the sense
of this optimization problem, it is reasonable to constrain the simulation model to physical
phenomena, which are predominantly relevant to RSW, to reduce the computation cost.
RSW is based on Joule heating, i.e., the transformation of electrical to thermal energy, to
join metal stacks by fusion. Thus, the electric-thermal model is considered as the core of
any multi-physics model for RSW. The finite difference method, for heat transfer in solids
elaborately described in [15], derives model equations from replacing partial derivative
terms by finite differences. In this paper, this numerical method is applied to develop an
electric-thermal model for RSW by means of the Peaceman–Rachford scheme. It leads to
a set of linear equations with tridiagonal band matrices which are solved by the Thomas
Algorithm rapidly. Based upon this solving algorithm, the electric-thermal model is verified
and investigated on its suitability for real-time simulations.

2. Resistance Spot Welding Model

This paragraph describes all aspects necessary for implementing the electric-thermal
model presented in this paper. It includes the model geometry, the boundary conditions
(Section 2.1), the electric model (Section 2.2), the thermal model (Section 2.3), the material
model (Section 2.4), and the solution methodology (Section 2.5).

2.1. Model Geometry and Boundary Conditions

According to DIN EN ISO 5821-C0-16-23 the electrode cap geometry was defined. Ax-
ial symmetry along the faying surface is supposed and, thus, it suffices to model the upper
electrode cap and sheet of the weld joint. Furthermore, the electric-thermal field is assumed
to be constant in circumferential direction, which allows the cylindrical coordinate system
of the plane (r, z) to represent the cylindrical coordinate system of the three-dimensional
space (r, φ, z). The modelled plane consists of 1007 nodes and can be considered as the
entity of three connected rectangle regions I, II, and III. They are meshed equidistantly and
consist of 6 × 20 (I), 19 × 37 (II), and 23 × 8 (III) nodes along the r- and z-axis, respectively.
The model geometry as well as its dimensions are depicted in Table 1. To determine the
space increment, the criterion for explicit methods Equation (1) is applied. Rearranging it
leads to

∆r = ∆z ≥
√

2·amax·∆tmax. (1)

In the study at hand, the maximum thermal diffusivity is associated with the copper
electrode aCu = λ · c−1

p · ρ−1 = 1.01748× 10−4m2s−1 and the largest time increment is
∆tmax = 6× 10−4 s. Thus, the space increments are selected as ∆r = ∆z = 0.4 mm.

In order to solve for the temperature and electric potential fields, the boundary con-
ditions of the electric–thermal model must be specified. The electric current streams
unidirectional, i.e., a direct current is adopted. Except from the top of the upper electrode,
Equation (2), and the faying surface, Equation (3), all system border nodes are electric
isolators Equations (4) and (5).

Φ|CD = ΦElectrode (2)

Φ|OG = 0 V (3)

∂Φ
∂r

∣∣∣∣
OA

=
∂Φ
∂r

∣∣∣∣
BC

=
∂Φ
∂r

∣∣∣∣
DE

=
∂Φ
∂r

∣∣∣∣
FG

= 0 (4)

∂Φ
∂z

∣∣∣∣
AB

=
∂Φ
∂z

∣∣∣∣
EF

= 0 (5)
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Table 1. Geometry features and dimensions.

Geometry Feature Dimension (mm)
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sheet radius r  8.8 

sheet thickness h  2 

inner electrode radius r  6 

outer electrode radius r  8 

electrode height h  23 

cooling recess h  10.5 

space increments Δr = Δz 0.4 

height of contact layer 10  

In order to solve for the temperature and electric potential fields, the boundary con-
ditions of the electric–thermal model must be specified. The electric current streams uni-
directional, i.e., a direct current is adopted. Except from the top of the upper electrode, 
Equation (2), and the faying surface, Equation (3), all system border nodes are electric 
isolators Equation (4), and Equation (5).  Φ| = Φ  (2)Φ| = 0V (3)∂Φ∂r = ∂Φ∂r = ∂Φ∂r = ∂Φ∂r = 0 (4)∂Φ∂z = ∂Φ∂z = 0 (5)

The initial temperature of the sheet and electrode, modelled by Equation (6), corre-
sponds to the assumed ambient temperature of 20 °C. Convection between the cooling 
water and the electrode is modelled as a Dirichlet boundary condition by loading a con-
stant temperature of 20 °C onto separating border nodes, Equation (6). Due to Joule heat-
ing, each node acts as a volumetric heat source, and heat is transferred to cooler adjacent 
nodes. The interfacial heat generation between the sheets is accounted for by Equation (7). 
Convective heat transfer to the surrounding air is negligible [10,16]. Therefore, the nodes 
contacting the surrounding air, Equation (8), and the remaining ones, Equation (9), simu-
late adiabatic system borders.  T| = T| = T| = 20°C (6)Q| = 1σ ∂Φ∂z  (7)∂T∂z = ∂T∂z = 0 (8)∂T∂r = ∂T∂r = ∂T∂r = ∂T∂r = 0 (9)

sheet radius rs 8.8

sheet thickness hs 2

inner electrode radius ri 6

outer electrode radius ro 8

electrode height he 23

cooling recess hf 10.5

space increments ∆r = ∆z 0.4

height of contact layer 10−2

The initial temperature of the sheet and electrode, modelled by Equation (6), corre-
sponds to the assumed ambient temperature of 20 ◦C. Convection between the cooling
water and the electrode is modelled as a Dirichlet boundary condition by loading a constant
temperature of 20 ◦C onto separating border nodes, Equation (6). Due to Joule heating, each
node acts as a volumetric heat source, and heat is transferred to cooler adjacent nodes. The
interfacial heat generation between the sheets is accounted for by Equation (7). Convective
heat transfer to the surrounding air is negligible [10,16]. Therefore, the nodes contacting
the surrounding air, Equation (8), and the remaining ones, Equation (9), simulate adiabatic
system borders.

T| t=0 = T|AB = T|BC = 20 ◦C (6)

Q|OG =
1

σcontact

(
∂Φ
∂z

)2
(7)

∂T
∂z

∣∣∣∣
DE

=
∂T
∂z

∣∣∣∣
EF

= 0 (8)

∂T
∂r

∣∣∣∣
OA

=
∂T
∂r

∣∣∣∣
CD

=
∂T
∂r

∣∣∣∣
FG

=
∂T
∂r

∣∣∣∣
OG

= 0 (9)

Material properties of Cu are assigned to the electrode–sheet interface. The estimation of
heat transfer across the interfaces is uncertain. Hence it is simplified and treated as heat
conduction in a solid body.

2.2. Electric Model

Equation (10) is a second order partial differential equation of elliptic type and the
model equation for the electrical field. It is solved for the electrical potential, which is used
to calculate the Joule heating in Equation (14).

∂

∂r

(
1
σ

∂Φ
∂r

)
+

1
σr

(
∂Φ
∂r

)
+

∂

∂z

(
1
σ

∂Φ
∂z

)
= 0. (10)

Finite difference methods discretize partial differential equations by replacing derivatives
with finite differences, which are obtained by a Taylor series approximation. Equation
(10) factors in resistance as function of the space coordinates (r, z) and the temperature T.
Applying the finite difference method to Equation (10) yields the finite-difference form of
the partial derivatives:

∂

∂r

(
1
σ

∂Φ
∂r

)
≈ 1

∆r2

(
Φi−1,j −Φi,j

σi−1,j + σi,j
−

Φi,j −Φi+1,j

σi,j + σi+1,j

)
, (11)
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1
σr

(
∂Φ
∂r

)
≈ 1

2(i− 1)∆r2

(
Φi−1,j −Φi,j

σi−1,j + σi,j
+

Φi,j −Φi+1,j

σi,j + σi+1,j

)
, (12)

∂

∂z

(
1
σ

∂Φ
∂z

)
≈ 1

∆z2

(
Φi,j−1 −Φi,j

σi,j−1 + σi,j
−

Φi,j −Φi,j+1

σi,j + σi,j+1

)
. (13)

Substituting the partial derivatives in Equation (10) with Equations (11)–(13) leads to the
finite difference model equation, which is used to compute the potential distribution in the
electrode-sheet configuration.

2.3. Thermal Model
2.3.1. Heat Diffusion Equation

The heat diffusion equation is a second order partial differential equation of parabolic
type. For a solid or motionless fluid volume unit, it states that the rate of change of thermal
energy stored equals the net rate of in- and outgoing conductive energy transfer and the
rate of thermal energy generation. The partial differential equation of the heat diffusion is
defined by:

ρ · cp ·
∂T
∂t

=
∂

∂r

(
λ

∂T
∂r

)
+
λ

r
∂T
∂r

+
∂

∂z

(
λ

∂T
∂z

)
+ Q. (14)

After discretizing (14) by the finite difference method, the terms are as follows:

∂

∂r

(
λ

∂T
∂r

)
≈
(
λi−1,j + λi,j

2∆r2 Ti−1,j −
λi+1,j + 2λi,j + λi,j

2∆r2 Ti,j +
λi+1,j + λi,j

2∆r2 Ti+1,j

)
(15)

λ

r
∂T
∂r
≈ λi,j

(
Ti+1,j − Ti−1,j

2∆r2(i− 1)

)
(16)

∂

∂z

(
λ

∂T
∂z

)
≈
(
λi,j−1 + λi,j

2∆z2 Ti,j−1 −
λi,j+1 + 2λi,j + λi,j−1

2∆z2 Ti,j +
λi,j+1 + λi,j

2∆z2 Ti,j+1

)
(17)

∂T
∂t
≈ Tn+1 − Tn

∆t
. (18)

Substituting the partial derivative terms in Equation (14) with Equations (15)–(18) leads to
the discretized heat diffusion equation, which is applied to compute the temperature field
in the electrode-sheet configuration.

2.3.2. Joule Heating

Joule heating connects the electrical potential to the thermal model. It is implemented
as the source term in the heat diffusion Equation (14). The formula for Joule heating is de-
fined as Equation (19) and can be discretized by central differences Equations (20) and (21)
for the gradient of the electrical potential. After inserting Equations (20) and (21) into
Equation (19), the discretized source term emerges and can be embedded in Equation (14).

Q =
1
σ

((
∂Φ
∂r

)2
+

(
∂Φ
∂z

)2
)

(19)

∂Φ
∂r
≈

Φi+1,j −Φi−1,j

2∆r
(20)

∂Φ
∂z
≈

Φi,j+1 −Φi,j−1

2∆z
(21)

2.3.3. Contact Resistance Model

The basics of electrical contacts were studied and published by Holm [17] and Green-
wood [18]. The contact resistance can be decomposed into constriction and film resistance.
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However, the applied equation in this model ignores the distinction and considers both
components as one entity for the sake of simplicity. The formula that relates resistance to
resistivity is:

R =
σ·l
A

, (22)

where the length l and the area A are the size of a three-dimensional electrical resistor. The
model of linear variation of voltage within the contact zone is adopted from [5]. Hence,
the electric current density Equation (23), and the interfacial heat generation at the faying
surface Equation (24) can be computed by

Jcontact =
1

σcontact

(
∂Φ
∂z

)
contact

, (23)

Qcontact =
1

σcontact

(
∂Φ
∂z

)2

contact
. (24)

Equations (23) and (24) indicate that the electric current flows perpendicular through
the faying surface. The voltage drop at the faying surface is discretized by the forward
difference according to:

∂φ

∂z
≈
φcontact,j +1 −Φcontact,j

∆zcontact
. (25)

The contact layer height between the sheets is set to ∆zcontact= 0.01 mm and is regarded as
the average roughness of the faying surface, which in practice deforms more the heavier
the electrode load is. According to the literature it ranges between 0.01 and 0.05 mm [5,19].

2.3.4. Phase Change Model

The phase change from solid to liquid is of particular importance. Neglecting the
effect would lead to an unrealistically high temperature field beyond the melting point.
While the sheet melts, the temperature remains constant and energy—the specific latent
heat H—is absorbed to break down the lattice structure of the solid elementary cells. The
specific latent heat for Al amounts to 397 kJ/kg. The specific heat capacity of the phase
change cphase = 1.14 kJ/(kg · ◦C) results from the arithmetic mean of the specific heat
capacity at the solidus and liquidus temperature. For RSW simulations, the latent heat can
be transformed into an equivalent temperature difference

∆T =
H

cphase
. (26)

It can be considered as an artificial temperature reservoir, which can be used to differentiate be-
tween solid, solid–liquid and liquid phase. In the solid state (Tsheet < Tsolidus), ∆T = 348.25 ◦C
remains constant; the sheet temperature increases. As the sheet enters the solid–liquid phase
(Tliquidus > Tsheet > Tsolidus), the difference temperature Tsheet−Tsolidus is subtracted from ∆T.
As long as the sheet remains in the solid–liquid phase (0 < ∆T < 348.25 ◦C), the temperature
increase is suppressed. When ∆T = 0 ◦C is reached, the liquid phase (Tsheet > Tliquidus) begins
and the model continues to increase the temperature.

2.4. Material Model

The material data set encompasses specific heat capacity cp, thermal conductivity λ,
electric resistance σ and density ρ, all as functions of temperature. The authors in [20]
provide data on specific heat capacity for Al and Cu in all three phases; on electric resistance
only for phase change and liquid stage. These electrical resistance values were inserted
into the Wiedemann–Franz Law Equation (27) to obtain the thermal conductivity.

λ =
T
σ
· L (27)
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For solid state, ref [21] provides values for the thermal conductivity of Al and Cu. These
served the calculation of electrical resistance by the Wiedmann–Franz Law. The density for
phase change and liquid state stem from [20] as well. The solid density values for Cu and
Al were determined by

ρ(T,α) =
ρ25

(1 + α(T− 25 ◦C))3 . (28)

The temperature dependent thermal expansion factor α, the density value of the sheet
ρAl

25 = 2700 kg/m3 and the electrode ρCu
25 = 8960 kg/m3 are given in [22]. Depending on

temperature intervals, the material data were averaged and are summarized in Table 2.

Table 2. Material data set.

Aluminum Sheet Copper Electrode Cap

Solid
(T < 660 ◦C)

Phase Change
(T = 660 ◦C)

Liquid
(T > 660 ◦C)

Solid

ρ (kg/m3) 2663 2385 2323 8874

cp (J/kg · ◦C) 1041 1194 1085 412

λ(W/(m · ◦C)) 231.5 209 102 372

σ(nΩm) 56 110 270 38.7

The solidus temperature for Al is defined at 660 ◦C. In the simulation, the temperature
of the electrode cap never came near solidus temperature. Therefore, material parameters
of copper were restricted to solid state exclusively. For each phase a contact resistance was
defined. The contact resistances for the solid and solid–liquid phase were aligned with the
bulk material resistance of the aluminum sheet as the faying surface and the bulk material
are assumed to possess the same consistency beyond solidus temperature.

2.5. Solution Methodology

D.W. Peaceman and H. H. Rachford introduced an alternating-direction implicit
scheme for finite difference methods—the so-called Peaceman–Rachford scheme [23]. It
originates a set of linear equations with tridiagonal band matrices which can be solved by
the Thomas Algorithm efficiently. To the author’s best knowledge, this solution method-
ology was used to simulate the melting during the RSW for the first time. By using the
discretized heat diffusion Equation (14), the application of the Peaceman–Rachford scheme
is demonstrated in this section. The approach is analogously viable to the discretized form
of Equation (10).

2.5.1. Peaceman–Rachford Scheme

The Peaceman–Rachford scheme is an unconditionally stable method permitting
an arbitrary large time step size. Locally, it is second order accurate in space and time
O
(

∆r2, ∆z2, ∆t2
)

. The heat diffusion equations casted into the Peaceman–Rachford scheme
leads to following equations:(

1− µr
2
(δ2

r +
δr

(i− 1)
)

)
Ti,j,n+0.5 = (1 +

µz
2
δ2

z)Ti,j,n +
∆t
2

Qi,j,n+0.5 (29)

(1− µz
2
δ2

z)Ti,j,n+1 =

(
1 +

µr
2
(δ2

r +
δr

(i− 1)
)

)
Ti,j,n+0.5 +

∆t
2

Qi,j,n+0.5. (30)

The alternating-direction character of the PR-Scheme is clarified by Equations (29) and (30).
At first, the known temperature distribution Ti,j,n is used to compute the intermediate
temperature distribution Ti,j,n+0.5 in radial direction by Equation (29). Afterwards, this
intermediate solution serves as the input for the subsequent calculation carried out by
Equation (30), which outputs the temperature distribution Ti,j,n +1 in axial direction. The
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solution of Equation (30) constitutes the solved temperature field of the resistance spot
weld nugget. The difference operators δrTi,j, δ2

r Ti,j, and δ2
zTi,j are defined as follows:

δrTi,j = λi,j
Ti+1,j − Ti−1,j

2
(31)

δ2
r Ti,j =

λi−1,j + λi,j

2
Ti−1,j −

λi+1,j + 2λi,j + λi−1,j

2
Ti,j +

λi+1,j + λi,j

2
Ti+1,j (32)

δ2
zTi,j =

λi,j−1 + λi,j

2
Ti,j−1 −

λi,j+1 + 2λi,j + λi,j+1

2
Ti,j +

λi,j+1 + λi,j

2
Ti,j+1. (33)

The Equations (29) and (30) must be arranged according to aiTi−1,j,n+0.5 + biTi,j,n+0.5 +
ciTi+1,j,n+0.5 = di,n and ajTi,j−1,n+1 + bjTi,j,n+1 + cjTi,j+1,n+1 = dj,n+0.5, respectively, in order
to be formatted appropriately for the application of the Thomas-Algorithm.

2.5.2. Thomas Algorithm and Code Implementation

The Peaceman–Rachford scheme leads to a system of algebraic equations, one for each
of Equations (29) and (30). The Thomas algorithm as a direct solver for tridiagonal system
of algebraic equations, treats Equations (29) and (30) indifferently, i.e., it is applied to both
matrix equations equally. Thus Equations (29) and (30) can be unified in a general format:

b1 c1
a2 b2 c2

a3 b3 c3
. . . . . . . . .

aN−1 bN−1 cN−1
aN bN





T1
T2
T3
...

TN−1
TN


=



d1
d2
d3
...

dN−1
dN


. (34)

The Thomas Algorithm consists of two phases. First, the matrix equation is brought into an
upper diagonal shape by zeroing ak, and substituting bk and dk by

bk = bk −
ak

bk−1
ck−1 (35)

dk = dk −
ak

bk−1
dk−1. (36)

for k = 2, . . . , N. Second, the temperature field is solved by backward substitution, based on

Tk =
dk − ckTk+1

bk
, (37)

beginning in the last row with TN = dN/bN towards the first row with T1. To provide an
overview of the coupling between the electric and the thermal model and the underlying
program structure, a pseudo-code is depicted in the Appendix A. After initialization of
the model geometry and fixed material properties, the welding time tw can be defined as
the product of the time step ∆t and the number of time steps n arbitrarily. The number of
time steps n also determines how often the temperature dependent material properties
are updated as well as how many times the electric and thermal fields are calculated. The
electrical field is computed iteratively until the residuum and the difference of succeeding
solutions fall below given predetermined break conditions, respectively. By combining the
Peaceman–Rachford Scheme with the Thomas algorithm, the temperature field is calculated
by two main sequences, which are referred to as sweeps or scans in pertinent literature.
During the first sweep, intermediate temperature values are calculated for each row grid
point wise from left to right by Equation (29). Analogously to the first sweep, the second
sweep calculates the final temperature values for each column grid point wise from bottom
to top by Equation (30). For further details on the theory and implementation of the
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Peaceman–Rachford scheme and the Thomas Algorithm, the books [24,25] can be consulted.
This solver methodology operates line by line, which makes parallel computing feasible
and promotes real-time simulation. The simulation model was run on an Intel Core i5-6500
CPU (3.2–3.6 GHz) and in MATLAB© (R2018b).

3. Results

Paragraphs 3 and 4 aim at verifying the implemented model from a numerical and
physical point of view by a convergence analysis and a parameter study, respectively. It
demonstrates that the electric-thermal model meets general expectations on the behavior of
numerical methods and on the physics of RSW. Despite the Joule heating in the electrode has
also been part of the computation and influenced the simulation run-time, it is not analyzed
in detail in the forthcoming paragraphs due to its negligible low temperature increase.

3.1. Convergence Analysis and Computation Speed

In order to examine the electro–thermal model’s run time tsim and convergence be-
havior, three spot welds with welding times tw = 40 ms, tw = 50 ms und tw = 60 ms were
simulated. The voltage between the electrode cap and the faying surface drops by 0.5 V
and the contact resistance between the sheets amounts to 400 µΩm for all variants. All
other simulation parameters are known from preceding paragraphs and are identical for all
simulation variants as well. For each welding time tw = n · ∆t, the number of simulations
runs n and the time steps ∆t were combined twelve times, see Tables 3–5. The number
of variants per simulated welding time was chosen to be twelve so as to ensure that the
mean sheet temperature T remains constant when the time step ∆t is further decreased (or
simulations run n is further increased). Therefore, the twelfth variant of each Tables 3–5
is the closest approximation of the assumed exact solution for the corresponding welding
time and set spatial grid. The discretization errors ε are calculated by referring to the mean
temperature T of the twelfth variants in all three tables, i.e., ε =

(
T− Tvariant12

)
/Tvariant12.

The influence of the simulations runs n and the influence of the time step ∆t on the conver-
gence behavior were to be analyzed separately. Thus, across the Tables 3–5 the simulation
runs n were held constant with varying time steps ∆t for the variants 1, 2, 4, 5, 7, 8, 10, and
11; while the simulations runs n varied with constant time steps ∆t for the variants 3, 6, 9,
and 12. The arithmetic mean of the sheet temperature T over all nodes and its standard
deviation SD(T) as well as the minimum and maximum values of the sheet temperature
Tmin and Tmax were determined. Finally, the run-time tsim of each simulation variant was
measured manually with a stopwatch and is therefore subject to slight measurement errors.

Table 3. Characterization of sheet temperature field depending on (n,∆t)-variants (welding time
tw = 40 ms).

Variant n ∆t (µs) T (◦C) SD(T) (◦C) Tmax (◦C) Tmin (◦C) ε (%) tsim (s)

1 100 400 332 229 1000 79 7.4 3
2 200 200 326 218 941 82 5.5 3.5
3 400 100 320 210 900 82 3.6 4
4 1000 40 315 203 862 82 1.9 5
5 2000 20 312 200 845 82 1.0 6
6 4000 10 311 198 832 82 0.7 8
7 10,000 4 310 196 824 82 0.3 9
8 20,000 2 310 196 821 82 0.3 14
9 40,000 1 309 195 819 82 0.0 20

10 100,000 0.4 309 195 818 82 0.0 36
11 200,000 0.2 309 195 818 82 0.0 66
12 400,000 0.1 309 195 817 82 0.0 125
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Table 4. Characterization of sheet temperature field depending on (n,∆t)-variants (welding time
tw = 50 ms).

Variant n ∆t (µs) T (◦C) SD(T) (◦C) Tmax (◦C) Tmin (◦C) ε (%) tsim (s)

1 100 500 419 302 1456 118 9.7 6
2 200 250 409 286 1368 115 7.1 8
3 500 100 398 268 1270 113 4.2 10
4 1000 50 392 260 1226 112 2.6 10
5 2000 25 388 255 1194 112 1.6 10
6 5000 10 385 250 1169 111 0.8 12
7 10,000 5 384 249 1160 111 0.5 14
8 20,000 2.5 383 248 1155 111 0.3 18
9 50,000 1 383 247 1152 111 0.3 27

10 100,000 0.5 382 247 1151 111 0.0 43
11 200,000 0.25 382 247 1150 111 0.0 73
12 500,000 0.1 382 247 1150 110 0.0 162

Table 5. Characterization of sheet temperature field depending on (n,∆t)-variants (welding time
tw = 60 ms).

Variant n ∆t (µs) T (◦C) SD(T) (◦C) Tmax (◦C) Tmin (◦C) ε (%) tsim (s)

1 100 600 526 408 2001 150 10.0 11
2 200 300 515 392 1918 146 7.7 13
3 600 100 501 371 1805 141 4.8 15
4 1000 60 496 364 1768 139 3.8 15
5 2000 30 490 356 1732 137 2.5 16
6 6000 10 483 348 1695 136 1.0 19
7 10,000 6 481 346 1685 136 0.6 22
8 20,000 3 480 345 1677 135 0.4 25
9 60,000 1 479 343 1671 135 0.2 37

10 100,000 0.6 479 343 1670 135 0.2 50
11 200,000 0.3 478 343 1669 135 0.0 79
12 600,000 0.1 478 343 1668 135 0.0 199

3.2. Parameter Study

For qualitatively verifying the simulation model, n = 10,000, as this choice leads to
results with acceptable low discretization error (ε ≤ 1%). As process parameters, the
welding time, the applied voltage, and the electric current affect the amount of thermal
energy produced in the metal sheets. Aside from above mentioned process parameter, the
electric contact resistance at the faying surface also influences the Joule heating. Thus, the
parameter study is performed by varying the electrode voltage, the welding time and the
contact resistance one by one while all other parameters are held constant. The results
of the parameter study are shown in Figure 1 with corresponding data in Table 6. The
reference spot weld is depicted separately in the first row of Table 6 and referenced by
Figure 1a.

According to Section 2.3.4, a grid point is solid (T < 660 ◦C), mushy (T = 660 ◦C)
or liquid (T > 660 ◦C). Thus, the upper limit of the temperature scale in Figure 1 is set
to 1000 ◦C to permit the distinction between these three phases. The simulation of the
reference weld (Figure 1a) was conducted with the parameters U = 0.5 V, σ = 400 µΩm, and
tw = 40 ms. Its temperature field is described with T = 310 ◦C, SD(T) = 196 ◦C, Tmin = 82 ◦C,
Tmax= 824 ◦C and marked with a thin molten and mushy zone along the faying surface; the
rest of the sheet is solid. Compared to Figure 1a, the spot weld in Figure 1b exhibits lower
temperature values T, SD(T), Tmin, and Tmax due to a reduced electrode voltage of 0.45 V. It
is solid except for a mushy area at the contact layer. The Figure 1c indicates a molten and
mushy phase along the faying surface, both shaped like a flat ellipse. On account of an
increased voltage of 0.55 V, the temperature field of Figure 1c is overall higher than in the



Materials 2022, 15, 6348 11 of 16

reference weld. An examination of the welds in Figure 1a–c shows that the temperature
increases with voltage. In Figure 1d near the left-bottom corner, a slight molten pool can be
observed. Furthermore, a thin mushy zone evolves along the faying surface. Compared to
the reference weld, the contact resistance σ = 300 µΩm and the values of T, SD(T), Tmin, and
Tmax are lower. An increase of the contact resistance up to σ = 500 µΩm (Figure 1e) induces
higher temperatures than in the reference spot weld. As a result, an increase/decrease of
the contact resistance causes higher/lower spot weld temperatures. Finally, the welding
time of the reference spot weld was varied by ± 10 ms to verify the model. While Figure 1f
depicts merely the onset of a fusion area, Figure 1g shows clearly an elliptically shaped
weld spot. By contrast to Figure 1a, the weld temperatures in Figure 1f,g are decreased and
increased, respectively. As expected, the weld spot temperature increases the longer the
welding time lasts.
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Table 6. simulation parameters and results of parameter study.

U/(V) σ/(µΩm) tw/(ms) T/(◦C) SD(T)/(◦C) Tmin/(◦C) Tmax/(◦C)

a 0.5 400 40 310 196 82 824

b 0.45 400 40 281 181 68 660
c 0.55 400 40 358 245 93 1094

d 0.5 300 40 291 185 71 724
e 0.5 500 40 328 209 88 901

f 0.5 400 30 254 186 44 660
g 0.5 400 50 384 249 111 1160

4. Discussion
4.1. On Computation Speed and Convergence Analysis

In Table 3, the simulation variant 4 with ∆t = 40 ms (n = 1000) exhibits a discretization
error of 1.9 %, while variant 7 with ∆t = 4 µs (n = 10,000) leads to a discretization error of
0.3 %. It exemplifies the expected relation between the time step and the discretization error,
i.e., the discretization error decreases with decreasing time step. Moreover, the run-time
increases with shrinking time step as discussed hereinafter. The run-time for the variant
4 with ∆t = 40 µs and variant 7 with ∆t = 4 µs in Table 4 are 5 s and 9 s, respectively.
In addition, the run-time relates to the discretization error conversely, i.e., the run-time
increases with decreasing discretization error. By comparing variants 4 and 7 of Table 3
again, it is discernible that the run-time increases from 5 s to 9 s while the discretization
error decreases from 1.9 % to 0.3 %. These relations apply to all (n,tw)-variants in Tables 3–5
equally. From a numerical point of view, it has been shown that the relations among the
time step, discretization error and run-time meet common expectations on the general
behavior of finite difference methods. Another observation is that the solution converges
from top to bottom for decreasing time step size. For example, in Table 5 the variants 3, 6, 9,
and 12 possess mean sheet temperatures T and time steps ∆t of (T = 398 ◦C, ∆t = 100 µs),
(T = 385 ◦C, ∆t = 10 µs), (T= 383 ◦C, ∆t = 1 µs) and (T = 382, ∆t = 0.1 µs). The standard
deviation SD(T), Tmin, and Tmax behave analogously. However, an unexpected effect
can be observed by comparing the variants 4 in Tables 3–5. The run-time increases with
increasing time step ∆t for a fixed number of simulation runs. For example, the run-time
amounts to 5 s, 10 s and 15 s for corresponding time steps of ∆t = 40 µs, ∆t = 50 µs and
∆t = 60 µs, although the simulation runs n = 1000 are identical in all three variants. It can
be explained by the fact that an increased time step leads to higher temperature values of
the intermediate simulation result. High temperature values require more computer bits of
the central processor unit than lower temperature values and this coincides with higher
computational costs.

The demand for fast computation models for the precise prediction of process sim-
ulation has been growing since the beginning of Industry 4.0. The idea of integrating
real-time-capable digital twins into production processes to increase productivity, by reduc-
ing waste or increase quality, and use them as monitoring and control units is receiving
increasing attention in industry and research. In [26] a digital twin for RSW is presented,
which visualizes the temperature field. It consists of an interpolation model based on
experiments and FE computations. The digital twin delivers almost identical results to
the simulation model (deviation < 1%) and takes only 10 s instead of one hour (FEM
model). In [27] the inherent strain and deformation method are applied to predict the
total deformation of 23 resistance spot welds in a vehicle part within around 90 min. The
resulting deformation, the so-called inherent deformation, is achieved by calculating the
difference between the total and elastic deformation. The total deformation is identified by
experiments; the elastic deformation is calculated by an FEM-tool. In [28], an equivalent
parametric methodology for modelling multi-pass longitudinal welds on planar structures,
such as plates and rectangular hollow sections, is introduced. The so-called welding equiva-
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lence model consists of a single and multi-layered shell, connection and beam elements and
is generated by an automatic sub-program that acts on already existing FE shell model. It
uses transient thermal and steady-state structural analysis to identify residual stresses and
local distortions typical of multi-pass welds. Compared to classic numerical 3D models, it
reduces the computing time by a factor of ten. Although the results of the studies [26–28]
are remarkable in terms of the shortened computing time, the extended preparation time
is critical; namely carrying out experiments and/or numerical simulations. It is not evi-
dent how the computational time savings compare to the additional preparation time, or
whether this translates into an overall time saving. The computation speed of numerical
models remains a bottleneck in the above-mentioned studies. It underlines the importance
of time-efficient simulation models.

For the design of numerical programs exist at least three aspects that have a significant
impact on the computing speed of transient thermal conduction problems. This includes
the choice between explicit vs. implicit difference methods, iterative vs. direct solvers
and structured vs. unstructured grids. Explicit methods are conditionally stable, so that a
given stability criterion must be met. It limits the size of the time step to be selected and
leads to long run times for simulations. Implicit methods are unconditionally stable and
are not subject to this restriction. Because a larger time step may be selected for implicit
methods, the simulation run time can be shorter. The disadvantage of these methods is
the increased effort during implementation. Iterative solvers, such as the Gauss–Seidel
process, require numerous repetitions to converge. Here, the iteration runs are canceled
if the residual and/or the difference of two consecutive solution values fall below a pre-
specified tolerance. Direct solvers only need one time step to reach the solution for a certain
point in time. The Thomas algorithm, an example of a direct solver, represents a recursion
formula that uses the boundary conditions to indicate exactly the result of the difference
equation at a point in space. The prerequisite for the application of the Thomas algorithm is
the presence of a linear equation system with a tridiagonal coefficient matrix. Grid-based
discretization methods (FDM, FVM, FEM), distinguish between structured and unstructured
grids or meshes. Unstructured meshes, which are usually used in FEM [29], have irregularly
distributed nodes and their cells do not need to have a standard shape. Therefore, they are
the preferred method for generating meshes in areas with complex geometries. However,
the use of unstructured meshes complicates the numerical algorithm due to the inherent
data management problem, which requires a special program to number and organize
the nodes, edges, surfaces, and cells of the grid. In addition, linearized difference schema
operators on unstructured meshes are not usually band matrices, making it difficult to
use implicit schemes. The numerical algorithms based on unstructured grids are the most
costly in terms of computing time and memory. Structured grids, which are the basis of the
FDM, implicitly contain the order of the grid elements in their solution; the application of
a program for the management of the grid elements is omitted. As a result of the ordered
structure of structured grids, model equations with band matrices are created, which allow
the application of time-efficient solvers. A major disadvantage of primitive FDM is that
complex geometry, characterized by curves, sharp/obtuse angles, can only be modelled if
losses in computational accuracy are acceptable. However, the use of elliptical grids can level
out this disadvantage [30]. Regarding these three major aspects of the numerical software
design, the solver algorithm was designed in favor of a short simulation run time, i.e., an
implicit finite-difference method with a direct solver on a structured mesh was developed.

4.2. On Parameter Study

In aluminum alloy spot welds two types of nugget development have been observed
in studies based on practical experiments. In one of them, melting starts as a circle around
the center at the contact area. Gradually, from all sides the melting continues inwards until
a complete nugget is formed [31]. In the other type initial melting is located at the center of
the faying surface, before it spreads in vertical and horizontal direction outwards [13,32].
The nugget growth in the present study starts in the center and extends outwards and,



Materials 2022, 15, 6348 14 of 16

thus, can be assigned to the latter type. Hereby proof for the qualitative correct simulation
of the nugget development is given. Table 6 points out that the sheet temperature and
the weld spot of the aluminum sheet grow with the applied electrode cap voltage, the
contact resistance and welding time. These observations align with general expectations of
RSW [33].

5. Conclusions

As mentioned at the beginning, the requirements for a model-based real-time monitor-
ing and control system for RSW are sufficient model accuracy and computation speed. In
terms of the computation speed, the simulation run-time falls below 20 s for a discretization
error ≤ 1%, whereas the process cycle (squeezing-, welding-, holding-, off-phase) lasts up
to a couple of seconds depending on process conditions. If the real-time simulation should
run to RSW-Process simultaneously, the simulation run-time must undercut the cycle time
of the spot weld process. This requires additional effort to reduce the run-time below the
cycle time. In terms of software optimization, technics of high-performance computing, for
example, vectorization and parallel computing as well as efficient programming possess
the potential to accelerate the computation speed additionally. Moreover, hardware with
more or higher processing power can support real-time simulation of RSW. After all, in
combination with an adequately chosen solving algorithm the finite difference method
seems to be a feasible approach for computing resistance spot welding close to real-time.
Investigations to come will include the validation of the model by means of experiment.
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Nomenclature

T temperature ◦C r, ϕ, z cylindrical coordinates m
Q volumetric heat source W/m3 t time coordinate s
H latent heat J/kg ∆z/∆r spatial step in z/r-direction m
L Lorenz constant [-] ∆t time step s
cp specific heat J/(kg·K) i/j radial/axial index [-]
Φ electric potential V n time and iteration index [-]
α thermal expansion factor K−1

λ thermal conductivity W/(m·K) ∇ Nabla-operator
µ Fourier number [-] δ(·) 1st derivative difference operator
ρ density kg/m3 δ(·)2 2nd derivative difference operator
σ specific electric resistance µΩm
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Appendix A

%initialization:
- geometry of sheet and electrode
- fixed material properties of electrode
- time step ∆t
- number time steps n % simulations runs
- abs error = 0.001 % first break condition
- tolerance = 0.001 % second break condition
% start electric-thermal model
for i = 1 : n
- update temperature dependent material properties
- stop 1 = 0; % initial value of first break condition

% start electric model
while (stop1 == 0 and stop2 == 0)

- 1st sweep of Peacheman-Rachford scheme (from left to right / r-direction):
- upper diagonalizing (1st part of Thomas algorithm)
- backward substitution (2nd part of Thomas algorithm)

- 2nd sweep of Peacheman-Rachford scheme (from bottom to up / z-direction)
- upper diagonalizing (1st part of Thomas algorithm)
- backward substitution (2nd part of Thomas algorithm)

- calculate residuum and relative error
- if (residuum < abs error) then stop1 = 1 else stop1 = 0 end
- if (difference successive solutions < tolerance) then stop2 = 1 else stop1 = 0 end
- update electric boundaries

end
% end electric model
% start thermal model

- 1st sweep of Peacheman-Rachford scheme (from left to right / r-direction)
- upper diagonalizing (1st part of Thomas algorithm)
- backward substitution (2nd part of Thomas algorithm)

- 2nd sweep of Peacheman-Rachford scheme (from bottom to up / z-direction)
- upper diagonalizing (1st part of Thomas algorithm)
- backward substitution (2nd part of Thomas algorithm)

- determine phase state of sheet (optional)
- update thermal boundaries

% end thermal model
end
% end electric-thermal model
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